
Supplementary Figures 

Supplementary Figure 1 

Histograms for per-pixel scores of A) difference in cumulative impact from 2008 to 2013, 

B) difference in individual stressors from 2008 to 2013, and C) cumulative impact score 

in 2013. For A, the skew in distribution to positive values indicates that more places 

experienced an increase in cumulative impact. 
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Supplementary Figure 2 

Comparison of average per-pixel cumulative impact scores for each A) EEZ (N=221) and B) marine ecoregion (N=232), based on 12 

stressors for which temporal comparisons could be made. Ecoregions increase more primarily because they are coastal (to 200m depth 

contour) and thus experience most stressors, in particular land-based ones, whereas EEZs include large areas of pelagic ocean that 

experience little land-based impact. Dash lines along axes show distribution of points within the plot. The dashed yellow line is the 

line of no change. Outlier points are labeled for ease of reference; full results provided in Supplementary Data 2, 4. 

 

 

A B 



Supplementary Figure 3 

Global maps of difference in impact scores for each of 12 stressors with data for 2008 

and 2013. The first set of 7 maps is for stressors that affect most parts of the ocean; the 

second set of 5 maps includes zoomed in views to 4 representative areas for stressors that 

affect coastal areas. Note that color ramping changes among all figures. 

 

 
 

 



 
  



 

Supplementary Figure 4 

Map of count of stressors per pixel. Four zoomed panels (left to right) are Florida, USA; 

United Kingdom, Eastern Mediterranean, and China. Areas of permanent sea ice are 

shaded white and the area of maximum sea ice extent is masked to indicate where scores 

are less certain because change in sea ice extent could not be included (see Supplemental 

Methods). 

 

 
 

 



Supplementary Figure 5 

Stacked bar charts for each EEZ (rows) showing contribution of each stressor type to the 

overall cumulative impact score. EEZs are ordered from highest to lowest cumulative 

impact score; number following EEZ name is our internal numbering system). 

 

(see next page) 



 







Supplementary Figure 6 

Global map of the impact of each of 19 stressors across all 20 potential habitats in 2013. 

For stressors that primarily occur in coastal areas, we show each for four example 

zoomed regions.  

 

(see next page) 









Supplementary Figure 7 

Global maps of the % contribution of each stressor to overall cumulative impact in 2013. 

For stressors that primarily occur in coastal areas, we show each for four example 

zoomed regions (Florida USA; United Kingdom, Eastern Mediterranean, and China). 

 

 

 











Supplementary Figure 8 

Global map of the cumulative stressor intensity of all 19 stressors in 2013. Cumulative 

stressor intensity is the sum of the 0-1 normalized stressor magnitude values prior to 

being multiplied by habitat vulnerability scores to produce cumulative impact scores. 

Areas of permanent sea ice are shaded white and the area of maximum sea ice extent is 

masked to indicate where scores are less certain because change in sea ice extent could 

not be included (see Supplemental Methods). 
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Supplementary Figure 9 

Correlation of per-pixel cumulative impact scores from the previous global assessment
1
 

and the same time period recalculated using the current methods and data sources (r = 

0.79). Plot includes 10 million randomly-selected points (roughly 2% of all pixels). 

Points with much higher ‘old’ scores compared to new scores are coastal pixels where 

intertidal habitats are assumed to be everywhere and thus create much higher cumulative 

impact scores when summed per pixel (old method) rather than averaged per pixel (new 

method). See ‘Methodological Comparisons’ above for further details 
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Supplementary Tables 

Supplementary Table 1 

Full list of data layers used in the analysis. Years used for 2008 analysis are listed for only those layers where temporal comparisons 

could be made (i.e., data and methods were comparable between time periods). 

 

   2013 2008 

 Layer 

native 

resolution 

Year(s) 

used 

Year(s) 

used  

STRESSORS     

L
a
n
d
-b

a
s
e
d
 nutrient pollution modeled 1km2 2007-2010 2003-2006  

organic pollution modeled 1km2 2007-2010 2003-2006  

inorganic pollution modeled 1km2 2000-2001   

direct human modeled 1km2 2011 2006  

light pollution 1km2 2007-2010 2004-2006  

F
is

h
in

g
 

demersal, destructive half-degree 2011 2006  

demersal, non-destructive, high 

bycatch half-degree 2011 2006  

demersal, non-destructive, low 

bycatch half-degree 2011 2006  

pelagic, high bycatch half-degree 2011 2006  

pelagic, low bycatch half-degree 2011 2006  

artisanal modeled 1km2 2006   

C
li
m

a
te

 c
h
a
n
g
e
 

SST anomalies ~21km2 

1985-1990 

vs. 2005-

2010 

1985-1990 

vs. 2000-

2005  

UV radiation 1 degree 2008-2012 1997-2001  

ocean acidification 1 degree 

1870 vs. 

