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Abstract 

The efficacy of an intravenously administered chemotherapeutic for treatment of a solid tumor is 

dependent on a sequence of steps, including circulation, extravasation by the enhanced 

permeability and retention effect, transport in the tumor microenvironment, the mechanism of 

cellular uptake and trafficking, and the mechanism of drug action.  These steps are coupled since 

the time dependent concentration in circulation determines the concentration and distribution in 

the tumor microenvironment, and hence the amount taken up by individual cells within the 

tumor.   Models have been developed for each of the steps in the delivery process although their 

predictive power remains limited.  Advances in our understanding of the steps in the delivery 

process will result in refined models with improvements in predictive power and ultimately 

allow the development of integrated models that link systemic administration of a drug to the 

probability of survival.  Integrated models that predict outcomes based on patient specific data 

could be used to select the optimum therapeutic regimens.  Here we provide an overview of 

current models for the steps in the delivery process and highlight knowledge gaps that are key to 

developing integrated models.   
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1. Introduction 

The systemic delivery of a drug to a solid tumor for cancer therapy involves several steps which 

occur in series and ultimately determine drug efficacy (Fig. 1).  On administration, the time 

dependent drug concentration in blood is described by the pharmacokinetics.  In many cases 

simple one-compartment or two-compartment models can be used to describe the blood 

concentration of the drug or delivery system.  The extravasation of a drug from circulation at a 

tumor site is usually determined by the enhanced permeability and retention (EPR) effect.  

Following extravasation, a drug can undergo passive transport in the extracellular matrix before 

uptake by cells in the tumor microenvironment.  Convection may also contribute to transport in 

the extracellular matrix if there is interstitial flow.  After internalization the drug is delivered to 

the appropriate compartment by intracellular trafficking.  For pro-drugs or nanomedicines, drug 

release represents an additional step in the drug delivery process.  Drug delivery to a tumor cell 

may induce apoptosis or inhibit proliferation, thereby modulating tumor growth rate and hence 

tumor size.   Modulating tumor growth impacts the ultimate probability of survival. 

 While this summary is simplistic and neglects a number of important factors, it represents the 

important steps that link the systemic administration of a drug to the probability of survival.  

Each step in the process is the subject of intense research including both experiment and 

modeling.   Models include pharmacokinetic, physiological, numerical and analytical models, 

and span length scales from nanometers to meters (Table 1).   Models for individual steps are 

frequently empirical but have been refined with input from pre-clinical or clinical trials to 

provide predictive power.    
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 Integration of physiologically-based pharmacokinetic models, with models of extravasation 

from the tumor vasculature, and models that describe transport, uptake, and trafficking in the 

tumor microenvironment, have the potential to model changes in tumor growth rate and 

ultimately, survivability.   Here we assess the feasibility of integrating models for the individual 

steps in the drug delivery process (Figure 1) into models that can predict patient outcomes.  We 

summarize the current models and highlight the knowledge gaps that are key to developing 

integrated models that can link administration to survival.   In the future, with advances in our 

understanding of the steps in the delivery process and the development of more predictive 

models, it will be possible to use patient specific data to select drug and dosing regimens to 

optimize tumor growth trajectories and outcomes.   

   

 

 

Figure 1.  The systemic delivery and action of a drug or drug delivery vehicle to treat a solid 
tumor involves several steps.  Following injection, the time dependent distribution of the drug in 
circulation is described by the pharmacokinetics.  The extravasation of the drug from circulation 
at the tumor site is usually governed by the enhanced permeation and retention effect.  On 
exiting circulation at the tumor site, transport in the extracellular matrix is followed by uptake in 
the target cells.  The delivery of the drug to the target compartment in a cancer cell depends on 
the state of the drug (e.g. pro-drug, conjugated to an antibody or delivery vehicle by a linker, or 
contained in a liposome or other nanoparticle), the mechanism of uptake by the target cell, and 
the mechanism of action of the drug.  Arresting or reversing tumor growth is dependent on the 
preceding steps.  Survival is dependent primarily on the efficiency of the preceding steps, and 
may be coupled with other interventions such as radiation therapy or resection.  Survival may be 
negatively impacted by unwanted side effects associated with uptake in normal tissue. 
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step models features length scale 
circulation • pharmacokinetic 

