
Supplementary Figures:

Supplementary Figure 1. Pump-probe and projected 2D signal. Projection of phased polarization-controlled 2D spectra (blue) to all-parallel
pump-probe (light blue) at t2 = 180 fs.
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Supplementary Figure 2. Feynman diagrams contributing to the beating signals in N11 and R31 represented in uncoupled state basis.
a, The stimulated emission diagram contributing to the beating signals in N11. Here time runs upwards and the electronic transitions induced
by light are denoted by arrows: 0 and 90 denote the polarization of light, parallel and normal to the longitudinal axis of C8O3, respectively
(cf. Figure 1 in the main text). The time interval between pulses is called coherence time t1, waiting time t2, and rephasing time t3 for the first
and second, the second and third, and the third excitation pulse and the emerging signal, respectively. The Fourier transform along t1 and t3

leads to the absorption and detection frequencies denoted by ω1 and ω3, respectively. b-e, The stimulated emission and ground state bleaching
diagrams contributing to the beating signals in R31. In a-d, grey shaded waiting time periods during t2 highlight vibronic coherences in the
electronic excited states. In e, on the other hand, the vibronic system is in the electronic ground state during t2.
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Supplementary Figure 3. Absorption spectrum of C8O3. a, Absorption spectrum with light polarized parallel to the longitudinal axis of
C8O3. Experimental and theoretical results are shown as a black solid line and a black dashed line, respectively. Theoretical results were
modeled by a sum of Lorentzian functions, which describe bands 1-5 of C8O3. Each Lorentzian function is shown as a colored dashed line.
b, Absorption spectrum with light polarized normal to the longitudinal axis of C8O3. Note that the vertical scales in a and b are different.

Supplementary Figure 4. Long-lived beating signals in N11 and R31. a, The ratio |ηe/ηg| between the contributions of the vibronic and
vibrational coherences to the long-lived beating signal in R31. For the experimentally estimated value of Γ13, marked by a vertical dashed line,
the contribution of the vibronic coherence is greater than the vibrational coherence. b, The ratio Γg3(Γg1|ηe − ηg|)−1 between the amplitudes of
the long-lived beating signals in N11 (∝ Γ−2

g1 ) and R31 (∝ Γ−1
g3 Γ−1

g1 |ηe − ηg|). In both a and b, we take the values of the parameters estimated
from experimental results. According to Eq. (19), ~(Γg1 + Γg3) ≈ 215 cm−1 is the theoretical upper bound for Γ13.
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Supplementary Figure 5. Feynman diagrams contributing to the beating signals in N11 and R31 represented in vibronic eigenbasis. a,b,
The stimulated emission diagrams contributing to the beating signals in N11. c-f, The stimulated emission diagrams contributing to the beating
signals in R31. g-j, The ground state bleaching diagrams contributing to the beating signals in R31.

Supplementary Figure 6. The relative amplitude of N22 and N11. a, The absolute square of the Fourier transform of the beating signal in
N22 as a function of ω2, which is normalized to the amplitude of N11 at ~ω2 ≈ 705 cm−1. b, Theoretical results of the ratio between N22 and
N11 are displayed as a function of the Huang-Rhys factor S 2. The Huang-Rhys factor S 1 = 0.0006 of the vibrational mode with frequency
~ν1 ≈ 668 cm−1 is marked by a vertical dashed line.
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Supplementary Figure 7. Correlated fluctuation model. a, Simulated beating signal for R31 in the presence of correlated fluctuations
(without quasi-resonant vibrations). The modeled curve is shown as a solid blue line and experimental results are shown as a light blue line.
Here we take the lowest decoherence rate Γ13 ≈ (100 fs)−1 of the inter-exciton coherence allowed by correlated fluctuations, constrained by
experimentally determined population transfer rates from band 3 to bands 1 and 2. As shown in the inset, correlated fluctuations cannot explain
the experimentally measured long-lived beating signal in R31. b, Simulated beating signal for R31 in the absence of the exciton relaxation,
shown as a solid blue line. The correlated fluctuation model predicts the lowest decoherence rate Γ13 ≈ (303 fs)−1 of the inter-exciton coherence
when there is no exciton relaxation, even though this condition is not satisfied for C8O3. Nevertheless, the correlated fluctuation model cannot
explain the experimentally measured long-lived beating signal in R31, which persist beyond t2 ≈ 800 fs, as shown in an inset. c, Simulated
beating signal for R31 in the presence of a vibrational mode with frequency ~ν1 ≈ 668 cm−1, which is quasi-resonant with the exciton energy
splitting ∆Ω31 between bands 1 and 3. Here the vibronic and vibrational coherences induce a long-lived beating signal in good agreement
with the experimental results. The root-mean-square deviation (RMSD) of the experimental results and theoretical prediction in a, b and c is
0.74, 0.86 and 0.59, respectively. We note that the correlated fluctuation model can also not explain the long-lasting beating signal in N11 (not
shown).
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Supplementary Notes:

Supplementary Note 1: Experiment

1. Sample preparation

The monomer, tetrachlorobenzimidacarbocyanine chromophore with two attached hydrophobic octyl groups (FEW-Chemicals,
Wolfen, Germany) was dissolved in 10−2 M NaOH solution to achieve a concentration of 10−4 M. The solution was then stirred
in the dark for several hours. Subsequently, polyvinyl alcohol (PVA) of molecular weight ∼130000 was added in 1:10 w/w ratio
(monomer:PVA) to slow down the formation of aggregate bundles during the storage of dye solutions. Moreover, the adsorbed
PVA chains1 obviously prevent the reassembly of double-layered into single-layered tubes upon bundling. This effect was
observed recently for another derivative2 (C8S3) of the present dye. The individual tubular aggregates degrade in that case into
single-layered tubes, which is accompanied by a dramatic change of absorption spectra. Similar effects were not observed for
C8O3 when PVA is present. In particular, the aggregate solutions prepared in the described way were stable for approximately
ten days when stirred continuously. Without stirring the spectral signature of the double-layered tubes retained even after 12
weeks of storage3. For 2D experiments, we additionally diluted the sample with 10−2 M NaOH to obtain optical density below
0.3 at 598 nm at a path length of 200 µm.

A total sample volume of approximately 10 ml was circulated through the U-shaped wire-guided jet4 by a peristaltic pump
(Masterflex C/L) with a flow speed optimized for film stability. Solvent evaporated from the recollecting container was refilled
every 4 hours during the course of 13 hour measurement.

2. Data acquisition

Passively stabilized 2D spectroscopy was described in detail elsewhere5. Briefly, a home-built non-collinear optical parametric
amplifier (NOPA) seeded by 180 fs pulses at 1030 nm from PHAROS (Light Conversion Ltd) was tuned to generate ∼16 fs pulses
(80 nm full width at half maximum) centered at 580 nm. The NOPA output was split into four pulses and arranged in the so-called
boxcar geometry. Waiting time t2 was controlled by a mechanical translation stage (PI), whereas coherence time t1 was scanned
by inserting a pair of fused silica wedges into the first two pulses. All four pulses were focused and overlapped in the sample.
The first three generated a third order nonlinear optical response which is emitted in the photon echo phase-matched direction.
This signal was heterodyned with an attenuated fourth pulse, called local oscillator (LO). The resulting interference pattern was
spectrally resolved and detected by a CCD camera (PIXIS, Princeton Instruments). Most of the scatter was eliminated by the
double-frequency lock-in modulation of the first two pulses6. The polarization of each pulse was controlled by the combination
of λ/4 wave plates and wire grid polarizers (contrast ratio > 800). The accuracy of the polarization angle was estimated to be
±1◦, where the unwanted signals were typically suppressed by a factor of ∼80 for the selected polarization sequence.

To prevent degradation of the sample, the power and repetition rate of the laser were set to 200 pJ/pulse and 40 kHz, respec-
tively. Spectral resolution of ∼35 cm−1 for the detection frequency ω3 was determined by the grating, the number of CCD pixels
and Fourier filtering of the signal during the standard analysis procedure. Coherence time was scanned from −300 fs to 384 fs
in 1.5 fs steps, providing ∼43 cm−1 spectral resolution of absorption frequency ω1. Waiting time steps of 12 fs were sufficient to
resolve oscillatory features up to 1350 cm−1 with ∼35 cm−1 resolution along ω2.