2000-2009   
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sea level rise 

modeled 0.25 

degree 1992-2012   

O
c
e
a
n
-

b
a
s
e
d
 commercial shipping 0.1 degree 2003-2011   

invasive species modeled 1km2 2011   

ocean-based pollution modeled 1km2    

benthic structures 1km2 2007-2010 2004-2006  

      

HABITATS  Year assessed  

In
te

rt
id

a
l rocky intertidal modeled 1km2 modeled   

beach modeled 1km2 modeled   

mud flats modeled 1km2 modeled   

salt marsh modeled 1km2 modeled   

mangroves 1km2 2006   

C
o
a
s
ta

l 
(<

6
0
m

 

d
e
p
th

) 

seagrass beds 1km2 2006   

shellfish reefs modeled 1km2 modeled   

coral reefs 1km2 2006   

rocky reefs 1km2 2005   

kelp forests modeled 1km2 modeled   

shallow soft bottom          1km2 2005   

     

O
ff

s
h
o
re

 (
>

6
0
m

 d
e
p
th

) continental shelf, hard bottom (60-200m)        1km2 2005   

continental shelf, soft bottom (60-200m)         1km2 2005   

continental slope hard bottom (200-2000m)    1km2 2005   

continental slope soft bottom (200-2000m)     1km2 2005   

deep benthic, hard bottom (>2000m)             1km2 2005   

deep benthic, soft bottom (>2000m)              1km2 2005   

shallow pelagic (<60m)         1km2 2013   

deep pelagic (>60m)         1km2 2013   

seamounts         1km2 2004   
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Supplementary Table 2 

Ecosystem vulnerability weights for each stressor. Values are modified from previous values
2
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nutrients 1.6 1.6 0.4 1.8 1.9 1.8 2.1 0.4 1.6 1.4 2.0 1.4 1.7 2.0 0.6 1.3 0.0 0.0 1.2 0.0 

org_pollution 2.1 2.8 0.1 1.4 1.7 1.2 1.0 1.0 2.2 2.8 1.2 1.4 0.0 2.0 0.2 1.7 0.0 0.0 1.9 1.6 

inorg_pollution 2.1 1.6 0.6 0.5 2.0 0.7 0.8 0.0 2.2 2.7 1.5 2.1 0.2 2.1 0.2 1.8 0.0 0.0 2.3 1.6 

light_pollution 1.4 1.4 2.0 0.9 1.8 1.0 0.5 0.5 0.7 1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 

direct human 2.8 2.2 2.7 3.3 1.6 2.3 2.5 1.6 2.5 3.0 2.0 1.1 2.9 0.0 0.0 1.6 0.0 0.0 0.9 0.0 

dem_dest 1.2 1.4 0.2 0.0 1.0 1.2 0.2 1.5 2.7 3.1 2.1 3.0 3.1 3.2 2.8 2.3 3.0 3.5 2.1 0.8 

dem_nd_hb 0.8 1.9 0.9 0.9 1.0 1.6 1.1 2.1 2.9 0.7 2.1 2.0 3.2 2.3 2.4 2.0 0.0 0.0 1.6 0.0 

dem_nd_lb 0.6 1.4 0.7 0.7 0.8 1.2 0.8 1.6 2.2 0.5 1.6 1.5 2.4 1.8 1.8 1.5 0.0 0.0 1.2 0.0 

pel_hb 0.9 0.0 0.1 0.0 0.5 0.5 0.0 0.0 2.6 0.0 0.0 1.1 2.8 0.2 0.0 1.6 0.0 0.0 3.0 2.2 

pel_lb 0.0 0.0 0.0 0.0 0.4 0.7 0.0 0.0 2.6 0.0 0.6 0.8 2.8 0.2 0.0 0.5 0.0 0.0 2.2 0.6 

artisanal 1.3 0.4 0.7 1.7 0.6 2.3 0.3 0.8 2.2 1.0 0.0 0.9 1.9 0.0 0.4 0.3 0.0 0.9 1.0 0.0 

sst 2.8 1.4 0.6 2.4 1.4 2.8 2.1 2.0 1.9 0.8 0.5 2.5 2.9 2.3 0.9 2.5 1.5 1.8 3.3 2.3 

uv 0.9 1.3 0.0 0.2 1.1 0.8 0.5 0.1 0.7 0.0 0.3 1.9 1.8 0.0 0.0 1.3 0.0 0.0 1.5 0.0 

acid 0.9 1.0 0.0 1.2 1.3 1.1 1.4 0.0 1.1 0.7 0.1 1.7 2.5 2.1 1.6 2.2 2.7 2.7 1.8 0.0 

sea level rise 2.5 1.9 2.1 3.0 3.1 2.4 2.6 1.6 1.5 1.8 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

invasives 2.8 2.9 0.9 1.0 2.8 1.5 1.2 1.3 2.5 2.6 2.7 1.6 1.5 0.2 0.5 1.5 0.0 0.0 2.3 0.0 

ocean_pollution 1.3 0.8 0.5 1.2 1.2 1.2 0.5 0.1 1.7 0.0 1.1 1.2 0.3 1.4 1.7 2.3 1.2 1.2 1.7 0.4 

shipping 0.3 1.9 1.9 2.0 1.4 1.5 1.9 0.0 1.4 0.0 0.3 1.7 0.9 0.1 1.0 0.9 0.0 0.0 1.9 0.0 

oil rigs 1.0 0.9 0.8 1.3 0.9 0.5 1.6 0.0 1.7 0.4 0.1 0.5 2.1 1.6 2.2 1.9 1.6 1.4 1.5 0.0 



 

Supplementary Table 3 

Relationships between current cumulative impact (2013) and change in cumulative impact (2013 minus 2008) and ocean area (EEZ 

area, ln km
2
), coastal population (ln, 25 miles inland), and coastal population trend based on linear models. 

