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Text S1: Reasoning for using a read-depth approach for CNV detection 

Genome-wide studies of structural variations initially employed microarray techniques 

but these are now rapidly becoming replaced with more powerful next-generation sequencing 

(NGS) platforms. Some of the advantages of NGS based approaches include much better 

genome coverage and resolution, more accurate copy number estimate, and capability to 

detect novel variants (reviewed in Zhao et al. 2013). NGS based structural variation detection 

methods rely on short read placement and can be classified into several different strategies, 

based on the use of mapping information. Each approach has certain advantages and 

limitations and the choice of method should include careful consideration of potential 

technical artifacts and how they affect data interpretation. For example, tools based on 

discordantly mapped paired reads (paired-end mapping; PEM) have high sensitivity and can 

detect balanced rearrangements such as inversions and translocations, but are at the same time 

strongly biased towards detection of structural variants smaller than 1 kb. Furthermore, 

because a sequenced library contains a distribution of insert sizes rather than one discrete 

value, and because PEM strategy uses a fixed cutoff at which insert length is considered to be 

anomalous, high false positive and/or negative discovery rates can be expected (Medvedev et 

al. 2009). On the other hand, read depth (RD) methods are based on a concept that the depth 

of coverage of a genomic region positively correlates with the copy number of that region and 

usually employ statistical models to deal with mapping biases and variations (Zhao et al. 

2013). Unlike PEM based strategy, RD analysis is not applicable for finding copy number 

neutral rearrangements and novel insertions that are not already present in the reference 

genome. However, RD based tools detect large events with maximum sensitivity even at low 

coverage, and the reliability of a call actually increases with the size of the event (Medvedev 

et al. 2009; Abyzov et al. 2011; Zhao et al. 2013). Moreover, the RD approach can accurately 

predict copy numbers and thus perform genotyping, a feature that is beyond those of other 

NGS based methods. Another advantage of the RD based strategy is the ability to detect 

variation within repetitive regions of the genome by considering read placement at multiple 

positions, whereas other NGS based methods are restricted to unique genomic regions (Magi 

et al. 2012). The power to detect structural variants in low-complexity regions such as SDs is 

of indisputable value, given that these regions show substantial copy number variation (Sebat 

et al. 2004; Sharp et al 2005; Cooper et al. 2007; Egan et al. 2007; Medvedev et al. 2009). 

Having all the above in mind, our choice of methodology was governed by the 

following objectives: 

1) finding large variations which would encompass whole genes; 

2) comparison of actual copy numbers in order to infer differentiating patterns; 

3) detecting variants in SDs regions which are known to exhibit great deal of 

polymorphism in population; 

4) minimizing possibility of the influence of technical artifacts on data interpretation 

when comparing between samples of varying sequencing coverage. 

 

To this end, RD approach of CNV detection was chosen as the most appropriate or 

even the only applicable methodology. Admittedly, a combination of different approaches 

such as for example RD and PEM would enrich our collection of identified CNVs, however, it 

could also misguide the data interpretation. For example, lower sequencing coverage is 
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associated with lower sensitivity, i.e. inability to detect much CNVs, especially those of 

smaller size. Hence, the events readily detected in samples of better coverage could go 

undetected in samples of lower resolution and misinterpreted as lacking. This could easily 

lead to erroneous conclusions associated with presence-absence patterns and population 

differentiation analysis. By focusing on larger events (≥ 1 kb) and by employing RD strategy 

which is much more robust to coverage differences, we attempt to avoid these issues. 

Furthermore, for each of the aforementioned objectives, we tackle the possibility of 

misinterpretation caused by technical issues by performing suitable control analyses (see 

further in the text). 

 

 

 

 

 
 

Figure S1. Definition of CNV classes used throughout the analysis. For simplicity, only 

duplications are depicted as CNVs in this schematic representation as peaks of read depth (green 

lines); however, both duplications and deletions are considered in the analysis. Arrows represent genes 

(transcription units). (A) "CNV" is any region ≥ 1kb with read depth differences identified by 

CNVnator; "genic CNV" is a call that contains at least one full gene which, in that case, is called 

"CNV Gene". (B) All overlapping calls across individuals merged together define a Copy Number 

Variable Region "CNVR".  
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Text S2: Digital PCR validation and estimate of false discovery rate 

For ddPCR validation, we selected CNVs at different genomic regions that either 

represent various predicted copy number ranges across all 27 individuals or showed 

population differentiation in our dataset. Of the 44 considered CNVs, we were able to design 

specific primers and probes for 21 different loci (see suppl. Table S12). This was not 

surprising, given the association of copy umber polymorphism with repetitive regions which 

hinders amplification of specific targets. Additionally, for two genes, Luzp4 and Gm21671, 

we were able to design assays which contained non-specific primers. Amplification of 

unwanted targets was prevented by additional digestion of DNA with MseI prior to ddPCR, 

which cuts inside non-specific targets while leaving the desired target intact. The resulting copy 

number was compared with the CNVnator-determined copy number for the same region in all 27 

individuals (Figure S2). 

In order to estimate false discovery rate (FDR) of our CNV call set, we used two 

measures of correlation between the computationally predicted and experimentally 

determined copy numbers: Pearson’s correlation coefficient (r) and Lin’s Concordance 

Correlation Coefficient (CCC) (Figure S2). The latter is more stringent in that it measures 

departure from the equality line (45°) between CNVnator predictions and ddPCR results (Lin 

1989). The correlation was considered to be very strong if either r or CCC was > 0.7. Those 

cases where correlation coefficient was calculated to be below 0.7 were considered to be false 

positives. Based on Pearson’s r, we find two false positive CNV loci among 23 tested (Defb8 

and Nxpe5), resulting in FDR of 8.6%. Based on CCC, we detect five false positives (Defb8, 

Gm13152-13154, Gzma, Nxpe5 and Tex24), estimating the FDR to be 21.7%. 
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Figure S2 - Validation of CNV loci by droplet digital PCR 
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Figure S2 - Continued 

  

Figure S2. Assays for 23 

different loci were designed 

and used to screen all 27 

individuals (red asterisks). 

The results of ddPCR runs 

(y axis) were plotted against 

copy numbers predicted 

with CNVnator (x axis) for 

the amplicon regions. Fitted 

regression lines are shown 

dashed; r is Pearson’s 

correlation coefficient; CCC 

is Lin’s Concordance 

Correlation Coefficient. 
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Text S3: Reduced CNV detection power due to lower read coverage 

Neighboring CNV calls can appear as one single call in samples with shallower 

coverage, resulting in a lower proportion of smaller CNVs. Indeed, on average, 79%-81% of 

calls were 1-10 kb long in the three mainland populations, as opposed to only 69% in HEL 

(Figure S3A). This effect is also visible from the calculated average CNV length, which for 

HEL population is substantially larger than for mainland populations (17 kb compared to 11-

12 kb, respectively; Table S1 below). When only genic CNVs or CNV genes are considered, 

which are mostly much larger than 1 kb, the difference of HEL to FRA and GER is also 

smaller (Figure 1 in main text; Table S1 below). 

To assess the effect of read depth on CNV counts, we plotted the number of mapped 

reads in each sample against the number of detected CNVs. The correlation was strong for all 

CNV counts (Figure S3B - left; r = 0.857, Pearson’s coefficient), but weak to insignificant for 

genic CNVs (Figure S3B - middle; r = 0.304) and CNV genes (Figure S3B - right; r = 0.206). 

This indicates that the read depth dependence is of less relevance when assessing CNVs 

associated with genes. Therefore, we reasoned that by focusing on CNV genes and larger 

events our analyses should be less influenced by technical artifacts and differences in 

sequencing depth. 