• physiologically-
based 
pharmacokinetics 
(PBPK) 

vasculature/organs total length: 
105 km 
diameter: 5 
µm - 1 cm  
 

extravasation 
(EPR effect) 

• kinetic typical vessel 
spacing (tumor) 

100 - 200 µm 

typical vessel 
diameter (tumor) 

20 - 30 µm 

paracellular defect 
(tumor) 

≤ 1 µm 

total vessel length in 
tumor (150 mm mm-3) 

100 m 

transport • numerical maximum diffusion 
length (half average 
distance between 
vessels) 

50 µm - 100 
µm  

uptake, 
trafficking 

 sub-cellular 
(endocytosis, 
phagocytosis, etc.) 

1 nm - 10 µm 
(cell) 

tumor growth • empirical 
• metabolic 

cellular 10 µm - 1 cm 
(tumor) 

 

Table 1.  Models for steps in the systemic delivery of a drug to a solid tumor.   

 

2. Pharmacokinetics  

The uptake, distribution, and elimination of a drug are dependent on a wide range of 

physiological factors.  To overcome the complexities in modeling these physiological 

interactions, the pharmacokinetics of a drug or drug delivery system are usually described by 

empirical models [1].   In many cases, the pharmacokinetics of a systemically administered drug 

can be analyzed using a one- or two-compartment model assuming first order rate constants (Fig. 

2A) [1].  Analysis of the drug concentration in blood or plasma with time can be used to extract 

parameters such as Area Under the Curve (AUC), clearance rate, distribution volume, and 
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elimination half-time.   These models are relatively easy to use and an invaluable tool in 

providing global insight into the distribution and elimination of a drug. 

 While these empirical models are useful in developing therapeutic strategies and in 

comparing drugs, they have limited predictive power.  The recent emergence of physiologically-

based pharmacokinetics (PBPK) models holds promise for the prediction of pharmacokinetic 

parameters, and is an important step in the development of integrated cancer therapy models [2].  

The classical two-compartment PK model divides the body into the vascular system and highly 

perfused tissues (the central compartment) and normal tissue (peripheral compartment).  PBPK 

models consider blood perfusion throughout all organs and tissues of the body.  The complexity 

of each organ compartment may vary from a simple perfusion rate limited model to more 

detailed models that take into account cellular and molecular level processes involved in drug 

binding and transport, such as plasma-protein binding affinities, membrane permeability, 

enzymatic stability, and transporter/pump activity [2].  These models can be patient specific by 

incorporating details of organ volume, blood flow, etc. 

 For many small molecules, the pharmokinetics are dictated by the intrinsic physicochemical 

properties of the drug, for example solubility, hydrophobicity/hydrophilicity, lipophilicity, 

charge, etc.  Nanotechnology has provided the ability to decouple delivery and efficacy, allowing 

the fabrication of drug or gene delivery systems where the pharmacokinetics can be tuned 

independent of the therapeutic.  For example, current nanomedicines such as Doxil and 

Abraxane have overcome problems with toxicity and low solubility [3].  Various strategies, such 

as pegylation, have been developed to increase circulation half-time [4-6].  However, the field is 

not sufficiently advanced to be able to predict pharmacokinetics based on the physico-chemical 

properties of the delivery system [7].   Establishing the relationship between physico-chemical 
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properties and pharmacokinetics and developing design rules for delivery systems, will be key to 

predicting pharmacokinetics. 

 

 

Figure 2.  (A) Standard two compartment pharmacokinetic model with a central and peripheral 
compartments.  Nbl and Np represent the amount of drug in blood (central compartment) and 
normal tissue (peripheral compartment), respectively.  The first order rate constants k12 and k21 
describe exchange between the two compartments, and k10 describes all processes leading to 
clearance from circulation, including elimination by the MPS and tumor accumulation. (B) Two 
compartment model with the addition of a tumor “compartment” defined in terms of the drug 
amount, where Nt is the amount of drug in the tumor, Nbl is the amount of drug in blood, and Np 
is the amount in peripheral tissue.  Note that kp = k12, kd = k21.  Exchange with the tumor is 
described by the rate constants kepr and kb, respectively.  The rate constant kel to describe all other 
clearance processes. 
 