3. Polarization-controlled 2D-ES

The strength of 2D signals is determined by the scalar products of molecular transition dipole moments and pulse polarizations.
To take advantage of i) the preferential orientation of the J-aggregate (from here on referred to as C8O3) along the flow direction
of the jet and ii) mutually perpendicular transition dipole moments of bands 1(2) and 3 of C8O3, we designed a polarization
scheme selective for interband coherences. This is similar to the case of an isotropic sample discussed both theoretically7 and
experimentally8,9. In the presented experiments, the polarization scheme for rephasing signals reads (90, 0, 90, 0) for beams
1-4, respectively. The first and third pulses, polarized orthogonal (90) to the jet’s flow direction, interact with bands 1-3. The
second pulse, polarized parallel (0) to the jet’s flow direction, interacts preferentially with bands 1 and 2, due to the negligible
transition dipole moment of band 3 along this direction. The polarization scheme for non-rephasing spectra reads (0, 90, 90, 0),
as the ordering of the first two pulses is reversed. These polarization schemes restrict oscillatory signals induced by interband
coherences to the lower cross peak in rephasing spectra (R31) and the lower diagonal peak in non-rephasing spectra (N11), as
shown in Figures 2 and 3 of the main text. Non-oscillatory 2D signals were subtracted prior to Fourier transformation t2 → ω2.

The polarization-controlled 2D spectra were phased to pump-probe data where pump and probe pulses were polarized in
parallel. This procedure is not rigorously correct because in polarization-controlled 2D-ES the first two pulses have different
polarization directions while in pump-probe the first two interactions derive from the same pump pulse which naturally means
parallel interactions. In other words, the projection slice theorem is strictly speaking not valid for the experiments presented
here10. Despite this discrepancy, one can still satisfactorily phase polarization-controlled 2D spectra to all-parallel pump-probe
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as shown in Supplementary Figure 1. One explanation of this is leakage of the much stronger all-parallel signals through the
crossed polarizers, meaning that the all-parallel signal still dominates the non-oscillatory part of the (90,0,90,0) 2D-signal. In
this work, we decided to phase polarization-controlled 2D data to parallel pump-probe data. We note that the imperfection in
phasing parameters only affects the lineshapes of the real and imaginary part of ω2 maps, but preserves their amplitude-maps in
both lineshape and magnitude. Hence, the difficulties in phasing polarization-controlled 2D spectra discussed above do not affect
the conclusions drawn in the main part of the main text, which were based on ω2 amplitude-maps. To this end, we found that
arbitrary and large changes of the phasing parameters do not alter ω2 amplitude-maps shown in Figure 2 of the main text (results
not presented). It is noted that sophisticated phasing techniques based on heterodyned transient grating instead of pump-probe
offer a correct method to phase crossed-polarization 2D signals11.

Supplementary Note 2: Theory of Coherent Vibronic Coupling
1. A vibronic model for bands 1 and 3 of C8O3

In the following the vibronic model used to describe bands 1 and 3 of C8O3 and simulate 2D spectra is described. We consider
coherent interaction of bands 1 and 3 with the intramolecular vibrational modes of frequency ~ν1 ≈ 668 cm−1, which is quasi-
resonant with the exciton energy splitting between bands 1 and 3. The environmental noise induced by background phonons (a
phonon bath) is modeled by a Markovian quantum master equation.

1-1. Hamiltonian

The electronic Hamiltonian of C8O3 that consists of a network of cyanine dye molecules is described by

He =
∑
α

~Eα |eα〉 〈eα| +
∑
α,β

~Jαβ |eα〉 〈eβ| (1)

=
∑

k

~Ωk |k〉 〈k| , (2)

where |eα〉 represents the excited state of site α (or molecule α), Eα denotes the site energy including electronic and reorganization
energies, and Jαβ the electronic coupling between sites α and β. The diagonalization of the electronic Hamiltonian He gives rise
to the exciton states |k〉 =

∑
α |eα〉 〈eα|k〉 associated with the exciton energies Ωk, where bands 1 and 3 are denoted by |1〉 and |3〉,

respectively: 〈eα|k〉 ∈ R for Eα, Jαβ ∈ R.
The vibrational modes with frequency ~ν1 ≈ 668 cm−1 are described by a set of harmonic oscillators

Hv =
∑
α

~ν1a†αaα, (3)

where a†α and aα represent the creation and annihilation operators, respectively, of the intramolecular vibrational mode of site α.
The interaction between vibrations and the electronic excitation of molecules is modeled by

He−v =
∑
α

~ν1
√

s1 |eα〉 〈eα| (a†α + aα), (4)

where s1 denotes the Huang-Rhys factor of the vibrational modes. In the exciton basis {|k〉}, the interaction Hamiltonian He−v is
represented by

He−v = ~ν1
√

s1

∑
k,l

|k〉 〈l|
∑
α

〈k|eα〉〈eα|l〉 (a†α + aα), (5)

where the diagonal terms (k = l) lead to adiabatic surfaces in the electronic excited states, called vibrons, while the non-diagonal
terms (k , l) induce coherent transition between different excitons mediated by exciton-vibrational couplings.