 

 

 
 

 

Figure S3. CNV detection power vs. read coverage. (A) Difference in CNV size distribution 

between sample sets. Fraction of calls larger than 10 kb (red) is higher in Heligoland samples 

compared to mainland samples. This difference reflects weaker resolution of CNV detection as result 

of lower coverage. (B) Correlation between number of mapped reads and CNV counts. r is Pearson’s 

coefficient. 
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Text S4: Control for false positive singleton CNVs 

 CNVnator calls deletions and duplications when the normalized RD signal is 

calculated to be below 1.5 (per diploid) and above 2.5, respectively. The more stringent cutoff 

of 1.4 and 2.6, has been used to find reliable de novo CNVs from family trios (Abyzov et al. 

2011). Since CNV calling was performed for 27 genomes, to account for multiple 

comparisons, we tested whether the number of detected singletons would change if the more 

strict criteria for CNV calling are applied. We varied the normalized RD cutoff, increasingly 

in its stringency: 1) 1.4 for deletions and 2.6 for duplications; 2) 1.2 and 2.8; and 3) 1.0 and 

3.0. For each of the three cutoff sets, we counted the number of detected singletons in each 

animal and compared their distributions with the original data (Table S1). We detect only 

borderline significant difference in comparison with the most stringent cutoff applied (Figure 

S4; p = 0.0485 after Bonferroni correction in Dunn's post hoc test), indicating that the original 

data contains bona fide singletons in our sample set, rather than false positives. 

 

                                

 

Figure S4. Detected singleton CNVs at varying 

cutoffs for normalized RD signal applied. 

Comparison of original dataset with singletons obtained 

by applying three different cutoffs to call CNVs is 

shown (see Text S4 for cutoff values). Number of 

detected singletons for all 27 animals is shown in each 

box as distribution. Low-significance difference 

between the original dataset and dataset obtained by 

applying cutoff 3 was detected and its p-adj value is 

shown (Kruskal-Wallis rank sum test p = 0.07). 

 

 

 

 

 

 We detected on average 386 singletons in our sample set (suppl. Table S1), i.e. CNV 

calls found exclusively in a single individual. Considerably more singletons in all IRA mice 

compared to others is likely due to higher effective population size, consistent with more 

mutations at low frequency.  

 We detected on average 180 (median 178, sd = 45) deletions per sample for which the 

number of mapped reads corresponded to less than 1/100th of a single copy per genome (copy 

number - CN = 0.01) and can be considered complete deletions of high confidence. In 84 of 

these on average (81 median, sd = 26) we find no reads aligned at all. If we take CN of 0.5 as 

the cutoff below which a region is considered absent, over 1% of the genome appears to be 

deleted compared to the reference assembly. Given the limitations of the read-depth approach, 

we were not able to identify regions which are present in our samples and absent from the 

reference genome. However, if a similar outcome applies for vice-versa comparison, the 

estimated difference in genomic content between the reference assembly and any of our wild 

mouse samples might exceed 2% of the genome fraction.  
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Text S5: Comparisons between populations and with inbred mouse strains 

 Analysis of CNV presence-absence patterns can capture genetic relationships between 

individuals and popualtions. We defined overlapping CNVs between two individuals as those 

that intersect by at least 50% of the sequence length (based on position in the reference 

genome) and counted them in all combinations of comparison between the 27 individuals of 

the wild populations and for inbred mouse strains. We did not consider calls on the Y 

chromosome to be able to compare male to female samples.  

 In the wild mouse samples, two individuals had on average between 2,025-2,759 

overlapping CNVs in their respective population (Supplemental Table S1). In each pairwise 

comparison, the similarity was calculated as the number of overlapping CNVs divided by the 

average number of detected calls between the two individuals and the resulting similarity 

matrix is shown in Fig. S5. Based on the number of overlapping CNVs, FRA and GER 

populations are the most similar to one another. HEL mice share the least number of CNVs 

with the three other populations, although this could partly be ascribed to the lower number of 

detected calls. We also observed different degrees of variance in the number of overlapping 

CNVs within populations. GER mice are more similar to one another than FRA mice, and the 

IRA population shows the highest diversity. 

 

        
Figure S5: Pairwise similarity matrix based on overlapping CNVs for wild mouse individuals. 
CNV calls were defined as overlapping between two individuals if their overlap corresponded to a 

minimum of half of each length (relative to the reference genome). Similarity is presented by a scale 

from 0 to 1 where value 1 corresponds to absolute identity and 0 means no similarity, i.e. no 

overlapping CNVs. Populations from top to bottom (by rows) are Heligoland (HG samples), Iranian 

(AH and JR), German (TP) and French (last eight rows). 
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 To estimate the extent to which CNVs from our wild mice samples overlap with those 

in inbred mice, we downloaded variant calls from ftp://ftp-mouse.sanger.ac.uk/REL-1302-SV/ 

for 16 mouse strains from the study by Keane et al. (2011; dbVar accession number estd118) 

and additional strain FVB/NJ from the study by Wong et al. (2012; dbVar accession number 

estd200). We opted for this release as all calls are relative to the Build 37 (mm9) reference 

mouse genome C57BL/6J - the same assembly we used for CNV calling. In order to compare 

it with our set of CNVs, we removed balanced structural variations (SVs) and calls < 1 kb 

from each of the strains' SV set. Calls on Y chromosomes were not considered to enable 

comparisons between male and female samples. By using BEDTools (Quinlan and Hall 2010) 

we intersected calls from each of the 17 inbred strains with calls from each of our 27 wild 

mice, creating two analysis sets of overlapping calls: those that intersect by at least 1 bp and 

those that have minimum 50% reciprocal overlap of the reported CNV length with respect to 

the reference. On average, the inbred strains and wild mice overlapped at 1,679 CNVs 

(median 1,631) when the minimal intersection of 1 bp was required (Figure S6A - left panel). 

By that criterion, the largest number of overlapping calls with wild mice was found in strains 

SPRET/EiJ, CAST/EiJ and PWK/PhJ which are derived from M. m. spretus, M. m. castaneus 

and M. m. musculus subspecies. However, when we normalized the number of overlapping 

CNVs by dividing it by the average number of detected calls between the two compared 

individuals, the three strains showed the least similarity to our wild mice samples (Figure S6B 

- top panel). This is in agreement with their distance to M. m. domesticus, and the highest 

number of overlapping calls with our samples can be explained by the significantly more SVs 

detected in these strains compared to other strains (Keane et al. 2011). When we applied 50% 

reciprocal overlap cutoff, wild mouse samples shared on average 998 (median 999) CNVs 

with inbred strains (Figure S6A - right panel). They shared the largest number of CNVs with 

WSB/EiJ strain (average 1,337; median 1,471) and also showed highest similarity to it (Figure 

S6B - lower panel). This is expected, given that the WSB/EiJ is wild derived strain of M. m. 

domesticus subspecies. Overall, most comparisons show unsurprisingly higher similarity to 

M. m. domesticus derived strains, especially to WSB/EiJ and FVB/NJ (Figure S6B). 

ftp://ftp-mouse.sanger.ac.uk/REL-1302-SV/
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Figure S6. Comparison with 

CNVs from inbred mouse 

strains studied by Keane et al. 

2011 and Wong et al. 2012. 

(A) Number of overlapping 

CNVs between wild mice 

samples from our study and 

individual inbred strains of 

laboratory mice, based on 1 bp 

minimum intersection (left panel) 

and minimum 50% reciprocal 

overlap (right panel). 