 

  Estimate Std. Error t-value P-value 

2013 Cumulative impact
¥
, R

2
=0.38, F2,198=59.92, N=201 

 Intercept 5.32    

 Ocean area (ln km
2
) -0.192 0.0187 -10.29 <0.001 

 Coastal population (ln)  0.075 0.0132 5.66 <0.001 

Change in cumulative impact (2013 minus 2008)
 ±

, R
2
=0.08, F2,198=9.16, N=201 

 Intercept -0.190    

 Ocean area (ln km
2
) 0.036 0.0131 2.76 0.006 

 Coastal population trend 7.300 2.2227 3.28 0.001 

 

 



 

Supplementary Table 4 

Percentage of ocean area with decreased/increased/no change from 2008 to 2013.Area (in assessment pixels, which are roughly 1km
2
) 

previously unaffected by each stressor but now experiencing some level of it (‘new area’), areas previously affected but no longer 

experiencing the stressor (‘area reduced’), and the global average change in impact score of each stressor between 2008 to 2013 

assessments. Results for cumulative impact are also provided. 

 
 

Category Stressor 

% 

decrease 

% 

increase 

% No 

Change New area 

% 
new 

area 

Area 

reduced 

% area 

reduced 

global 
average 

change 

Fishing Demersal destructive 70.946 9.600 19.454 0 0 0 0 -0.00473 

 

Demersal, non-
destructive, high bycatch 73.683 8.489 17.828 0 0 2095 0.001 -0.00452 

 

Demersal, non-

destructive, low bycatch 77.493 9.685 12.822 0 0 0 0 -0.00413 

 
Pelagic, high bycatch 0.036 0.029 99.935 0 0 0 0 -0.0008 

 
Pelagic, low bycatch 0.001 0.002 99.997 0 0 0 0 -0.00295 

Ocean-

based 

Light pollution 7.976 1.412 90.611 16,143 0.004 19,168 0.005 -9E-07 

Benthic structures 74.007 8.939 17.055 7,616 0.002 5,938 0.001 0.000006 

Land-

based 

Nutrient pollution 1.308 1.360 97.332 490,860 0.118 394,028 0.095 0.00025 

Organic pollution 0.885 1.002 98.112 424,784 0.102 358,552 0.086 0.000009 

 

Direct human impact 0.112 0.159 99.729 25,301 0.006 25,762 0.006 0.00001 

Climate 
change 

SST anomalies 22.222 62.269 15.509 69,712,874 16.752 17,936,214 4.310 0.29813 

UV anomalies 46.177 48.942 4.881 5,431,251 1.305 4,954,971 1.191 0.00236 

          

 

Cumulative impact 32.058 65.771 2.171 21,984 0.005 15,578 0.004 0.28338 

 

 

 



 

 

Supplementary Table 5 

Summary of the number of 1km
2
 pixels in each category of cumulative pressure (high, low, neither) and trend in impact (increasing, 

decreasing, neither).  

Pressure Trend # cells 

High Increasing 20784803 

High Decreasing 13755296 

Neither Neither 331329142 

Low Increasing 8073845 

Low Decreasing 42215891 

 

 

Supplementary Table 6 

Online sources of port throughput data and the number of port records (N) reported on each site.  The total number of records is 

greater than the resulting dataset because of the removal of replicate ports. 

 

Organization Website N 
American Association of Port Authorities http://www.aapa-ports.org/           324  
Comisión Económica para América Latina y el Caribe http://www.eclac.org           100  
Containerization International (CI) Yearbook  http://europe.nxtbook.com/nxteu/informa/ci_yearbook2011           100  
Dynamar https://www.dynamar.com/           114  
Eurostat http://appsso.eurostat.ec.europa.eu/        1,103  
Ports Australia http://www.portsaustralia.com.au/             46  
UK Department of Transportation https://www.gov.uk/government/publications/           159  
Total         1,946  

 



 

Supplementary Methods 

Stressor Data 

Methods for preparing stressor data that were unchanged from the previous 

analyses (Supplementary Table 1) are described in detail elsewhere
1
. Stressors with 

updated data were prepared using more recent years from the same data source. In these 

cases we describe the new data but do not elaborate methods. We primarily focus on 

describing those layers where updating required new methods.  

We were unable include change in sea ice extent as a stressor because there 

remains large uncertainty on if or how changes in sea ice extent affect marine 

ecosystems
3
. Our framework for assessing cumulative impacts to habitats requires a 

vulnerability assessment for how each habitat uniquely responds to each stressor.  We do 

not have these vulnerability scores for change in sea ice extent as a stressor to habitats. 

To acknowledge the uncertainty created by not including sea ice as a stressor, we mask 

areas within maximum sea ice extent in all figures where multiple stressors are assessed. 