In this work, we are interested in the coherent interaction of bands 1 and 3 with the quasi-resonant vibrational modes of
frequency ν1, which is described by the following cross term H̃e−v in Eq. (5)

H̃e−v = ~ν1
√

S 1(|1〉 〈3| + |3〉 〈1|)(ã†1 + ã1), (6)

where ã1 = N
∑
α 〈1|eα〉〈eα|3〉 aα describes an effective vibrational mode with frequency ν1. Here N is introduced to normalize the

effective vibrational mode, such that [ã1, ã
†

1] = 1, leading to an effective Huang-Rhys factor S 1 = s1/N2. This implies that for a
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given Huang-Rhys factor s1, the effective Huang-Rhys factor S 1 is increased as the spatial overlap 〈1|eα〉〈eα|3〉 between excitonic
wavefunctions of bands 1 and 3 increases, leading to smaller N and larger S 1 = s1/N2. The effective Hamiltonian of bands 1
and 3 coupled to the effective vibrational mode is then described by H̃ = H̃e + H̃v + H̃e−v, where H̃e = ~Ω1 |1〉 〈1| + ~Ω3 |3〉 〈3|
and H̃v = ~ν1ã†1ã1. We note that the vibrational energy ~ν1 ≈ 668 cm−1 is higher than the thermal energy kBT ≈ 208 cm−1 at
room temperature T = 300 K, implying that the thermal state of the vibrational mode is well approximated by its ground state.
In addition, when exciton-vibrational couplings are sufficiently small, the light-induced vibrational excitation of overtones is
negligible due to the small Franck-Condon factors. This is the case for C8O3, where N11 and R31 in 2D spectra can be well
described within a subspace spanned by {|g0〉 , |g1〉 , |10〉 , |11〉 , |30〉}. Here, |k0〉 and |k1〉 denote the vibrational ground and first
excited states of an electronic state |k〉, respectively, i.e. (H̃e +H̃v) |kl〉 = ~(Ωk +lν1) |kl〉, where |g〉 represents the electronic ground
state with Ωg = 0. In this scenario, {|10〉 , |30〉} can be directly excited by light from the ground state |g0〉, while {|g1〉 , |11〉} has
an extremely low transition probability due to small Franck-Condon factors. Nonetheless, {|g1〉 , |11〉} can be populated through
exciton-vibrational coupling ν1

√
S 1, leading to transition from |30〉 to |11〉, and subsequently to |g1〉 via emission. The coherent

transition between |30〉 and |11〉 requires resonance between vibrational frequency ν1 and exciton energy splitting ∆Ω31 = Ω3−Ω1
between bands 1 and 3, i.e. ∆Ω31 ≈ ν1.

1-2. Decoherence

In addition to the coherent interaction of bands 1 and 3 with the effective vibrational mode ã1, we consider electronic decoher-
ence induced by background phonons. We characterize the decoherence by two dynamical processes, i) the incoherent population
transfer between excitons, called exciton relaxation, and ii) the pure dephasing noise that destroys electronic coherence without
exciton population transfer. In addition, we consider iii) relaxation of the effective vibrational mode.

We assume that each cyanine dye molecule is coupled to an independent phonon bath. The Hamiltonian of the background
phonons is given by Hph =

∑
ξ ~υξb

†

ξbξ with the interaction Hamiltonian He−ph =
∑
α,ξ ~gαξ |eα〉〈eα| (b

†

ξ + bξ) between molecules

and phonons, where b†ξ and bξ denote the creation and annihilation operators, respectively, of a background phonon mode ξ.
Here gαξ represents the exciton-phonon coupling between site α and phonon mode ξ, which satisfies gαξgβξ = 0 for all β , α,
implying that when site α is coupled to the phonon mode ξ with gαξ , 0, all the other sites β are decoupled from the mode
with gβξ = 0. For the sake of simplicity, we assume that there is no degeneracy in the exciton energies Ωk, which leads to
a relatively simple form of a Markovian quantum master equation. This condition is satisfied even if the exciton energies are
close to degeneracy unless they are strictly degenerate, which is satisfied for bands 1 and 3 of our interest. The influence of the
background phonons on the vibronic system consisting of bands 1 and 3 with the effective vibrational mode is then described by
a Markovian quantum master equation12

d
dt
ρ(t) = −

i
~

[H̃, ρ(t)] +Dr[ρ(t)] +Dd[ρ(t)] +Dv[ρ(t)], (7)

where ρ(t) denotes the reduced vibronic state, whileDr[ρ(t)],Dd[ρ(t)] andDv[ρ(t)] describe exciton relaxation, pure dephasing
noise and relaxation of the effective vibrational mode, respectively.