(B) Similarity matrix based on 1 

bp minimum intersection (top 

panel) and minimum 50% 

reciprocal overlap (bottom 

panel), defined as number of 

overlapping CNVs divided by the 

average number of detected calls 

between the two individuals 

compared. Similarity is presented 

by a scale, where 0 denotes no 

similarity and increasing values 

represent higher similarity. 
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Text S6: Assessment of CNV detection in regions of high similarity 

As a mean of accomplishing uniform depth of coverage across genome, CNVnator 

keeps reads which can be aligned to multiple locations. This also enables it to detect CNVs in 

repetitive regions (except for transposable elements - see explanation in Abyzov et al. 2011). 

In case of paired-end data, CNVnator additionally exploits the information about ends 

distance and orientation to improve read placement. Moreover, by calculating the fraction of 

ambiguously mapped reads with zero mapping quality in the called CNV region, CNVnator 

discards unlikely calls (Abyzov et al. 2011). In order to assess the reliability of calls in 

repetitive regions, we tested the correlation of genotyped copy numbers of segmental 

duplications which are annotated at two genomic locations and share over 90% of sequence 

identity. If each non-uniquely mapping read is simply randomly placed at one of the two 

possible locations, then it is expected that the two regions to which these reads are mappable 

will have similar read depth and thus have the same estimated copy number. We genotyped in 

total 5,517 large SDs (≥10 kb) that are completely encompassed within CNV calls in one 

individual and compared their copy numbers at alternative locations (Figure S7A). We 

observe only weak correlation (r = 0.29) between the two locations’ copy number, and the 

large majority of highly discordant values strongly deviated from line of equality (y = x). This 

shows that CNVnator is able to distinguish similar genomic regions such as SDs. 

Given that CNV calling in SDs depends on sequence similarity and can be influenced 

by sequencing quality, potential artifacts could lead to erroneous conclusions. In our samples, 

on average 16% (minimum 14%; maximum 19%) of all CNVs overlapped SDs with 98% or 

more sequence identity. Proportion of such CNVs which also overlapped any part of a gene 

ranged between 4,5% and 7,2% (5,5% on average). Given these substantial fractions, we 

tested whether our major findings change when CNVs intersecting highly similar SDs (with ≥ 

98% sequence identity) are excluded from analysis. With such data, we repeated the analysis 

of CNV frequency like the one presented in Figure 2A, and compared the distribution 

between the original data and data depleted of CNVs intersecting highly similar SDs. We find 

no significant differences between the two in either overlapping SDs set (Wilcoxon rank sum 

test; p = 0.576) or non-overlapping SDs set (Wilcoxon rank sum test; p = 0.982). We have 

also tested how the exclusion of CNV genes intersecting highly similar SDs influences 

observed patterns of genetic relationship shown in Figure 4. We calculated the Euclidean 

distance matrix from standardized copy numbers of 1,104 CNV genes which did not intersect 

highly similar SDs, and compared it to the distance matrix calculated from the original CNV 

gene dataset by using Mantel test in R package “vegan”. Mantel statistics based on Pearson's 

product-moment correlation revealed strong and significant correlation between the two 

datasets (r = 0.895; significance = 0.001). These analyses show that although highly similar 

SDs overlap considerable proportion of CNVs in our dataset, overall conclusions are not 

changed when they are excluded from analysis, suggesting no major artifacts caused by 

sequence similarity. 

Similarly, potential mis-mapping of the reads could distort CNV calling at 

pseudogenes and their functional paralogs (parent genes). We picked out seven pseudogenes 

from our CNV genes list that had one-to-one relationship with the corresponding parent gene, 

such that, for each case there were no additional paralogs annotated in the RefSeqGene list 

(see suppl. Table S11 for a list pseudogenes and related parent genes). In all individuals where 
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these pseudogenes were found completely inside CNV, we genotyped them and their related 

parent genes. There was no correlation between the copy numbers of pseudogenes with their 

parent genes, i.e. the parent gene had two copies regardless of the pseudogene copy number 

(Figure S7B). This again shows that, despite high sequence similarity, CNVnator is able to 

discern different genomic locations. 

 

 

 
 

 

Figure S7. Assessment of CNV detection in regions of high similarity. (A) In total 5,517 large SDs 

were genotyped in one randomly chosen individual (15B). Each dot represents copy numbers of the 

two annotated genomic locations per segmental duplication, plotted against each other. Weak 

correlation and the best fit line strongly deviating from identity line (y=x) illustrate CNVnator’s power 

to discern regions of high similarity. (B) No correlation between copy number of pseudogenes and 

corresponding parent genes was observed. r is Pearson’s correlation coefficient. 

 

 

 

 

Text S7: CNVR size vs. frequency 

CNV size and presence in population depends significantly on their overlap with large 

SDs: CNVs in regions not overlapping SDs are generally smaller and less frequent (Figure 2, 

main text). This could indicate relatively stronger selective constraints on such CNVs but 

could also simply reflect size distribution, i.e. larger CNVs are more likely to overlap between 

individuals. To test if the latter is the case, we plotted the CNVR size against their presence in 

individuals (Figure S8). We found only weak correlation between the two (Pearson's r = 0.24; 

p < 2.2e
-16

), indicating that the observed CNVR frequency is not a technical artifact reflecting 

the size distribution. 
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Figure S8. Distribution of CNVR size per presence in x number of individuals. Median of 

distribution is indicated by central line in a box while the edges represent the first and third quartiles. 

The actual CNVR sizes are overplotted in red: each dot represents one of 28,375 CNVRs that do not 

overlap large segmental duplications. 
 

 

 

 

 
 
Figure S9. CNVRs intersecting with genes and large segmental duplications are mainly present 

in multiple samples. Overlapping calls from all individuals were merged into CNVRs and analyzed 

separately based on their intersection with SDs > 10 kb. Only CNVRs that overlapped at least one 

gene by any number of nucleotides were considered. Number of individuals with CNV call within 

each CNVR was counted. There were in total 662 unique CNVRs overlapping SDs (blue) and 7,536 

CNVRs not overlapping SDs (red). The graph shows frequencies of CNVR presence across all 

samples.  
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Text S8: Size of neural genes and its influence on enrichment at CNVRs 

In our set of 28,375 CNVRs that did not overlap large SDs we observe substantial 

enrichment for terms associated with neurological functions, such as synaptic transmission, 

nervous system development, learning or memory etc. (Table S3). We asked whether this 

enrichment was simply a consequence of the large size of genes that are related to these terms. 

For GO Term IDs related to neurological functions that were significantly over-

represented in our dataset (Table S3; GO:0044708, GO:0007268, GO:0007610, GO:0008344, 

GO:0030534, GO:0050890, GO:0007270, GO:0035249, GO:0050804, GO:0010975, 

GO:0007399, GO:0007611, GO:0097090, GO:0050808, GO:0050773, GO:0050806), we 

extracted all associated genes for Mus musculus taxon from http://amigo.geneontology.org. 

We retained 2,924 non-reduntant gene coordinates which were relevant for mm9 RefSeq gene 

set. Compared to the rest of the RefSeq genes, these neurologically associated genes are more 

than twice as large (median 30,9 kbp compared to 14,4 kbp; on average 87,2 kbp compared to 

38,4 kbp; Kolmogorov-Smirnov test: p < 2.2e
-16

), similarly to what was previously reported 

for human genes (Raychaudhuri et al. 2010). We find 26% of them to be overlapped by 

CNVRs (756/2,924), as opposed to 18% of genes with other functions (4,245/23,832). 