 

 

Summary.  Current pharmacokinetic models applied to data from clinical trials or animal studies 

are able to provide insight into the circulation and biodistribution of specific drugs or drug 

delivery systems.  Physiologically-based models have the potential to predict pharmacokinetic 

parameters.  Length scales range from µm (capillary diameter) to km (vascular length) [8]. 

Establishing the relationships between physico-chemical properties and pharmacokinetic 

parameters will be key to developing predictive models for new nanomedicines.  Since tumor 

accumulation is coupled to pharmacokinetic parameters, such as the concentration in circulation, 

developing predictive models is key to modeling tumor accumulation. 
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3. Extravasation and Tumor Accumulation by the Enhanced Permeation and Retention 

(EPR) Effect 

Following systemic delivery, the accumulation of a drug at the tumor site is dependent on 

extravasation from the tumor vasculature.  Extravasation can occur either by paracellular or 

transcellular transport.  The tumor vasculature is characterized by a variety of abnormalities 

including irregular architecture, poor lymphatic drainage, loss of smooth muscle cells, local 

degradation of the extracellular matrix, and increased permeability of the endothelium (Fig. 3A) 

[9].  The increased permeability is important in mediating the uptake of a systemically 

administered drug in a solid tumor and is known as the enhanced permeation and retention (EPR) 

effect [9-12].   

 Despite its importance in modulating tumor accumulation, very little is known about the 

kinetics of the EPR effect.   Accumulation of a drug or nanomedicine in a solid tumor by the 

EPR effect is dependent on the concentration in blood, and hence requires knowledge of the 

pharmacokinetics.  In conventional pharmacokinetics models, extravasation of a drug at the 

tumor site is implicitly combined with other mechanisms of clearance from circulation, including 

renal clearance, uptake in other organs, clearance by the mononuclear phagocyte system (MPS), 

and enzymatic degradation, into the elimination rate constant k10 (Fig. 2).  To distinguish tumor 

accumulation by the EPR effect from other elimination pathways, a recent model defines a tumor 

“compartment” and associated rate constants specifying drug accumulation and removal from the 

tumor (Fig. 3B) [13].  Drug extravasation into the tumor by the EPR effect is described by the 
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rate constant kepr, and intravasation from the tumor back into circulation is described by kb.  The 

rate constant kel describes clearance by the MPS and any other mechanisms. 

 Since the rate of tumor uptake by the EPR effect is repr = keprNbl, it is evident that tumor 

uptake is strongly dependent on the concentration in blood and hence on the circulation half-

time.  Similarly, the rate of intravasation back into circulation is rb = kbNt, and hence increases 

with increasing tumor uptake. For a drug molecule in circulation under pulsatile flow, the 

residence time of a drug molecule in the vicinity of a pore in the endothelium of the tumor 

vasculature is expected to be relatively short, and hence the probability of extravasation is 

expected to be low.  Conversely, the residence time for a drug molecule in the vicinity of a pore 

on the tumor side of the endothelium is expected to be much higher since the rate of interstitial 

flow is much lower than blood flow.  Consequently, the probability of extravasation is expected 

to lower than the probability of intravasation, kb > kepr.  

 While this model represents a major advance in allowing quantitative insight into the EPR 

effect, a detailed understanding of the rate constants kepr and kb will be key enabling predictions 

of tumor uptake.   The rate constants have units of s-1 and are dependent on the length and 

leakiness of the tumor vasculature and hence are expected to be dependent on tumor type and 

exhibit patient-to-patient variations.  Normalizing the rate constants to unit volume would allow 

comparison of different tumor sizes.    

 Kinetic models such as this can be used to fit pharmacokinetic and tumor accumulation data 

to obtain values for the rate constants that can then used to compare different tumor types or 

chemotherapeutics.  Unfortunately time-dependent measurements of both the pharmacokinetics 

and tumor accumulation from human clinical trials are not available, and data from pre-clinical 

trials in animal models do not have sufficient detail.  
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Figure 3.  The influence of the EPR effect on tumor accumulation.  (A) Schematic illustration of 
the EPR effect.  The tumor vasculature is characterized by loss of smooth muscle cells, local 
degradation of the extracellular matrix, and increased permeability of the endothelium.  The rate 
constants kepr and kb describe extravasation from circulation into the tumor, and intravasation 
back into the circulation, respectively.  (B) Kinetic model for tumor accumulation by the EPR 
effect which includes a tumor compartment.  
 