i. Exciton relaxation
HereDr[ρ(t)] describes exciton relaxation

Dr[ρ(t)] =
∑
ω,0

∑
α

γαα(ω)
(
Aα(ω)ρ(t)A†α(ω) −

1
2
{A†α(ω)Aα(ω), ρ(t)}

)
, (8)

with ∆Ωkl = Ωk − Ωl denoting the exciton energy splitting between |k〉 and |l〉, Aα(ω) =
∑

k,l δ(ω,∆Ωkl) 〈l|eα〉 〈eα|k〉 |l〉 〈k| for
ω , 0, leading to incoherent transition from |k〉 to |l〉, where δ(i, j) denotes the Kronecker delta defined by δ(i, j) = 1 if i = j and
δ(i, j) = 0 otherwise. In Eq. (8), γαα(ω) is defined by

γαα(ω) = 2πJα(ω)(n(ω) + 1), (9)

with n(ω) = (exp(~ω/kBT ) − 1)−1 representing the Bose-Einstein distribution function at temperature T , Jα(ω) is the spectral
density of site α defined by Jα(ω) =

∑
ξ g2

αξδ(ω− υξ) if ω ≥ 0 and Jα(ω) = −Jα(−ω) otherwise. Here δ(x) represents the Dirac
delta function defined by δ(x)→ ∞ if x = 0 and δ(x) = 0 otherwise with

∫ ∞
−∞

dxδ(x) = 1.

ii. Pure dephasing noise
Dd[ρ(t)] in Eq. (7) describes the pure dephasing noise

Dd[ρ(t)] =
∑
α

γαα(0)
(
Aα(0)ρ(t)A†α(0) −

1
2
{A†α(0)Aα(0), ρ(t)}

)
, (10)
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where Aα(0) =
∑

k |〈k|eα〉|
2
|k〉 〈k| destroys electronic coherence without changing exciton populations defined by {Tr[〈k| ρ(t) |k〉]}.

By substituting electronic coherences |g〉 〈1|, |g〉 〈3| and |1〉 〈3| to the dissipators Dr[ρ(t)] and Dd[ρ(t)] in Eqs. (8) and (10),
one can obtain the following electronic decoherence rates Γg1, Γg3 and Γ13 of the coherences |g〉 〈1|, |g〉 〈3| and |1〉 〈3|

Γg1 =
1
2

∑
l,1

γ1→l + γg1, (11)

Γg3 =
1
2

∑
l,3

γ3→l + γg3, (12)

Γ13 =
1
2

∑
l,1

γ1→l +
1
2

∑
l,3

γ3→l + γ13, (13)

where γk→l denotes the incoherent population transfer rate from band k to l

γk→l =
∑
α

γαα(∆Ωkl) |〈l|eα〉〈eα|k〉|2 ≥ 0, (14)

while γg1 and γg3 represent the pure dephasing rates of the coherences |g〉 〈1| and |g〉 〈3|, respectively,

γg1 =
1
2

∑
α

|〈1|eα〉|2 γαα(0) |〈1|eα〉|2 , (15)

γg3 =
1
2

∑
α

|〈3|eα〉|2 γαα(0) |〈3|eα〉|2 , (16)

and γ13 represents the pure dephasing rate of the inter-exciton coherence |1〉 〈3| between bands 1 and 3

γ13 =
1
2

∑
α

(
|〈1|eα〉|2 − |〈3|eα〉|2

)
γαα(0)

(
|〈1|eα〉|2 − |〈3|eα〉|2

)
. (17)

These results imply that the inter-exciton dephasing rate γ13 should be lower than the sum of the other dephasing rates γg1 and
γg3 when there is a spatial overlap between excitonic wavefunctions of bands 1 and 3