To test if arbitrarily positioned genomic fragments preferentially overlap genes with 

neurological functions, we randomly placed 28,375 non-overlapping segments of matching 

size as CNVRs in real data, making sure that, as in real data, they are outside of annotated 

gaps and SDs > 10 kb. We created 10,000 such sets of permuted CNVRs and in each counted 

the number of neurologically associated genes and other genes overlapped by simulated 

CNVRs. On average, much larger fraction in both gene groups was affected in simulated data 

than in observed data: about 45% (1,314/2,924) of neurologically associated genes and 30% 

(7,135/23,832) of other genes. The fact that fewer genes are overlapped by CNVRs in real 

data versus in simulated data, suggests that CNVs are biased away from genes, as shown 

previously (Conrad et al. 2006; Redon et al. 2006). When comparing the affected fractions of 

neurologically associated genes to other genes, we find that the ratio between the two is 

significantly smaller in real data (1.44 or 26% to 18%) than in simulated data (1.5 on average 

or 45% to 30%), indicating that neurologically associated genes are affected by copy number 

variation less than it is expected by chance. We calculate that the probability of obtaining the 

ratio of 1.44 or smaller is 0.0087 (87 in 10,000 simulations; Figure S10). This suggests that, 

despite their substantially larger size, genes associated with neurological functions are less 

likely to be overlapped by CNVRs 

than it is expected by chance, even 

when the bias against copy number 

variation in genes is taken into 

account. 

 

Figure S10. Distribution of calculated 

ratios for fractions of neurologically 

functioning genes to other genes that 

are overlapped by CNVRs in 

simulated data. Calculated ratios are 

shown for all 10,000 simulations. Red 

arrow points to the ratio value in real 

data.  

http://amigo.geneontology.org/
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Text S9: Assessment of genotyping accuracy 

To assess the extent to which genotyping accuracy is affected by depth of coverage, 

we performed a sequential down sampling of reads on one Heligoland individual (HG_08). 

By using SAMtools (Li et al. 2009) and a custom perl script, we randomly extracted reads 

from the original sequence file (327,866,406 placed reads in total) in separate subsets of 10%-

90% of the reads. In each subset, CNVs were called and CNV genes and their CN determined 

as described in Methods. The down-sampling experiment was conducted three times 

independently, each time comparing genotyped CNs between the original file and each 

subsampled set. We found that calls start to become less reliable only below 100 million reads 

(Figure S11). Given that our individuals have 3 to 7-times this critical number of reads, we 

conclude that the gene content and polymorphism analysis is robust and that the genotyping 

accuracy does not diminish with reduced coverage. 

 
Figure S11. Genotyping accuracy of CNV 

genes is not drastically affected by depth of 

coverage. 327,866,406 reads from the 

original sample were sequentially down-

sampled by 10%. Inferred copy numbers 

were compared between each subsample 

and the full sample. Computed Pearson’s 

correlation coefficients for each comparison 

are plotted against each subset of reads 

including the original set. Three 

independent down-sampling experiments 

are shown as different lines. n is the number 

of CNV genes detected and genotyped. 

 

Text S10: Validation of deleted genes analysis 

 In order to test if the amount of lost genes in HEL population is significantly higher 

than in mainland populations, we need to account for the smaller sample size. To this end, we 

created all possible combinations (56) of only three individuals in each mainland population. 

In each combination we counted the number of autosomal genes which appear to be deleted in 

all three individuals (normalized RD < 0.5 per diploid). In all three populations, number of 

deleted genes was considerably higher when only three individuals were considered instead of 

all eight (median 8.5, 27.5 and 34.5 versus 1, 6 and 16; 

see Figure S12 and main text); nevertheless, it was still 

much lower than in HEL population (Figure S12). 

                                     

Figure S12. Validation of deleted genes analysis. Larger 

amount of lost genes detected in HEL population is not an 

artifact of small sample size. To show this, number of deleted 

genes was counted in all possible combinations of only three 

mainland individuals. For each population, distribution of that 

number across all combinations (n=56) is shown as boxplot. In 

all combinations of mainland comparisons, number of deleted 

genes was considerably smaller than in HEL population (71 

genes; red dashed line).  
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Figure S13 - Read depth at CNVs encompassing Cwc22, Hjurp and Sfi1 

 

 

 
Figure S13. Read depth at CNVs encompassing Cwc22, Hjurp and Sfi1. Read depth signals 

suggest breakpoints at same locations in multiple individuals. Read depth per base position is shown 

for each individual CNV and its flanking region in different color. Individual predicted CNVs are 

shown as bars in corresponding color above the read depth signal. Gray arrows represent gene 

positions.  
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Text S11: Validation of VST analysis 

To test how the difference in sample size between Heligoland mice (n=3) and the other 

three populations (n=8 per population) influences the results of VST statistics (Table S7), we 

repeated the analysis on subsets of mainland samples. For all possible combinations (56) 

made of just three individuals from one population with all eight individuals from the other, 

mean VST values were calculated and compared across all population pairs and combination 

groups. In all resulting comparisons, the mean VST was on average significantly lower than in 

any comparison with the HEL sample (Figure S14). In addition, the values were similar to the 

original eight-to-eight comparisons, providing strong support for the observed higher 

differentiation of the HEL population. 

 

 

 
 
 

Figure S14. Validation of VST analysis. Much higher differentiation of Heligoland mice from 

mainland populations is not an artifact of small sample size. To show this, VST values were computed 

for all possible combinations of 3:8 mainland individuals and mean VST was calculated for each. In all 

combinations of mainland comparisons, VST was on average significantly lower than in any 

comparison with Heligoland sample.  

 
 

 

Text S12: Outlier analysis 

In order to detect genes with particularly large average copy number differences 

between populations, we performed pairwise comparisons of average copy number per 

population for all 1,863 CNV genes (Figure S15A). Outliers were identified as points that are 

at least 4 standard deviations (equivalent to p = 0.001) away from the best fit line of the 

resulting distribution. For the comparisons with HEL mice, the distribution was too spread out 

to detect any outliers (not shown). In the other three comparisons we detected in total 15 

outliers (red dots in Figure S15A) corresponding to 13 genes (Figure S15B). Many of these 

are polymorphic within populations, i.e. individuals of the population can contain very 

different numbers of such genes. 
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Figure S15. Differences in population average gene copy number. (A) log2 transformed values of 

mean copy number (per diploid genome) for each CNV gene were plotted between populations. The 

most differentiated genes are identified as points (red dots) which are a minimum of 4 standard 

deviations away from the best fit line of the resulting distribution (red line). Their individual copy 

numbers are plotted in panel (B). 
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Figure S16. UCSC Genome Browser view of CNVs in the major urinary protein locus of the three mainland populations. Each track represents one 

population. CNVs are shown as histograms, where the bar height is proportional to average copy number of the eight individuals. Positive bars are green 

(duplications), negative are red (deletions). Values are per haploid, log2 transformed.
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Table S1. Read mapping and CNV discovery statistics 

Popul
ation 

Individual 
Mapped 

(after PCR 
duplicate removal) 