 

Summary.   The kinetics of extravasation from circulation of a drug or nanomedicine are key to 

connecting pharmacokinetic models to models for tumor growth and survivability.  Recent 

models for the EPR effect provide a framework to link pharmacokinetics to tumor accumulation, 

but further refinements to incorporate spatial variability remain to be solved.  Key feature sizes 

include, vessel diameter (≈ 20 µm), vessel spacing (≈ 100 µm), cut-off for paracellular transport 

(≈ 1 µm), and total tumor vasculature length (≈ 100 m) [13-18]. 

  

4. Transport, uptake, and trafficking 

Drug efficacy, measured in terms of changes in tumor size or survival rate, is dependent on the 

amount of drug that extravasates from the vasculature and the fate of the drug after extravasation. 
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The tumor microenvironment is characterized by densely packed tumor cells and tumor 

associated cells (macrophages, fibrobasts, etc.) embedded in extracellular matrix and bathed in 

interstitial fluid [18].  For drug delivery vehicles, the kinetics of drug release from the 

nanoparticle represent an additional step in the delivery process.   Several approaches have been 

developed for diffusion controlled release of drugs from polymeric drug delivery vehicles [19-

21]. 

 

Transport 

Following extravasation, uptake of a drug or nanomedicine in target cells is preceded by 

transport in the tumor microenvironment.  The transport process is determined by the 

architecture of tumor vasculature.  MicroCT analysis of corrosion casts from 20 patients with 

colorectal adenocarcinoma revealed a median vascular density of about 5%, a median vessel 

diameter of about 20 µm, and a median vessel spacing of about 80 µm [14].   While the vessel 

diameter was independent of position in the tumor, the vessel spacing varied from about 50 µm 

at the tumor periphery to about 120 µm at the tumor core.  Similar results have been obtained 

from analysis of xenografts in mouse models. Analysis of xenografts derived from poorly 

(LS147T) and highly (SW1222) differentiated human colorectal carcinomas, showed median 

vascular densities (with respect to the total tumor volume) of about 10% and 20%, respectively 

[14].  The average vessel diameter was about 20 µm for the LS147T xenograft, and about 30 µm 

for the SW1222 xenograft.  The average vessel spacing was about 50 µm for the LS147T 

xenograft, and about 80 µm for the SW1222 xenograft.   Since the vessel spacing in non-hypoxic 

regions is on the order of 100 µm, the diffusion length to reach cells furthest from the vessels is 

about 50 µm, however, transport to cells in hypoxic regions is significantly longer.  



 12 

 The transport of a drug is in the tumor microenvironment is analogous to a percolation 

process dependent on the porosity of the extracellular space.  Transport is a balance between a 

source term (the input flux), determined by the EPR effect, and a sink term determined by the 

kinetics of binding and uptake in cells in the tumor microenvironment [18].  The penetration 

length of a drug or nanomedicine from a vessel is dependent on the interplay between the source 

and sink terms, both of which are dependent on the physico-chemical properties (size, charge, 

surface chemistry, etc.) of the drug.  Simulations using coupled differential equations to describe 

diffusive transport have been used to model distribution of drugs and nanomedicines as a 

function of time in the tumor [22-24].   

 

Uptake and trafficking 

The mechanisms of cellular uptake, e.g. passive transport or endocytosis, are reasonably well 

understood [25-29].  However, very few models have been developed to simulate the kinetics of 

uptake and trafficking.  With advances in molecular dynamics simulations, atomic scale 

simulations of uptake and comparison to experimental data will become a reality in the near 

future.  The input parameter for uptake and trafficking is the time dependent concentration of a 

drug, obtained from transport models in the previous step.  The required output parameters from 

models of uptake and trafficking are the rates of rates of proliferation and apoptosis.  This is 

extremely challenging since the proliferation and apoptosis rates are dependent on time, cell 

type, and spatial location which determines local oxygen and nutrient concentrations. 

 

Summary.  Transport, uptake, and trafficking determine the drug distribution in the cells within a 

tumor and hence modulates the tumor growth rate.   Developing accurate models for these 
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processes is complicated by the complex 3D geometry.  A particular challenge is developing 

models for proliferation and apoptosis in the cells within a tumor.   