 

 

LAND-BASED STRESSORS 

Nutrient pollution 

To allow for direct comparison between past
1
 and current assessments (for 2013), 

we used input data from 2003-2006 for the 2008 assessment, as was done previously
1
 and 

input data from 2007-2010, the most recent available, for the 2013 assessment. In 

particular, we used FAO data on annual country-level fertilizer use, averaged over the 

time periods, with missing values filled using a linear regression model of fertilizers as a 

function of pesticides (gaps: N=4; regression: R
2
 = 0.72) when pesticide data were 

available or agricultural GDP (gaps: N=22; regression: R
2
 = 0.62) when not. These 

country-level average fertilizer values were then dasymetrically distributed over a 

country’s landscape using global land cover data from the years 2005 (for the 2003-2006 

time period) and 2009 (for the 2007-2010 time period), derived from the Moderate 

Resolution imaging Spectroradiometer (MODIS) instrument at ~500m resolution 

(following methods described elsewhere
1
 but with updated MODIS data not available 

previously). These values were then aggregated by ~140,000 global basins (as described 

elsewhere
1
), and diffusive plumes were modeled from each basin’s pourpoint. The final 

non-zero plumes (about ~76,000) were aggregated into ~1km
2
 rasters in the Mollweide 

projection (WGS1984 datum) to produce a single plume aggregated pollution raster. 

These raw values were then log[X+1] transformed and normalized to 0-1. A simple visual 

and pixel-count comparison of the agriculture land cover classes shows that, globally, 

these classes have not changed much during the two time periods (at the 500m resolution 

of the data). However, global fertilizer consumption has shown a small, but notable 

increase (roughly 4-8% globally over the study time period). 

To assess how well our modeled nutrient pollution values matched estimates from 

more complex watershed process models, we correlated dissolved organic nitrogen and 

phosphorous (DON+DOP) values from the ~6300 modeled values from the GlobalNEWS 

project
4
 with our nitrogen pollution values for the corresponding watersheds. Values were 



 

highly significantly correlated for the largest 4% of watersheds (R
2
=0.55, p<0.0001; 

N=145) and the largest 20% of watersheds (R
2
 = 0.45, p<0.001; N=729), and significant 

but with weaker correlation for all watersheds (R
2
=0.23, p<0.001; N=3645). At the scale 

of the U.S. west coast the correlation between empirical river output and our modeled 

output was remarkably high (R
2
 = 0.97)

5
, further supporting our approach as a means to 

capture relative nutrient pollution for small watersheds as well as large ones. 

 

Organic pollution 

We use pesticides as a proxy measure for organic pollution. These methods are 

nearly identical to the ones described above for nutrient pollution. Missing pesticide 

values were filled using a linear regression model of pesticides as a function of fertilizers 

(gaps: N=69; regression: R
2
 = 0.72) when fertilizer data were available or agricultural 

GDP (gaps: N=22; regression: R
2
 = 0.82) when not. Global pesticide consumption has 

shown a small, but notable increase (roughly 4-8% globally over the study time period). 

 

Inorganic pollution 

All data and methods remain the same as previously described
1
, such that this data 

layer is identical in both the 2008 and 2013 assessments. 

 

Direct human impact 

As was done previously
1
, we modeled direct human impact on the coast as the 

sum of the coastal human population, defined as the number of people within a moving 

circular window around an arbitrary focal coastal cell of radius 10 km on the basis of the 

LandScan 30 arc-second population data (http://www.ornl.gov/sci/landscan/). We used 

2006 LandScan data for the previous (2008) assessment and 2011 data for the current 

(2013) assessment. This value was then assigned to the adjacent ocean cell since this 

driver primarily affects intertidal and very nearshore ecosystems. 

 

Light pollution 

We used the DMSP stable night lights data layers obtained from NOAA NGDC 

(http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html). The original layers 

contained non-calibrated radiance values. We applied a calibration technique developed 

elsewhere
6
. The original raster digital number (DNo) values of 0-63 were calibrated to 

produce adjusted DN (DNa) values using the following intercalibration formula: 

 

   DNa=C0+C1*DNo+C2*DNo
2
        (1) 

 

with the three calibration coefficients (C0, C1, and C2) set from recent analyses
7
. This 

formula is based on the assumption that a reference area (around Sicily) has not changed 

much in light output in recent years. Lowest values in DNa (non-lit areas) were replaced 

with zeros. This technique, while not perfect, does allow for better comparison between 

different satellites and time periods. 

http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html


 

To minimize error, we chose to use only one satellite, F16, for the period 

spanning 2004-2009 (we also tried including more satellites and expanding the time 

period, but the results were similar). We took the mean of calibrated values from 2004-

2006 for the previous assessment time period (2008) and values from 2007-2009 for the 

new assessment (2013). Calibration coefficients from 2010 were not available, so this 

year was excluded. 

 

 

FISHING STRESSORS 

Commercial fishing 

These layers were initially developed previously
1
 to provide information on 

spatially-explicit catch by 5 broad categories of fisheries and associated gear types: 

demersal destructive (e.g., bottom trawl), demersal non-destructive high bycatch (e.g., 

pots, traps), demersal non-destructive low bycatch (e.g., hook and line), pelagic high 

bycatch (e.g., long-line), and pelagic low bycatch (e.g., hook and line; see 
1
 for gear 

classifications). The layers were recently revised for the annual update of the Ocean 

Health Index and are described elsewhere
8
. We used those same methods and briefly 

describe them below. 