Average 
coverage 

(fold) 
§ 

All CNVs 
Singleton 

CNVs 

Average 
CNV 

length 

Genic 
CNVs 

CNV 
genes 

IRA AH15 647,577,438 23.29 8,302 563 10,474 281 603 

AH23 728,625,638 26.21 9,878 1,194 9,321 312 625 

JR11 702,963,516 25.28 10,714 952 9,103 314 663 

JR15 654,362,227 23.54 8,198 498 10,756 331 659 

JR2-F1C 675,549,496 24.30 8,853 823 10,144 293 617 

JR5-F1C 532,452,937 19.15 7,099 1,426 15,294 390 725 

JR7-F1C 571,560,621 20.56 6,100 489 13,572 310 667 

JR8-F1A 527,406,654 18.97 5,477 402 14,261 305 659 

median 650,969,832.5 23.41 8,250.0 693.0 10,615 311.0 659.0 

average 630,062,315.9 22.66 8,077.6 793.4 11,616 317.0 652.3 

overlapping 
  

2,576 ± 657*  
   

FRA 14 693,974,968 24.96 7,540 246 11,014 269 598 

15B 671,761,851 24.16 7,277 194 10,661 254 543 

16B 703,427,526 25.30 7,674 277 10,711 265 567 

18B 576,102,049 20.72 6,032 143 12,116 231 544 

B2C 438,203,162 15.76 3,905 91 16,278 247 594 

C1_2 569,548,403 20.49 5,138 134 14,605 256 637 

E1_B 630,754,637 22.69 6,541 174 11,513 250 542 

F1_B 656,403,130 23.61 7,518 269 10,426 264 572 

median 643,578,883.5 23.15 6,909.0 184.0 11,264 255.0 569.5 

average 617,521,965.8 22.21 6,453.1 191.0 12,165 254.5 574.6 

overlapping 
  

2,759 ± 624*  
   

GER TP12 630,227,518 22.67 6,218 208 12,416 259 573 

TP17-2 675,001,442 24.28 7,570 315 10,020 245 535 

TP1 645,368,343 23.21 7,618 338 10,181 243 520 

TP3-92 669,449,227 24.08 7,257 256 10,354 248 509 

TP4a 691,555,207 24.87 7,822 337 10,197 253 552 

TP51D 591,442,966 21.27 6,121 213 11,889 245 572 

TP7-10F1A2 572,339,487 20.59 5,200 140 13,262 243 579 

TP81B 630,369,818 22.67 6,030 204 11,720 214 484 

median 637,869,080.5 22.94 6,737.5 234.5 11,037 245.0 543.5 

average 638,219,251.0 22.96 6,729.5 251.4 11,255 243.8 540.5 

overlapping 
  

2,664 ± 291*  
   

HEL HG_06 283,535,524 10.20 3,714 150 17,658 238 538 

HG_08 318,549,500 11.46 3,707 175 16,501 209 453 

HG_13 313,745,605 11.28 3,722 201 17,372 224 543 

median 313,745,605.0 11.28 3,714.0 175.0 17,372 224.0 538.0 

average 305,276,876.3 10.98 3,714.3 175.3 17,177 223.7 511.3 

overlapping 
  

2,025 ± 56*  
   

§ Coverage was calculated as number of mapped reads multiplied by average read length and divided by genome size 
* Mean ± standard deviation  
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Table S2. GO term enrichment analysis of genes in CNVRs overlapping SDs > 10 kb 

GO Term Description P-value 
FDR 

q-value 
Enrichment 

total # 
of genes 

total # of 
genes 

associated 
with a 

specific 
GO term 

# of genes 
in the 

target set 

# of genes 
in the 

intersection 

GO:0019882 antigen processing and 
presentation 

4.85E-12 5.76E-08 5.15 21317 83 1247 25 

GO:0002474 antigen processing and 
presentation of peptide antigen via 
MHC class I 

8.57E-12 5.08E-08 7.16 21317 43 1247 18 

GO:0007186 G-protein coupled receptor 
signaling pathway 

5.04E-11 1.99E-07 1.6 21317 1992 1247 186 

GO:0048002 antigen processing and 
presentation of peptide antigen 

4.88E-10 1.45E-06 5.51 21317 59 1247 19 

GO:2001015 negative regulation of skeletal 
muscle cell differentiation 

1.46E-09 3.47E-06 12.82 21317 12 1247 9 

GO:0006959 humoral immune response 3.25E-09 6.43E-06 4.18 21317 94 1247 23 

GO:0035458 cellular response to interferon-beta 2.57E-07 4.35E-04 7.43 21317 23 1247 10 

GO:0050909 sensory perception of taste 3.24E-07 4.81E-04 4.21 21317 69 1247 17 

GO:2001014 regulation of skeletal muscle cell 
differentiation 

7.27E-07 9.59E-04 7.69 21317 20 1247 9 

GO:0042742 defense response to bacterium 1.03E-06 1.22E-03 2.75 21317 174 1247 28 

GO:0009617 response to bacterium 1.14E-06 1.23E-03 2.63 21317 195 1247 30 

GO:0035456 response to interferon-beta 2.25E-06 2.23E-03 6.11 21317 28 1247 10 

GO:0043330 response to exogenous dsRNA 2.92E-06 2.67E-03 4.27 21317 56 1247 14 

GO:0033141 positive regulation of peptidyl-
serine phosphorylation of STAT 
protein 

3.26E-06 2.76E-03 5.89 21317 29 1247 10 

GO:0033139 regulation of peptidyl-serine 
phosphorylation of STAT protein 

3.26E-06 2.58E-03 5.89 21317 29 1247 10 

GO:0002323 natural killer cell activation involved 
in immune response 

6.48E-06 4.80E-03 5.51 21317 31 1247 10 

GO:0045343 regulation of MHC class I 
biosynthetic process 

8.93E-06 6.23E-03 5.34 21317 32 1247 10 

GO:0043331 response to dsRNA 1.28E-05 8.45E-03 3.8 21317 63 1247 14 

GO:0002250 adaptive immune response 4.56E-05 2.85E-02 3.11 21317 88 1247 16 
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Table S3. GO term enrichment analysis of genes in CNVRs not overlapping SDs > 10 kb 

GO Term Description P-value 
FDR 

q-value 
Enrichment 

total # 
of genes 

total # of 
genes 

associated 
with a 

specific 
GO term 

# of 
genes 
in the 
target 

set 

# of 
genes in 

the 
intersec

tion 

GO:0022610 biological adhesion 2.40E-13 2.85E-09 1.59 21317 680 4186 212 
GO:0007155 cell adhesion 2.84E-13 1.69E-09 1.59 21317 673 4186 210 
GO:0044763 single-organism cellular process 5.40E-08 2.14E-04 1.1 21317 7554 4186 1632 
GO:0051056 regulation of small GTPase mediated signal 

transduction 
5.58E-08 1.66E-04 1.85 21317 190 4186 69 

GO:0070838 divalent metal ion transport 2.21E-07 5.24E-04 1.76 21317 211 4186 73 
GO:0007626 locomotory behavior 2.30E-07 4.55E-04 1.82 21317 185 4186 66 
GO:0033124 regulation of GTP catabolic process 2.32E-07 3.93E-04 1.59 21317 340 4186 106 
GO:0043087 regulation of GTPase activity 3.20E-07 4.75E-04 1.58 21317 338 4186 105 
GO:0030001 metal ion transport 6.24E-07 8.23E-04 1.45 21317 516 4186 147 
GO:0007215 glutamate receptor signaling pathway 6.55E-07 7.78E-04 2.89 21317 37 4186 21 
GO:0044708 single-organism behavior 6.88E-07 7.42E-04 1.55 21317 351 4186 107 
GO:0006816 calcium ion transport 1.07E-06 1.05E-03 1.75 21317 192 4186 66 
GO:0070588 calcium ion transmembrane transport 1.82E-06 1.66E-03 1.96 21317 117 4186 45 
GO:0072511 divalent inorganic cation transport 2.86E-06 2.43E-03 1.66 21317 224 4186 73 
GO:0034765 regulation of ion transmembrane transport 4.30E-06 3.40E-03 1.57 21317 282 4186 87 
GO:0007268 synaptic transmission 4.52E-06 3.35E-03 1.73 21317 180 4186 61 
GO:0016337 cell-cell adhesion 5.07E-06 3.54E-03 1.57 21317 275 4186 85 
GO:0007610 behavior 5.09E-06 3.36E-03 1.42 21317 487 4186 136 
GO:0046578 regulation of Ras protein signal transduction 5.29E-06 3.30E-03 1.77 21317 158 4186 55 
GO:0009118 regulation of nucleoside metabolic process 5.59E-06 3.31E-03 1.48 21317 374 4186 109 
GO:0030811 regulation of nucleotide catabolic process 6.52E-06 3.68E-03 1.48 21317 371 4186 108 
GO:0033121 regulation of purine nucleotide catabolic 