 

5. Tumor growth 

The relationship between tumor size and disease progression has been studied for more than 150 

years [30].  Tumor growth is a result of upregulated proliferation of cancer cells and is 

modulated by the supply of oxygen and nutrients.  In most cases tumor growth is initially very 

fast with a rapid increase in tumor size, but at longer times the rate of growth decreases and the 

tumor size increases very slowly [31-33].   

 Assuming cell division is described by a first order rate constant k, then the number of cells 

at time t is given by N(t)=exp(kt) and the doubling time is td = ln2/k.  The doubling time for 

growth of a 1 cm3 tumor containing 109 cells [34] over 10 years is 122 days. Analysis of the 

latter stages of tumor growth where growth is exponential, implies doubling times from a few 

months to a few years [35].    

 The Gompertz model empirically captures the initial exponential growth followed by a 

decrease in growth rate leading to a steady state tumor volume.  This model assumes that the rate 

of tumor growth is dependent on the tumor volume V(t) and a time dependent growth rate (r(t)):  

dV (t)
dt

= r(t)V (t)   (1) 

dr(t)
dt

= −ρr(t)   (2) 

where ρ describes the rate of decrease of the growth rate.  The solution to equations (1) and (2) 

gives: 
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V (t) =V0 exp
r0
ρ
1− exp −ρt( )( )⎛

⎝⎜
⎞
⎠⎟

  (3) 

 

The growth curve described by the Gompertz equation is sigmoidal with an initial exponential 

increase in tumor volume that reaches a maximum value (V0exp(r0/ ρ)) at long times (Fig. 2).  

Although the Gompertz model is empirical, it can be fit to experimental data of tumor size versus 

time to predict future growth [36-38].  The Gompertz model has also been used to analyze the 

growth of tumor spheroids in vitro [32]. 

 More physical models of tumor growth take into account the supply of oxygen and nutrients.  

In the simplest case, for a spherical avascular tumor and assuming that proliferation is limited by 

the supply of oxygen and nutrients to the tumor surface, and incorporating an apoptosis term, the 

rate of tumor growth can be written as [30]: 

dV (t)
dt

=αV (t)2/3 − βV (t)   (4) 

where α and β are constants.  This is an application of the von Bertalanffy model [39] widely 

used to analyze fish growth rate data [40].  The solution also described a sigmoidal growth curve 

(Fig. 4): 

V (t) = α
β

⎛
⎝⎜

⎞
⎠⎟

3

1− exp −
β t − t0( )

3
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟

3

  (5) 
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Figure 4.  Empirical models for tumor growth.  The Gomertz model and Bertalanffy model are 
characterized by sigmoidal tumor growth curves.   Gompertz model with r0/ρ = 4.6 and ρ = 9.2.  
Bertalanffy model with α/β = 100 and β = 15. 
 

 More physiological approaches to describe tumor growth curves have drawn on more 

sophisticated models for ontogenetic growth.  The base metabolic rate B of numerous species 

(both warm blooded and cold-blooded organisms) is empirically observed to be proportional to 

body mass M or volume with an exponent of 0.75, i.e. B = B0M3/4 [41].  This empirical 

observation has been captured in a quantitative model that takes into account a space filling 

branched network of vessels, with the capillary defining the smallest element, and minimizing 

the hydrodynamic resistance [42].  A quantitative model has been also been developed to 

describe ontogenetic growth, taking into account the metabolic energy needed to sustain existing 

tissue and the energy needed to create new tissue.  The building block of this model is a single 

average cell, where the mass of the organism, m, is given by [31, 42]: 

dm(t)
dt

= am3/4 − bm   (6) 

 

where the constants a and b can be related to physical properties of the single average cell.  

Notice the similarity to equation (6).  This model also gives a sigmoidal time dependence of the 

mass of the biomass (Fig. 4) [31].  Analysis of in vitro growth of tumor spheroids and in vivo 



 16 

data in animal models and humans, has been used to suggest that tumor growth follows a 

universal growth law, with three adjustable parameters: the initial and final mass of the tumor, 

and the constant a [33].  The current challenge in this field is to bring physical insight into this 

universal behavior by combining models [43].   

 While these metabolic models provide valuable insight into tumor growth, further 

refinements must capture and patient-specific and tumor-specific differences in the architecture 

of the tumor vasculature.   Ultimately, tumor growth models must also include terms to describe 

the decrease in tumor size associated with therapeutic interventions and hence coupling to 

models of transport and uptake.    