Catch (landings) data are only a proxy for the potential impact of fishing on 

marine ecosystems because it is the effort to land the catch that determines impact. For 

example, an area with low fish densities would have to be trawled many more times to 

harvest an equal catch to an area with higher fish densities. Consequently, fishing 

stressors may be underestimated in areas with lower densities and overestimated in areas 

with higher densities. Annual wild caught fisheries statistics were updated by the FAO 

for each of its spatial reporting units, i.e. the FAO major fishing area, but finer-scale 

allocation of catch to half-degree grids and assignments to one of the five gear types had 

not been updated since the original publication
1
. Thus, updating these data layers required 

a two-step process. First, the difference was calculated between total annual FAO wild 

caught fisheries catch for recent years and past years, in each FAO major fishing area. 

Second, these differences were used to update the values assigned to half-degree grids 

and gear type categories. The assumption was that the relative proportion of biomass 

caught by each gear type had not changed within each FAO fishing area since the 

previous estimate, so any increase/decline in total harvested biomass was translated into 

an equal increase/decline across all gear categories in that fishing area.  

 

Updating annual catch data: We used catch data per FAO fishing area to estimate the 

percent change in total annual catch per region, calculated as the difference between the 

most recent reporting period (2009 to 2011) and the period (1999 to 2003) previously 

used
1
, divided by the original period (1999 to 2003). Each of the five gear type 1km

2
 

raster layers
1
 was then multiplied by the percent change of the corresponding FAO 

fishing area to create estimates of current spatially-explicit catch by gear type. Although 

this calculation requires the unlikely assumption that the proportional amount of catch per 

gear type per has remained the same over the past 10 years across the entire FAO area, 

we felt it better to make this assumption than to assume fishing pressure has not changed 

at all. 



 

 

Artisanal fishing 

All data and methods remain the same as originally developed
1
, such that this data 

layer is identical in both the 2008 and 2013 assessments. 

 

 

CLIMATE CHANGE STRESSORS 

Sea surface temperature (SST) anomalies 

Sea surface temperature (SST) data were obtained from version 4 of the Coral 

Reef Temperature Anomaly Database (CoRTAD; Refs 
9,10

, which was produced by the 

NOAA National Oceanographic Data Center using 4.6 km (nominally 21 km
2
 at the 

equator) Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Version 5.2 

SST data
11

 from 1982-2010 (www.nodc.noaa.gov/SatelliteData/CoRTAD). Because SST 

measurements are less reliable where there is persistent ice, an ice mask was created to 

identify places near the poles that were almost always covered by significant sea ice. The 

ice mask was generated primarily from the OSI/SAF Global Daily Sea Ice Concentration 

Reprocessing Data Set (accession.nodc.noaa.gov/0068294), which was regridded and 

made available in the Pathfinder V5.2 dataset. In Pathfinder, when the OSI/SAF data are 

unavailable, the sea ice concentrations from the NCDC Daily OI SST data
12

 were 

included. For each day of the climatological year (1 through 366), the daily sea ice 

fraction from all of the years was read in and averaged to create a daily, sea-ice fraction 

climatology. Grid cells that contained a sea ice fraction greater than 0.15 for all of the 

averaged days of the year were masked out of the analysis. 

An anomaly was defined as exceeding the standard deviation (SD) of SSTs from 

the climatology for that location (i.e., grid cell) and week of the year. The climatology 

was defined as a weekly average for each ~4 km grid cell from 1982-2010 (see Ref 
1
 for 

original methods description). The frequency of anomalies was calculated for each year 

in the dataset. The difference was then quantified between the number of anomalies in the 

5 most recent years (2005-2010) and the 5 years that were defined as the earliest period in 

the previous analysis (1985-1990). The metric of change in SST anomalies from previous 

work
1
 was also recreated, which measured the difference in anomaly frequency from 

2000-2005 compared to 1985-1990.  

There are three main differences between the dataset used previously
1
 and the 

version 4 CoRTAD data used for this analysis. Since that publication, the Pathfinder data 

used to generate the version 4 CoRTAD has been updated to use a different and higher 

resolution reference
12

 dataset to help identify bad data (data are removed if they are +5/-

2°C from the reference dataset). The new version now more accurately resolves strong 

temperature gradients like those that occur along major boundary currents or near the 

coast. By adding in new years to the dataset, a new climatology is also created, so the 

standard deviation thresholds have changed. The result could be a decrease in the overall 

frequency of anomalies compared to the older dataset. Anomalies were calculated in only 

the positive (warming) direction, as was done previously
1
. 

 



 

Temporal dynamics: Changes in regional ocean climates, such as occur with the El Niño 

Southern Oscillation (ENSO) or other major oscillations (e.g., Pacific Decadal 

Oscillation, North Atlantic Oscillation), have a direct effect on local and regional patterns 

of SST anomalies. By averaging anomalies over a five year period, we minimize the 

potential effect of annual variability. Longer-term climatological patterns are much 

harder to address. Ideally, we would be able to fully factor out changes in local SST due 

to regional climatic oscillations, but to do this we would need many decades of data and 

more robust models to predict local and regional changes due to such oscillations (so that 

human driven change could be isolated for each patch of ocean). These data and models 

are currently not available. 