process 
6.52E-06 3.51E-03 1.48 21317 371 4186 108 

GO:0007156 homophilic cell adhesion 6.78E-06 3.50E-03 2.16 21317 73 4186 31 
GO:0008344 adult locomotory behavior 7.81E-06 3.86E-03 2 21317 94 4186 37 
GO:0006493 protein O-linked glycosylation 8.90E-06 4.22E-03 2.78 21317 33 4186 18 
GO:0006812 cation transport 9.66E-06 4.41E-03 1.34 21317 684 4186 180 
GO:0009187 cyclic nucleotide metabolic process 1.34E-05 5.90E-03 2.35 21317 52 4186 24 
GO:0030534 adult behavior 1.57E-05 6.66E-03 1.75 21317 148 4186 51 
GO:0034762 regulation of transmembrane transport 1.91E-05 7.83E-03 1.52 21317 292 4186 87 
GO:0030032 lamellipodium assembly 2.33E-05 9.21E-03 2.81 21317 29 4186 16 
GO:0046058 cAMP metabolic process 2.33E-05 8.92E-03 2.81 21317 29 4186 16 
GO:1900542 regulation of purine nucleotide metabolic 

process 
2.44E-05 9.05E-03 1.39 21317 484 4186 132 

GO:0006468 protein phosphorylation 3.04E-05 1.09E-02 1.33 21317 648 4186 169 
GO:0006464 cellular protein modification process 3.20E-05 1.12E-02 1.19 21317 1750 4186 409 
GO:0036211 protein modification process 3.20E-05 1.08E-02 1.19 21317 1750 4186 409 
GO:0031344 regulation of cell projection organization 3.23E-05 1.06E-02 1.45 21317 350 4186 100 
GO:0006811 ion transport 3.27E-05 1.05E-02 1.26 21317 1004 4186 248 
GO:0016310 phosphorylation 3.88E-05 1.21E-02 1.27 21317 920 4186 229 
GO:0006140 regulation of nucleotide metabolic process 4.12E-05 1.25E-02 1.37 21317 489 4186 132 
GO:0032318 regulation of Ras GTPase activity 4.18E-05 1.24E-02 1.56 21317 232 4186 71 
GO:0043412 macromolecule modification 5.21E-05 1.51E-02 1.18 21317 1844 4186 427 
GO:0006793 phosphorus metabolic process 5.26E-05 1.49E-02 1.18 21317 1882 4186 435 
GO:2001015 negative regulation of skeletal muscle cell 

differentiation 
5.31E-05 1.46E-02 3.82 21317 12 4186 9 

GO:0006796 phosphate-containing compound metabolic 
process 

5.33E-05 1.44E-02 1.18 21317 1835 4186 425 

GO:0050890 cognition 5.94E-05 1.57E-02 1.59 21317 198 4186 62 
GO:0030030 cell projection organization 6.00E-05 1.55E-02 1.34 21317 576 4186 151 
GO:0018210 peptidyl-threonine modification 6.06E-05 1.53E-02 2.37 21317 43 4186 20 
GO:0007270 neuron-neuron synaptic transmission 7.52E-05 1.86E-02 2.24 21317 50 4186 22 
GO:0051049 regulation of transport 8.68E-05 2.10E-02 1.22 21317 1235 4186 295 
GO:0035249 synaptic transmission, glutamatergic 1.08E-04 2.57E-02 2.74 21317 26 4186 14 
GO:0050804 regulation of synaptic transmission 1.23E-04 2.86E-02 1.53 21317 227 4186 68 
GO:0051179 localization 1.24E-04 2.82E-02 1.39 21317 400 4186 109 
GO:0097503 sialylation 1.33E-04 2.97E-02 3.11 21317 18 4186 11 
GO:0010975 regulation of neuron projection 

development 
1.39E-04 3.06E-02 1.46 21317 286 4186 82 

GO:0019932 second-messenger-mediated signaling 1.43E-04 3.09E-02 1.82 21317 98 4186 35 
GO:0006486 protein glycosylation 1.70E-04 3.60E-02 1.68 21317 133 4186 44 
GO:0043413 macromolecule glycosylation 1.70E-04 3.54E-02 1.68 21317 133 4186 44 
GO:0035556 intracellular signal transduction 1.76E-04 3.59E-02 1.22 21317 1052 4186 253 
GO:0032879 regulation of localization 1.77E-04 3.57E-02 1.17 21317 1665 4186 384 
GO:0017157 regulation of exocytosis 1.80E-04 3.57E-02 1.8 21317 99 4186 35 
GO:0007399 nervous system development 1.87E-04 3.64E-02 1.43 21317 318 4186 89 
GO:0007611 learning or memory 2.18E-04 4.16E-02 1.56 21317 186 4186 57 
GO:0044765 single-organism transport 2.31E-04 4.36E-02 1.15 21317 2070 4186 468 
GO:0043269 regulation of ion transport 2.34E-04 4.34E-02 1.33 21317 485 4186 127 
GO:0042391 regulation of membrane potential 2.63E-04 4.80E-02 1.5 21317 220 4186 65 
GO:0097090 presynaptic membrane organization 2.77E-04 4.98E-02 3.96 21317 9 4186 7 
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Table S5. GO term enrichment analysis of CNV genes 

GO Term Description P-value 
FDR 

q-value 
Enrichment 

total # of 
genes 

total # of 
genes 

associated 
with a 

specific 
GO term 

# of 
genes in 

the 
target 

set 

# of 
genes 
in the 

interse
ction 

GO:0007186 G-protein coupled receptor signaling 
pathway 

8.33E-54 1.03E-49 2.47 21365 1990 1331 306 

GO:0007606 sensory perception of chemical stimulus 8.86E-50 5.49E-46 2.90 21365 1229 1331 222 

GO:0050911 detection of chemical stimulus involved 
in sensory perception of smell 

1.20E-45 4.94E-42 2.94 21365 1091 1331 200 

GO:0007608 sensory perception of smell 1.20E-45 3.71E-42 2.90 21365 1128 1331 204 

GO:0050907 detection of chemical stimulus involved 
in sensory perception 

3.92E-43 9.72E-40 2.84 21365 1132 1331 200 

GO:0009593 detection of chemical stimulus 1.14E-41 2.36E-38 2.77 21365 1157 1331 200 

GO:0050906 detection of stimulus involved in sensory 
perception 

8.57E-41 1.52E-37 2.73 21365 1182 1331 201 

GO:0051606 detection of stimulus 3.00E-37 4.65E-34 2.57 21365 1268 1331 203 

GO:0007600 sensory perception 6.07E-36 8.36E-33 2.37 21365 1521 1331 225 

GO:0050877 neurological system process 8.24E-27 1.02E-23 2.04 21365 1798 1331 229 

GO:0007166 cell surface receptor signaling pathway 1.74E-23 1.96E-20 1.68 21365 3152 1331 330 

GO:0003008 system process 2.69E-20 2.78E-17 1.81 21365 2084 1331 235 

GO:0002474 antigen processing and presentation of 
peptide antigen via MHC class I 

1.07E-15 1.02E-12 7.69 21365 48 1331 23 

GO:0048002 antigen processing and presentation of 
peptide antigen 

2.16E-15 1.91E-12 6.52 21365 64 1331 26 

GO:0019882 antigen processing and presentation 1.06E-10 8.79E-08 4.35 21365 96 1331 26 