 
 
Summary.  There is a long history of modeling tumor growth rates.  More recent models have 

taken into account metabolic limitations of tumor growth.  Developing models of the decrease in 

tumor size following chemotherapy will require coupling to drug transport and uptake.  In the 

context of existing tumor growth models, this will require insight into the processes embodied in 

the parameter b.  Length scales vary from a single cell (≈ 10 µm) to the tumor size (≈ 1 cm). 

 

6. Survival Rate Models 

Survival rates quantify the probability of survival a certain time period after diagnosis [44].  

Survival rates are inherently dependent on a large number of factors, the most important of 

which are disease-stage, age, ethnicity, lifestyle, and genetics.  To compare data, care has to be 

taken to ensure that differences in the patient groups, tumors, and treatments do not confound the 

calculations.  Analyses of patient survival data form the basis of all cancer survival models. 

Typically clinical data are summarized using either the life-table method, which plots the percent 
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of patients surviving a particular time interval (typically months or years) as a function of time, 

or the Kaplan-Meier method, which charts the cumulative actual survival of individual patients 

against time (Fig. 5).  

 

 

Figure 5.  Kaplan-Meier plot of the survival data of two different groups of patients. Individual 
deaths are recorded on the plot, which shows that the three-year overall survival probability of 
one group (blue) is significantly lower than that of the other group (red).   
 

 Survival models are generally derived from fits to clinical survival data that make empirical 

assumptions about factors affecting survival in clinical setting.  The aim of these models is 

primarily to aid the optimization of overall survival at phase III clinical trials based on available 

phase I/II data [45].  These empirical models are usually based on tumor metrics or unrelated 

factors. 

 

Relationship between tumor metrics and survival rate 

Longitudinal tumor metrics are commonly used in models to predict overall cancer survival.  

Early change in tumor size (ECTS), based on measurements of the largest diameters of a fixed 

number of lesions, remains the most important and reliable clinical tumor metric [46].  ECTS is 

easy to measure and compare to other longitudinal survival data and survival models. 
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 Semi-parametric Cox proportional-hazard models are the standard epidemiological tool to 

analyze survival data, and are frequently employed in oncological studies to identify baseline 

prognostic factors and the relationships between biomarkers and overall survival [47].  Typical 

baseline prognostic factors are: tumor burden (tumor size and number of metastatic sites), 

molecular markers (e.g. serum albumin), oncological performance status (quantifying the general 

well-being of a patient), and disease history (previous diagnoses and treatments). These factors 

are typically added as covariates in addition to the tumor biomarkers [45].  Simulation studies 

typically parameterize a model using baseline factors and longitudinal tumor growth metrics (e.g. 

from a phase I or II clinical trial) and subsequently apply the model to predict overall survival in 

a later stage clinical trial or unrelated patient group [48]. 

 

Alternative variables and biomarkers to predict overall survival 

Several variables that are unrelated to tumor metrics have been explored to predict overall 

survival.  Systemic drug exposure defined by the area under the curve (AUC) from 

pharmacokinetic data, for example, has been shown to correlate strongly with overall survival 

[49], while a specific pharmacological biomarker measuring the effectiveness of a cancer drug 

has been shown to outperform tumor metric based models [50]. Other predictors include 

treatment side effects such as neutrophil count and blood pressure [51]. 

 Advances in genomics methods have facilitated the search for molecular biomarkers [52].  

Given the genetic heterogeneity of tumors, even of the same type, genetic biomarkers have been 

proposed and studied as predictors of patient survival [53, 54]. For example, studies utilizing 

mutations in genes associated to DNA repair have been successfully employed as biomarkers in 

predictive models of survival for breast cancer [55] as well as colorectal carcinoma [56]. These 
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models are typically ‘trained’ on clinical datasets that combine classical tumor metrics with 

individual gene expression microarray information for a large number of patients (e.g. [57]) to 

identify genes that give good prediction of overall survival.  Models are then verified on ‘testing’ 

data sets, derived in a similar manner from an unrelated group of patients with the same 

diagnosis. Given the large number of genetic variations in tumor cells, recent models have 

extended these approaches to include complex biomarkers that are groups of genes describing 

entire biological pathways [58] or meta-genes [59]. 