γ13 = γg1 + γg3 −
∑
α

|〈1|eα〉|2 γαα(0) |〈3|eα〉|2 ≤ γg1 + γg3, (18)

with γαα(0) ≥ 0 for all α, the equality γ13 = γg1 + γg3 holds if and only if there is no spatial overlap between excitonic
wavefunctions, i.e. |〈1|eα〉|2 |〈3|eα〉|2 = 0 for all α, or the spectral densities Jα(ω) of the molecules shared by bands 1 and 3 do
not induce pure dephasing noise by γαα(0) = 0 for all sites α satisfying |〈1|eα〉|2 |〈3|eα〉|2 , 0. This implies that even if each
molecule is coupled to an independent phonon bath, the spatial overlap between excitonic wavefunctions can reduce the inter-
exciton dephasing rate γ13. Here the independent phonon baths of the molecules shared by excitons effectively form a common
phonon bath coupled to both excitons, leading to a partial dephasing-free subspace. For instance, if bands 1 and 3 have perfect
spatial overlap, i.e. |〈1|eα〉|2 = |〈3|eα〉|2 for all α, while the orthogonality between them is satisfied by the phases of 〈1|eα〉 〈eα|3〉,
i.e. 〈1|3〉 =

∑
α 〈1|eα〉〈eα|3〉 = 0, the inter-exciton dephasing rate γ13 will become zero, as each Aα(0) =

∑
k |〈k|eα〉|

2
|k〉 〈k| =

|〈1|eα〉|2 (|1〉 〈1| + |3〉 〈3|) +
∑

k,1,3 |〈k|eα〉|
2
|k〉 〈k| forms a dephasing-free subspace |1〉 〈1| + |3〉 〈3| of bands 1 and 3. Since band 1

is localized on the inner layer of C8O3, while band 3 is delocalized on both the inner and outer layers13, there is a partial spatial
overlap between excitonic wavefunctions, leading to γ13 < γg1 + γg3. The spatial overlap is also required for a non-zero value of
the effective Huang-Rhys factor S 1, which is responsible for the long-lived beating signals observed in the experiment, as will
be discussed later.

In addition, the inter-exciton dephasing rate γ13 has a non-zero lower bound when the dephasing rates γg1 and γg3 are different
in magnitude. The dephasing rates in Eqs. (15)-(17) can be expressed as γg1 = |~v1|

2, γg3 = |~v3|
2 and γ13 = |~v1 − ~v3|

2 with the
real vectors ~vk defined by ~vk = 2−1/2γ̂1/2~wk, where ~wk is a real vector with elements |〈k|eα〉|2 ≥ 0 representing the delocalization
of an exciton state |k〉 in the site basis {|eα〉}, while γ̂ is a diagonalized matrix with elements γαα(0) ≥ 0, leading to a positive
matrix γ̂1/2 defined by γ̂ = γ̂1/2γ̂1/2. From the triangle inequality, |~v1 − ~v3| + |~v3| ≥ |~v1| and |~v1 − ~v3| + |~v1| ≥ |~v3|, the inter-exciton
dephasing rate γ13 is bounded from below by (√γg1 −

√
γg3 )2, leading to (√γg1 −

√
γg3 )2 ≤ γ13 < γg1 + γg3. Therefore, the

electronic decoherence rate Γ13 of the inter-exciton coherence |1〉 〈3| is constrained by

1
2

∑
l,1

γ1→l +
1
2

∑
l,3

γ3→l +


Γg1 −

1
2

∑
l,1

γ1→l

1/2

−

Γg3 −
1
2

∑
l,3

γ3→l

1/2 
2

≤ Γ13 < Γg1 + Γg3, (19)
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with γgk = Γgk −
1
2
∑

l,k γk→l from Eqs. (11) and (12). Here the population transfer rates (γ1→l and γ3→l) and electronic decoher-
ence rates (Γg1 and Γg3) can be estimated using experimentally measured 2D spectra, which will be discussed later.

iii. Relaxation of quasi-resonant vibrations
Finally,Dv[ρ(t)] in Eq. (7) describes the relaxation of the effective vibrational mode

Dv[ρ(t)] = γv(n(ν1) + 1)
(
2ã1ρ(t)ã†1 − {ã

†

1ã1, ρ(t)}
)

+ γvn(ν1)
(
2ã†1ρ(t)ã1 − {ã1ã†1, ρ(t)}

)
. (20)

Since n(ν1) ≈ 0.04 at room temperature T = 300 K due to the high vibrational energy ~ν1 � kBT , Eq. (20) can be reduced to

Dv[ρ(t)] ≈ γv

(
2ã1ρ(t)ã†1 − {ã

†

1ã1, ρ(t)}
)
, (21)

which describes the dissipation of the vibrational mode with the rate of γv.

1-3. The response function for N11

Here we derive the response function for the beating signals in N11, which is a diagonal peak in non-rephasing spectra
centered at (ω1, ω3) ≈ (Ω1,Ω1).