 Some of the local-scale changes in SST anomalies could therefore be due to 

natural variation and not a consequence of human activities. The most notable potential 

location for such an effect in our results is the Northeast and Eastern Tropical Pacific (see 

Supplementary Figure 9), where there were large decreases in anomalies between the two 

assessment periods. However, the Pacific Decadal Oscillation was in a cool phase over 

the period of our two assessment windows (2000-2005 and 2005-2010)
13

, and so for this 

current analyses the observed changes in SST anomalies do not appear directly driven by 

long-period climate oscillations such as PDO.  

 

UV radiation anomalies 

We followed methods developed previously
1
. We used Aura/OMI satellite data 

(disc.sci.gsfc.nasa.gov/data-holdings/PIP/erythemal_uv_irradiance.shtml) to obtain daily 

Local Noon Erythemal UV Irradiance (mW/m
2
). The Aura/OMI satellite provides data at 

1x1 degree resolution from September 2004 through present, spanning 180 degrees 

latitude and 360 degrees longitude.  

We calculated the number of positive monthly anomalies during a 5-year time 

period (2008-2012).   Daily irradiance values were averaged into 60 monthly mean UV 

values for the five year period. Mean monthly UV values exceeding the baseline mean 

plus one standard deviation were labeled as anomalous pixels. The number of positive 

anomalies ranged from 0-9.  These were then transformed and normalized from 0-1 for 

each raster cell: 

 
          

               
          (2) 

 

Ocean acidification 

All data and methods remain the same as previously reported
1
, such that this data 

layer is identical in both the 2008 and 2013 assessments. 

 

Sea level rise 

The sea level rise data are based on Nicholls and Cazenave
14

, which can be 

viewed at: http://www.aviso.altimetry.fr/en/data/products/ocean-indicators-

products/mean-sea-level/products-images.html. The original data 



 

(MSL_Map_MERGED_Global_IB_RWT_NoGIA_Adjust.nc) were reprojected into 

Geographic WGS84, 0.25x0.25 degree resolution pixels, and then the rate of sea level 

rise (mm/yr) per pixel was calculated across the time span of the dataset (Oct 1992 

through Dec 2012). This calculation produced a minimum value of -34 mm/yr and 

maximum value of 30 mm/yr. To produce a value of net change in sea level, these rates 

were multiplied by the duration of the time series (20.167 yrs), resulting in a minimum 

value of -685.63 mm and maximum value of 607.01 mm. For comparison to other 

pressure layers, these values were then rescaled to the largest absolute value, in this case 

preserving negative values such that the new values ranged -1.0 to 0.885. Note that this 

global data set does not take into account Glacial Isostatic Adjustment (GIA) of ~-0.3 

mm/yr, although this does affect the normalized values (addressed in website noted 

above). For the purposes of calculating pressures, negative values were set to zero (i.e. no 

negative pressure), such that only positive sea level rise values mattered. 

 

 

OCEAN-BASED STRESSORS 

Benthic structures (oil rigs) 

To capture the presence of oil rigs, we applied a 0/1 binary threshold to our night 

pollution layers. After masking out land areas, most ocean stable lights are assumed to be 

oil rigs. However, this method still leaves some erroneous non-flare lights. We used 

NGDC DMSP gas flare data from 2006/2007 to mask out non-flare areas from our oil 

rigs layers for both time periods 

(http://www.ngdc.noaa.gov/eog/data/web_data/gasflares_v2/).  This leads to a smaller set 

of oil rig pixels, but improves on accuracy over the previous method
1
. 

 

Shipping 

Vessel identity and location information was obtained using two approaches. (1) 

Over the past 20 years, 10-20% of the vessel fleet has voluntarily participated in 

collecting meteorological data for the open ocean, which includes location at the time of 

measurement, as part of the Volunteer Observing System (VOS). (2) In order to improve 

maritime safety, in 2002 the International Maritime Organization SOLAS agreement 

required all vessels over 300 gross tonnage (GT) and vessels carrying passengers to equip 

Automatic Identification System (AIS) transceivers, which use the Global Positioning 

System (GPS) to precisely locate vessels. 

In the previously developed shipping layer
1
, a single year sample of the VOS data 

was used for  analysis. These data ignored vessel type, and included observations from 

only 12% of the vessel fleet. The ships included are a spatially- and statistically-biased 

sample of the population, making the modeled results somewhat misleading. Here, we 

have instead adopted the model outputs developed elsewhere
15

. We collapsed down the 

detailed analysis from that study into eight broad classes of vessels: authority, cargo, 

fishing, high-speed, passenger, pleasure, support, tanker and an ‘other’ class. The vessel 

classes which move globally (cargo, tanker, and passenger) are required to carry AIS 

transceivers, and in these three classes 60-70% of the total vessel fleet was observed 

using AIS. The resulting data layer is primarily composed of these vessel classes in both 



 

the AIS and VOS data sources, and is almost exclusively these ship types in the open 

ocean. We used a simple linear average of the two data sources, producing a final model 

resolved for the whole ocean at a resolution of 0.1 decimal degrees (~11km). 