GO:2001015 negative regulation of skeletal muscle 
cell differentiation 

2.55E-09 1.98E-06 12.04 21365 12 1331 9 

GO:0042221 response to chemical 5.94E-09 4.33E-06 1.37 21365 3373 1331 287 

GO:0033141 positive regulation of peptidyl-serine 
phosphorylation of STAT protein 

6.26E-08 4.31E-05 6.64 21365 29 1331 12 

GO:0033139 regulation of peptidyl-serine 
phosphorylation of STAT protein 

6.26E-08 4.08E-05 6.64 21365 29 1331 12 

GO:0002323 natural killer cell activation involved in 
immune response 

1.51E-07 9.38E-05 6.21 21365 31 1331 12 

GO:0045343 regulation of MHC class I biosynthetic 
process 

2.28E-07 1.35E-04 6.02 21365 32 1331 12 

GO:0019236 response to pheromone 1.45E-06 8.16E-04 3.24 21365 104 1331 21 

GO:0006959 humoral immune response 2.00E-06 1.08E-03 3.18 21365 106 1331 21 

GO:2001014 regulation of skeletal muscle cell 
differentiation 

2.04E-06 1.05E-03 6.88 21365 21 1331 9 

GO:0007165 signal transduction 7.68E-06 3.81E-03 1.23 21365 4388 1331 337 

GO:0050909 sensory perception of taste 1.02E-05 4.84E-03 3.47 21365 74 1331 16 

GO:0002250 adaptive immune response 1.08E-05 4.98E-03 3.18 21365 91 1331 18 

GO:0042100 B cell proliferation 2.78E-05 1.23E-02 4.01 21365 48 1331 12 

GO:0042742 defense response to bacterium 3.75E-05 1.60E-02 2.28 21365 197 1331 28 

GO:0030101 natural killer cell activation 6.54E-05 2.70E-02 3.70 21365 52 1331 12 

GO:0009617 response to bacterium 9.31E-05 3.72E-02 2.14 21365 218 1331 29 

GO:0043330 response to exogenous dsRNA 1.17E-04 4.53E-02 3.50 21365 55 1331 12 
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Table S9. Diploid copy number of genes in amylase cluster by individual* 

  FRA IRA GER HEL 

Gene 
Symbol 

Location (mm9) 

1
4

 

1
5

B
 

1
6

B
 

1
8

B
 

B
2

C
 

C
1

_2
 

E1
_B

 

F1
_B

 

A
H

1
5 

A
H

2
3 

JR
1

1 

JR
1

5 

JR
2

-F
1

C
 

JR
5

-F
1

C
 

JR
7

-F
1

C
 

JR
8

-F
1

A
 

TP
8

1B
 

TP
7

-1
0

F1
A

2 

TP
5

1
D

 

TP
4

a 

TP
3

-9
2 

TP
1

7-
2 

TP
1

2 

TP
1 

H
G

_0
6 

H
G

_0
8 

H
G

_1
3 

Amy2a2 

chr3:113082754-113094367 3 2 3 3 3 3 2 2 1 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 

chr3:113115366-113126970 3 2 3 3 3 3 2 2 1 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 

chr3:113147966-113159576 3 2 3 3 2 2 2 2 1 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 

Amy2a5 

chr3:113052095-113061617 2 2 3 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 

chr3:113084762-113094229 3 2 3 2 2 2 2 2 1 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 

chr3:113117374-113126832 3 2 3 3 3 3 2 2 1 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 

chr3:113149974-113159438 2 2 3 2 2 2 2 2 1 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 

* Rounded off copy numbers from the CNVnator's genotyping output are shown 

 

  



 
 

27 

Table S10. Diploid copy number of genes in Mup cluster by individual* 

  
FRA IRA GER HEL 

Gene 
Symbol 

Location (mm9) 

1
4

 

1
5

B
 

1
6

B
 

1
8

B
 

B
2

C
 

C
1

_2
 

E1
_B

 

F1
_B

 

A
H

1
5 

A
H

2
3 

JR
1

1 

JR
1

5 

JR
2

-F
1

C
 

JR
5

-F
1

C
 

JR
7

-F
1

C
 

JR
8

-F
1

A
 

TP
8

1B
 

TP
7

-1
0

F1
A

2 

TP
5

1
D

 

TP
4

a 

TP
3

-9
2 

TP
1

7-
2 

TP
1

2 

TP
1 

H
G

_0
6 

H
G

_0
8 

H
G

_1
3 

Mup7 chr4:60079340-60083347 2 2 2 2 2 2 1 2 1 2 1 1 1 1 1 1 3 2 3 1 2 2 2 2 2 2 2 

Mup15 chr4:60079340-60152730 1 2 1 1 1 2 1 2 1 2 1 2 1 1 1 1 3 4 5 1 3 2 5 2 3 3 3 

Mup2 chr4:60148804-60152729 1 2 1 1 2 2 1 2 1 1 1 1 1 1 1 1 2 4 5 1 3 2 5 2 2 2 2 

Mup2 chr4:60149719-60152729 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 1 2 4 5 1 2 2 4 2 2 2 2 

Mup8 chr4:60231492-60235471 2 2 1 2 2 2 2 2 1 1 1 1 1 2 1 1 2 4 5 1 1 2 5 2 2 2 2 

Mup9 chr4:60432031-60434824 2 2 2 2 2 2 2 3 1 2 1 2 1 1 1 1 3 4 5 1 3 2 5 2 3 2 3 

Mup1 chr4:60510884-60514832 2 2 1 2 2 2 1 2 1 1 1 1 1 1 1 1 2 3 4 1 1 2 4 1 2 2 2 

Mup1 chr4:60511805-60514832 2 2 2 2 2 2 1 2 1 1 1 1 1 1 1 1 2 3 5 1 2 2 4 1 3 2 3 

Mup10 chr4:60591132-60595027 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 3 5 6 1 2 2 5 2 3 3 3 

Mup11 chr4:60671338-60675267 2 1 1 2 2 2 2 3 1 1 1 1 1 2 1 1 4 4 6 0 1 1 4 2 2 2 2 

Mup2 chr4:60672252-60675243 2 1 1 2 2 2 1 3 1 1 1 1 1 2 1 1 4 4 6 0 1 1 4 2 2 2 2 

Mup12 chr4:60732253-60736153 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 3 4 0 1 2 3 1 2 3 2 

Mup13 chr4:60885338-60889318 1 1 1 1 1 2 1 2 1 1 1 1 1 0 1 1 1 2 2 2 2 2 2 1 1 1 1 

Mup14 chr4:60961068-60965030 2 1 1 2 2 2 1 2 1 1 1 1 1 0 0 1 1 2 3 2 2 2 3 2 1 1 1 

Mup15 chr4:61096818-61100736 2 1 1 2 2 2 1 2 1 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 

Mup16 chr4:61176624-61180518 2 1 1 1 1 3 1 2 2 2 2 2 1 1 2 1 3 5 5 1 2 3 5 3 2 2 2 

Mup17 chr4:61252962-61256864 2 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 3 2 3 3 3 3 2 1 1 1 

Mup19 chr4:61439361-61443258 3 2 2 2 3 3 2 4 2 1 2 2 1 1 1 2 3 4 4 2 3 2 5 2 3 3 3 

Mup5 chr4:61492352-61496214 2 2 2 2 2 2 2 4 2 2 2 2 2 1 2 2 2 2 2 2 3 2 2 2 2 2 2 

Mup20 chr4:61711268-61715151 1 1 1 1 2 1 1 1 2 3 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 

Mup3 chr4:61744510-61748346 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

Mup21 chr4:61808865-61811875 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