In Supplementary Figure 2a, the Feynman diagram contributing to the beating signals in N11 after the employed (0, 90, 90, 0)
excitation is displayed. As the thermal state of the effective vibrational mode at room temperature is well approximated by its
ground state (~ν1 � kBT ), the initial state of the vibronic system is given by |g0〉 〈g0|. After excitation to |10〉 〈g0| by the first
pulse, the dynamics of |10〉 〈g0| during coherence time t1 is governed by a time evolution super-operatorU(t1) determined by the
quantum master equation in Eq. (7)

U(t1) |10〉 〈g0| = e(−iΩ1−Γg1)t1 |10〉 〈g0| , (22)

for which the Fourier transform is given by∫ ∞

0
dt1eiω1t1U(t1) |10〉 〈g0| = −

1
i(ω1 −Ω1) − Γg1

|10〉 〈g0| , (23)

where the prefactor −(i(ω1 − Ω1) − Γg1)−1 determines the lineshape of N11 along the ω1-axis, which is centered at ω1 = Ω1
with a linewidth of 2Γg1. By the second pulse, |10〉 〈g0| becomes |10〉 〈30|, which evolves during waiting time t2 into a mixture of
|10〉 〈30| and |10〉 〈11|, mediated by exciton-vibrational coupling, scaling with ν1

√
S 1. The time evolution of |10〉 〈30| is formally

expressed as

U(t2) |10〉 〈30| = |10〉 〈30| eKt2 = f (t2) |10〉 〈30| + g(t2) |10〉 〈11| , (24)

where K is a non-Hermitian operator describing both the Hamiltonian dynamics and decoherence

K = (i∆Ω31 − Γ13) |30〉 〈30| + (iν1 − γv) |11〉 〈11| + iν1
√

S 1(|30〉 〈11| + |11〉 〈30|). (25)

Here we evaluate f (t2) in Eq. (24), which describes the case that |10〉 〈30| becomes |10〉 〈g0| by the third pulse, as shown in
Supplementary Figure 2a. By diagonalizing the non-Hermitian operator K, one can show that f (t2) is given by

f (t2) =

2∑
k=1

1
2

1 + (−1)k x − y√
(x − y)2 + 4z2

 exp
[
1
2

(
x + y + (−1)k

√
(x − y)2 + 4z2

)
t2

]
, (26)

where x = i∆Ω31 − Γ13, y = iν1 − γv and z = iν1
√

S 1. Finally, |10〉 〈g0| evolves during rephasing time t3

U(t3) |10〉 〈g0| = e(−iΩ1−Γg1)t3 |10〉 〈g0| , (27)

for which the Fourier transform leads to the lineshape −(i(ω3 − Ω1) − Γg1)−1 of N11 along the ω3-axis. Therefore, the response
function for N11 is given by

R1g(ω1, t2, ω3) = µ2
1pµ

2
3n

1
i(ω1 −Ω1) − Γg1

1
i(ω3 −Ω1) − Γg1

f (t2), (28)

where µ1p denotes the transition dipole moment of band 1 for light polarized parallel to the longitudinal axis of C8O3, while
µ3n represents the transition dipole moment of band 3 for light polarized normal to the axis. This is due to the (0, 90, 90, 0)
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polarization scheme employed for measuring non-rephasing spectra in the experiment, as schematically shown in Supplementary
Figure 2a. It is notable that all the Feynman diagrams in Supplementary Figures 2a-e can be induced by (90, 90, 90, 90) excitation
where all the pulses are polarized normal to the longitudinal axis: band 1 can be excited or de-excited by both 0 and 90
polarizations, although with higher efficiency for light polarized at 0. For (90, 90, 90, 90) excitation, the overall dipole strength
µ2

1pµ
2
3n in Eq. (28) is decreased to µ2

1nµ
2
3n with µ2

1p > µ2
1n, as band 1 is mainly polarized along the longitudinal axis of C8O3,

as shown in the linear dichroism spectrum in Figure 1 of the main text. This implies that the (0, 90, 90, 0) polarization scheme
for non-rephasing spectra enhances the signal-to-noise ratio when compared to the (90, 90, 90, 90) excitation. Similarly, the
signal-to-noise ratio of rephasing spectra is enhanced by (90, 0, 90, 0) excitation.