 Both the AIS and VOS data have limited observation frequency, leading to gaps 

that when directly interpolated with geodesic paths, create invalid routes which cross land 

masses. We used a routing model to create a visibility graph of the oceans, creating valid 

potential movement paths. These movement paths are based on the assumption that 

mariners will prefer great circle distances when possible. Each ocean location was treated 

as a node in the visibility graph, and shortest distance paths were computed using the A* 

search algorithm
15

. The resulting graph contains 6.5M vertices (valid ship locations) and 

17M edges (connections between locations). These methods are different from the ones 

developed previously 
1
, thus precluding temporal comparisons of this data layer. 

 

Invasive species 

As was done previously
1
, we used the volume (measured in tonnes) of goods 

transported through commercial ports as a proxy measure of potential introduction of 

invasive species. Two main pathways account for ship-associated invasions: ballast water 

exchange and biofouling. Ballast water is used to achieve proper buoyancy and stability 

for ships contingent on the mass and distribution of cargo. Water is taken on and released 

proportional to the mass of goods transferred at a port. When ballast taken on at one 

location is transported and released at another, marine life in the water and sediment 

become potential non-native invaders. Biofouling introductions occur when organisms 

colonize the hull, other ship surfaces or equipment and are thereby transported to the host 

environment. Each mechanism has been associated with numerous invasions 

worldwide
16,17

. 

The number of viable propagules released is termed ‘propagule pressure’ and is 

one of the stronger determinants of invasion
18-20

. As a proxy for propagule pressure, some 

authors have noted a strong relationship (albeit sometimes non-linear) between cargo 

tonnage or related shipping measures (e.g., ship arrivals) and invasion
21-24

. Successful 

colonization also depends on source-destination habitat similarity, travel distance, and 

destination habitat degradation.  In addition, ports have different regulations regarding 

if/how ballast water is treated, so this proxy measure may overestimate invasive species 

in locations where regulations are well-enforced. However, data are simply not available 

on a global scale to quantify these additional factors. We therefore make the simplifying 

assumption that risk of invasion is proportional to tonnes of goods transferred because 

this metric scales positively with the volume of ballast released, the surface area for 

fouling organisms and the number of vessel visits, all of which are established predictors 

of invasion.  

Besides gathering new data on the current volume of goods transported through 

ports, we implemented a number of important improvements for how missing port 

volume values were approximated. We were not able to repeat these methods for 

previous port volume data
1
, and so we used these new data for both time periods (i.e., we 

could not do temporal comparisons for this layer). In brief, we used total cargo volume 

data (in metric tonnes) reported for the 2011 calendar year for 868 ports, matched with 

entries in the World Port Index database (WPI; available from the National Geospatial-



 

Intelligence Agency). From these data, we modeled cargo volume estimates (see details 

below) for an additional 2,854 ports to provide a total data set of 3,722 ports with cargo 

throughput information. 

 

Data Availability: Proprietary (and expensive) data exist for cargo volume for most ports 

in the world (e.g., from Lloyds of London). We instead relied on freely available data to 

produce more repeatable methods without barriers. Often, ports and port authorities 

report cargo throughput for the total weight of all types of goods, including bulk and 

containerized cargo. An alternate type of data reporting is for Twenty-foot Equivalent 

Units (TEUs), a measure of cargo shipped in containers. While reporting for this type of 

cargo is more complete, containerized shipping represents only 15-30% of trade because 

it excludes bulk cargoes (e.g., petroleum, ore, grain, autos, and livestock). Total cargo 

throughput data in both metric tonnes and TEUs are reasonably accessible for many ports, 

particularly in Europe, the Americas and Australia. Cargo data are less accessible or 

underrepresented in Asia, Africa and the Middle East with the exception of the largest 

ports in those regions. We collected data on cargo throughput in TEUs for 580 ports and 

in metric tonnes for 1,498 ports. World-wide data is available from the WPI on 3,709 

ports and lists the name, location, size category and services available along with 

additional characteristics of each port. 

 

Data collection: Total cargo volume data by port was collected from regional and 

national statistical organizations, and from published port rankings. We used online data 

sources (Supplementary Table 6) and statistics provided directly by individual 

organizations for cargo throughput measures in TEUs (N=580) and in metric tonnes 

(N=1,498) for 2011. Metric tonnes is a preferable measure of port throughput because it 

includes all classes of goods including containerized trade. Because the majority of ports 

with TEU data also had data in metric tonnes (432/580) and the relationship between 

TEUs and tonnes was moderate (R
2
=0.734) overall and especially poor for smaller ports, 

we chose not to use the TEU data to predict tonnes for the remaining 148 ports or for 

modelling exercises.  Only the metric tonnes data was used for the remainder of the 

analyses. 

 

Preparing cargo volume data: All data were imported into a database and duplicate ports 

were eliminated. When metric tonnes values differed for duplicate port records, the more 

precise record was used (some datasets were rounded).  If neither record had greater 

precision, the more authoritative resource was preferred in the following sequence:  

National > Regional > Global/Industry summary. Once all duplicates were eliminated, 

data were combined with the World Port Index dataset by matching port name and 

country to allow for gap-filling (see Gap-filling cargo volume, below). 

To resolve inconsistencies between port identities in the port volume data versus 

the WPI database, we implemented several steps. First, we matched records that referred 

to the same port location across the datasets but did not match because of disparities in 

spelling, official and unofficial name use, or variation in grouping and reporting of ports. 