 

Summary.  Models of cancer survival currently employ empirical Cox-regression, often based on 

complex clinical datasets that try to identify covariates that contribute significantly towards 

survival. Typical considerations are age, ethnicity, lifestyle, disease-stage at diagnosis, and 

genetics.  Key problems with cancer survival modeling are the complexity of the disease, 

physical and genetic heterogeneity of tumors, and difficulty in identifying biomarkers that are 

strong predictors of overall survival.  Indeed, a recent study found that most random gene 

expression signatures can be utilized as biomarkers for statistically significant prediction of 

breast cancer survival [60], but identifying strong predictors remains challenging.  In addition 

survival times can vary strongly between individuals, especially in the presence of co-

morbidities (e.g. diabetes, coronary heart disease, genetic factors, etc.).  Predictive quantitative 

models of patient survival rates will require significant advances in our understanding of the 

relationship between tumor metrics and the concentration of molecular or genetic markers, and 

survival rates. 
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7. Conclusions 

Systemic delivery of a chemotherapeutic agent is dependent on a sequence of steps including 

circulation, extravasation, transport in the tumor microenvironment, the mechanism of cellular 

uptake and trafficking, and the mechanism of drug action.   Historically models for individual 

steps in the delivery process have had limited predictive power, however, progress in our 

understanding of the mechanisms involved suggest that predictive models may be realized in the 

near future.  Ultimately, integration of the models for the individual steps in the delivery process 

could provide tools for guiding clinical management of chemotherapy.   
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Figure Captions 

Figure 1.  The systemic delivery and action of a drug or drug delivery vehicle to treat a solid 
tumor involves several steps.  Following injection, the time dependent distribution of the drug in 
circulation is described by the pharmacokinetics.  The extravasation of the drug from circulation 
at the tumor site is usually governed by the enhanced permeation and retention effect.  On 
exiting circulation at the tumor site, transport in the extracellular matrix is followed by uptake in 
the target cells.  The delivery of the drug to the target compartment in a cancer cell depends on 
the state of the drug (e.g. pro-drug, conjugated to an antibody or delivery vehicle by a linker, or 
contained in a liposome or other nanoparticle), the mechanism of uptake by the target cell, and 
the mechanism of action of the drug.  Arresting or reversing tumor growth is dependent on the 
preceding steps.  Survival is dependent primarily on the efficiency of the preceding steps, and 
may be coupled with other interventions such as radiation therapy or resection.  Survival may be 
negatively impacted by unwanted side effects associated with uptake in normal tissue. 
 
Figure 2.  (A) Standard two compartment pharmacokinetic model with a central and peripheral 
compartments.  Nbl and Np represent the amount of drug in blood (central compartment) and 
normal tissue (peripheral compartment), respectively.  The first order rate constants k12 and k21 
describe exchange between the two compartments, and k10 describes all processes leading to 
clearance from circulation, including elimination by the MPS and tumor accumulation. (B) Two 
compartment model with the addition of a tumor “compartment” defined in terms of the drug 
amount, where Nt is the amount of drug in the tumor, Nbl is the amount of drug in blood, and Np 
is the amount in peripheral tissue.  Note that kp = k12, kd = k21.  Exchange with the tumor is 
described by the rate constants kepr and kb, respectively.  The rate constant kel to describe all other 
clearance processes. 
 
Figure 3.  The influence of the EPR effect on tumor accumulation.  (A) Schematic illustration of 
the EPR effect.  The tumor vasculature is characterized by loss of smooth muscle cells, local 
degradation of the extracellular matrix, and increased permeability of the endothelium.  The rate 
constants kepr and kb describe extravasation from circulation into the tumor, and intravasation 
back into the circulation, respectively.  (B) Kinetic model for tumor accumulation by the EPR 
effect which includes a tumor compartment.  
 
Figure 4.  Empirical models for tumor growth.  The Gomertz model and Bertalanffy model are 
characterized by sigmoidal tumor growth curves.   Gompertz model with r0/ρ = 4.6 and ρ = 9.2.  
Bertalanffy model with α/β = 100 and β = 15. 
 
Figure 5.  Kaplan-Meier plot of the survival data of two different groups of patients. Individual 
deaths are recorded on the plot, which shows that the three-year overall survival probability of 
one group (blue) is significantly lower than that of the other group (red).   
 
 