* Rounded off copy numbers from the CNVnator's genotyping output are shown  
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Table S11: Pseudogene-parent gene pairs used for copy number correlation analysis 

pseudogene mm9 coordinates   parent gene mm9 coordinates 

     Alms1-ps2 chr6:85742110-85754051 
 

Alms1 chr6:85537524-85652745 

Bambi-ps1 chr2:122292318-122293533 
 

Bambi chr18:3507954-3516402 

Rpl31-ps12 chr16:16819805-16820289 
 

Rpl31 chr1:39424695-39428755 

Rps19-ps3 chr4:147195885-147196311 
 

Rps19 chr7:25669732-25674821 

Smarca5-ps chr4:145054112-145057864 
 

Smarca5 chr8:83223842-83263358 

Sycp1-ps1 chr7:19371650-19374763 
 

Sycp1 chr3:102622421-102740023 

Tubb2a-ps2 chr12:11889001-11889705 
 

Tubb2a chr13:34166146-34169877 
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Table S12. Assays used for ddPCR 

Assay Name 
Amplicon Location 
(NCBI37/mm9) 

Primer 1 (5' -> 3') Primer 2 (5' -> 3') Probe (5' -> 3') 

     
BC018473 chr11:116615049-116615172 AAT TTG CCA AAA GTT AGT CAG GTT TCC TTA TGC TTT GGG ATC TAT CAG /56-FAM/CTG GAA TGC /ZEN/CTC ACG GAA GCC /3IABkFQ/ 

Bglap3 chr3:88172746-88172857 AAG CAG GGT CAA GCT CAC ATA G ATA TTA ATG CCA CTG TGT GTT GGT /56-FAM/TGG GCT CCA /ZEN/GGG GAT CTG /3IABkFQ/ 

Chil4 chr3:106008103-106008205 GCA CTT TAG GCA TGA GTT CCA CCA CAT TCC TAC GAG TGC TTG /56-FAM/TGC TTA ATG /ZEN/GCT GCA AAA TGA ATC AG/3IABkFQ/ 

Cma1 chr14:56562508-56562594 ATT AAG GAT AAG CAG CGC CTT G TGC AGT GGC TTC CTG ATA AGA /56-FAM/CAG TGA GCT /ZEN/GCA GTC AGC ACA A/3IABkFQ/ 

Cwc22 chr2:77743835-77743912 TAA AGA CTG CTC GCA AAC ACC CTA ATG CTC TTG GTG GCA CTT /56-FAM/TGT GGT GTG /ZEN/CAC AAG GGA CG/3IABkFQ/ 

Defb8 chr8:19445828-19445968 GGT TTG CAG GAT CTT TGT CTT CT CAA TGA TCC AGT AAC TTA CAT TCG A /56-FAM/CCT AAG GCC /ZEN/AAT GCA CCG ATA CT/3IABkFQ/ 

Dux chr10:57673792-57673928 GAG CAT CCT TAA TAT TGC CGT CAT ATC AGT CGA CTT AAT GGG AGC TAT /56-FAM/CCA TGT AAC /ZEN/CAA CTG CAC AGC TCA /3IABkFQ/ 

Glo1 chr17:30745319-30745467 GAC TCC CCC GAC TCA AAT CA CCT TGA GCC CTG CAG TAG TT /56-FAM/TGC ATG CTA /ZEN/CCA AGT CCT TGG C/3IABkFQ/ 

Gm13152_13154 chr4:146902213-146902348 GGT TTC TTG ATG CCA TTT CTG CTA AAG AAT TCT CCA AAT ATT CCA GAT /56-FAM/CGG GAC TGG /ZEN/TTG TGT GTG G/3IABkFQ/ 

Gm1995 chr12:89101101-89101237 GCA TCG TCC ACA GCT CAC T TTT GGA CGA ACA GAA CTT GAG AAA /56-FAM/CCG AAA GAA /ZEN/TTT GGC TGC AAG GTC /3IABkFQ/ 

Gm21671 chr5:26396876-26396971 TAT GGA TCT GGA CGT CTG CAT GCA GTT CAG ATC CCT CAC TTC T /56-FAM/AGT GGC AGT /ZEN/ATG TCC CGC TGC /3IABkFQ/ 

Gm7120 chr13:120281623-120281771 GGT TTC CCA TAA TTC AGC ACA A CGC TAA AAA TCC CGC TAA AAG A /56-FAM/AGT GAT CGG /ZEN/CAT GTG GTC GTG /3IABkFQ/ 

Gzma chr13:113885136-113885241 AGG GTT TAA AAC TGT TGC CAA GTA ACC CCA ATC AAA GAA TGG ATA AGC /56-FAM/AGG CCC TGT /ZEN/TCG TCC TGT TTT G/3IABkFQ/ 

Hjurp chr1:90162052-90162174 GCT GCG GTG ACA GAC AAT AC TGT GGC CCA GTA CAG CTA TT /56-FAM/CTT CCC ACA /ZEN/GCC TGG AGA GCC T/3IABkFQ/ 

Ifi27l2a chr12:104680772-104680878 TCT ATA GCA GGA CAG AGG GGT A GGT GCT GAA TGG CTA AAG TAG G /56-FAM/TCA GAG CAC /ZEN/AAG TAG CAT GCC TCA /3IABkFQ/ 

Luzp4 chrX:145321717-145321816 ATC CCA GCG GTT GAA CTT TG ATG CCT CCA AAC TCA AGT AAG A /56-FAM/CTC GGG AGC /ZEN/AGA GTA GCA GGG /3IABkFQ/ 

Mup20 chr4:61676236-61676353 AAC TTT GGA TCT GGC TAA AAT CAG AGA TAC TCA AGT TCT TCC ATA CTC GTA /56-FAM/AGG GGG TGG /ZEN/GGA CTG AAC TG/3IABkFQ/ 

Nlrp1c-ps chr11:71075987-71076085 GCA GAC ACG AGA AAG TTG AGT T AGT GCT AGG ATC TGG TAT TGC A /56-FAM/TAC AAA CCA /ZEN/AAA GGC TGG GAG CA/3IABkFQ/ 

Nxpe5 chr5:138690641-138690765 TTG GTG TTG TGT TTG AGG TAT TTG GTA ACT AAA TAG GGG AAG CAA CTT G /56-FAM/CTA ACC AGT /ZEN/GCA CAC TCC AGC CT/3IABkFQ/ 

Rsph1 chr17:31402067-31402192 GTT TGT TCT TGC CTG GAT TGT ATG CTG GGT CAT TTG CAT GTT TGT AAC /56-FAM/TAG AGC CAA /ZEN/GCC TCA GGG CG/3IABkFQ/ 

Sfi1 chr11:3084639-3084750 ATA GGT TTG GGC TGA GGA TAT GTA AAC CCT TCT TAC TTG GTT CTT CAC /56-FAM/ACA GTA GTG /ZEN/CAA AGC TGT CGG GTA G/3IABkFQ/ 

Smok2a chr17:13418895-13418977 TGA TTT TGG ACT TGG CAT CC CCT CAG GAG CAC TAA ATG GGT A /56-FAM/CCA GGG CAA /ZEN/AAA CTA AAC TTA TTC TGT GG/3IABkFQ/ 

Tex24 chr8:28455579-28455682 TTG GAA AGA AGG CAC AAT GTC AAC CAT CTC CAT AGC CTG CAT CCT /56-FAM/AGC CTG GAG /ZEN/GTC CTC AAG AGG AG/3IABkFQ/ 

Tert chr13:73765136-73765273 CCT CTG TGT CCG CTA GTT ACA TCT TTG TAC CTC GAG ATG GCA /5HEX/CCC GTG GGC /ZEN/AGG AAT TTC ACT A/3IABkFQ/ 
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