Second, for cases where large ports had a single value in the port volume datasets but 

were divided into subsidiary ports in the WPI data, we simply combined the WPI records. 

To do this, we compared all data fields among the subsidiary WPI records and chose the 



 

most ‘conservative’ value for each field. For example, if there were a variety of channel 

depths among the records, the shallowest depth was entered for the newly created 

combined record.  Subsidiary records were then deleted. Finally, in some cases, entries 

for ports existed in the port volume data but not the WPI data. For 23 of the largest of 

these ports, we were able to construct a WPI entry from various online sources. Once all 

possible matches and edits were made to the data sets, 868 ports were matched between 

WPI data and cargo volume data (estimated 9% of global ports, but representing >80% of 

cargo tonnage). 

 

Preparing WPI data: Not all ports had values included for each of the port attribute fields 

of the WPI dataset. For missing channel (n=459), anchorage (n=361) and cargo pier 

(n=461) depth values in the WPI database, depth was assigned: ‘very small’ ports were 

given depth category 0-5 ft, ‘small’ ports were assigned category 6-10 ft, ‘medium’ given 

11-15 ft and ‘large’ ports were given a value of 16-20 ft.  Since all of these depths were 

well below the mean depth across all ports or the mean depth for any port size, these 

designations were considered conservative. Greater depths were associated with higher 

cargo volume, so conservative depth assignment leads to conservative predictions of 

cargo volume for modeled ports. Similarly, for binary variables in the WPI dataset, the 

value related to lower cargo volume was assigned where values were missing. Finally, oil 

terminal depth was converted to presence/absence where missing values for depth 

corresponded with a lack of an oil terminal. Depths in this category provide little 

predictive power for cargo volume since more than 90% of all ports were deeper than 

necessary for the largest class of oil tanker vessel. Presence/absence data on four port 

services (electrical, longshore, navigation equipment and electrical repair) was tallied to 

give a single variable quantifying the number of services offered at a port. The same was 

done for six categories of supplies (deck, diesel, engine, fuel oil, provisions, and water). 

 

Gap-filling cargo volume: Using these two variables and a selection of 26 ordered and 

binary predictor variables from the WPI database, we constructed a set of likely linear 

models based on an initial analysis of predictor significance. Akaike information criterion 

(AIC) was calculated to choose among the models. The selected model was: Log(Tonnes 

+1) ~ (cargo pier depth) + (oil terminal presence) + (turning area) + (wharf presence) + 

(tug assistance) + (channel depth) + (garbage disposal) + (max vessel size) + (floating 

cranes) + (ballast treatment) + (lifts 25-49 tonnes) + (first port of entry) + (harbor size).  

Model fit in this case was reasonable (adjusted R
2
=0.473, F(43, 824) = 19.1, p<<0.001), 

given the binary nature of most of the predictor variables. This best-fit model was then 

used to predict metric tons of cargo values for the unmatched records in the WPI dataset. 

Validation of predicted values using online searches for individual port websites and 

cargo data reported therein showed that of 22 selected ports, all were within an order of 

magnitude of the true value and most were within 10%. The modeling and prediction 

process resulted in 3,722 ports (~37% of global ports and 100% of the largest 100+ ports) 

with location and cargo volume information. Models and analysis were performed in R 

statistical software
25

. 

 

Pluming port volume data: To approximate the range and potential impact of invasive 

species introduced via ballast water, we plumed port volume data along coasts, as was 



 

done previously
1
. In brief, the intensity of port volume was assumed to decline 

exponentially with (per-pixel) distance from the port source. This decay function assumes 

diffusive (rather than advective) spread of invasive species. We further assumed that once 

diffused volume data fell below a value of 5mt, no additional spread occurred.  This set a 

maximum distance of spread (from the largest port) at roughly 1000km along a coastline. 

These areas were then clipped to the shallow habitats (<60 m depth), since most known 

invasive species transported by ballast water are intertidal or shallow subtidal. 

 As noted previously
1
, our approach to modeling invasive species does not account 

for species that arrive through other transport mechanisms (such as aquaculture), and it 

assumes a linear relationship between invasive species occurrence and port volume, and 

between spatial extent of the invasion and port volume. The former relationship may 

instead have a threshold value or non-linear relationship, but such relationships are 

probably taxa-specific and are not currently known for most species. The latter 

relationship is also not likely to be linear, as the spread of species along coastlines is 

more likely a function of time since introduction and dispersal capabilities, variables 

which are available for only a select few marine invasive species, and the relative ocean 

climatology of the origin and destination of the ship. For example, models that account 

for the environmental niche of potential invaders perform better than models created 

solely on the basis of port volume 
26

, but such niches are not known for most invasive 

species, and tracking the origin and destination of ships is computationally prohibitive. 

 

Ocean-based pollution 

This data layer combines estimates of pollution coming from commercial 

shipping and from ports. As such, it is a combination of the shipping and port volume 

data layers (described above under ‘shipping’ and ‘invasive species’, respectively), with 

the port volume data plumed to estimate pollution from commercial ports (with 

exponential decline in intensity from the port). Specifically, we reduced the plume 

distance compared to that used for invasive species, following methods developed 

previously
1
. 
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