The lineshape function (i(ω1 −Ω1) − Γg1)−1(i(ω3 −Ω1) − Γg1)−1 in Eq. (28) shows that N11 is centered at (ω1, ω3) = (Ω1,Ω1)
with a symmetric linewidth 2Γg1 along ω1- and ω3-axes. When (ω1, ω3) = (Ω1,Ω1), the lineshape function is reduced to Γ−2

g1 ,
implying that the amplitude of the N11 peak is proportional to Γ−2

g1 , which is decreased as the linewidth 2Γg1 increases. The time-
dependent term f (t2) in Eq. (28) describes the evolution of N11 during waiting time t2. In the absence of the exciton-vibrational
coupling (S 1 = 0), f (t2) is reduced to

f (t2)|S 1=0 = e(i∆Ω31−Γ13)t2 , (29)

implying that the coherence |10〉 〈30| oscillates with the frequency of the exciton energy splitting ∆Ω31 and decays with the
electronic decoherence rate Γ13. Conversely, in the presence of the exciton-vibrational coupling (S 1 > 0), f (t2) is expressed as

f (t2) =
1
2

1 +
x − y√

(x − y)2 + 4z2

 e[i(∆Ω31+δω)−Γ13+δγ]t2 +
1
2

1 − x − y√
(x − y)2 + 4z2

 e[i(ν1−δω)−γv−δγ]t2 , (30)

where iδω + δγ = 2−1[
√

(x − y)2 + 4z2 − (x − y)], which satisfies δω > 0 and δγ > 0 for ∆Ω31 > ν1 and Γ13 > γv, which is the
case for C8O3. There are several notable features that result from the vibronic coupling evident in Eq. (30). i) The first term,
proportional to e[i(∆Ω31+δω)−Γ13+δγ]t2 , oscillates with a frequency of ∆Ω′31 = ∆Ω31 + δω, which is higher than the exciton energy
splitting ∆Ω31, and decays with the rate of Γ13 − δγ, which is lower than the electronic decoherence rate Γ13 shown in Eq. (29).
These are the characteristics of the vibronic coherence |10〉 〈3̃0|, where 〈3̃0| is one of the left eigenstates of K in the form of
〈3̃0| ∝ 〈30| + ξ 〈11| with |ξ| < 1. The vibronic eigenstate 〈3̃0| has a higher energy-level than 〈30| due to the exciton-vibrational
coupling, leading to ∆Ω′31 > ∆Ω31 (see Figure 3a in the main text). Additionally, the amplitude of |10〉 〈3̃0| in |10〉 〈11| denoted
by ξ leads to a longer lifetime than the coherence |10〉 〈30| that has no vibrational character, or in other words, the lifetime
borrowing effect. ii) Conversely, the second term in Eq. (30), proportional to e[i(ν1−δω)−γv−δγ]t2 , exhibits characteristics of the
other vibronic coherence |10〉 〈1̃1|, where 〈1̃1| ∝ 〈11| − ξ 〈30| is the other left eigenstate of K. The second term oscillates with
frequency ν′1 = ν1 − δω, which is lower than the vibrational frequency ν1 due to the exciton-vibrational coupling (see Figure 3a
in the main text). It also decays with the rate of γv + δγ, which is higher than the vibrational decoherence rate γv of |10〉 〈11| due
to the amplitude of |10〉 〈1̃1| in |10〉 〈30| denoted by ξ. iii) We add that the vibronic states 〈3̃0| ∝ 〈30|+ ξ 〈11| and 〈1̃1| ∝ 〈11| − ξ 〈30|

are the eigenstates of the non-Hermitian operator K in Eq. (25) describing both Hamiltonian dynamics and decoherence, where
ξ depends on the parameters of the Hamiltonian as well as decoherence rates. These states are different from the eigenstates of
the Hamiltonian H̃, which do not depend on decoherence rates, and their difference becomes non-negligible when the electronic
decoherence rate Γ13 is comparable to or larger than the exciton-vibrational coupling ν1

√
S 1, as is the case for C8O3.

By fitting experimental 2D spectra to the theoretical prediction of N11 and R31, which will be discussed later, we found that
~∆Ω31 ≈ 720 cm−1, ~ν1 ≈ 668 cm−1, ~Γg1 ≈ 65 cm−1, ~Γg3 ≈ 150 cm−1, ~Γ13 ≈ 80 cm−1, S 1 = 0.0006 (cf. ~ν1

√
S 1 ≈ 16 cm−1)

and γv . (1 ps)−1. The estimated electronic decoherence rates Γg1 and Γg3 reproduce well the absorption spectrum of C8O3,
as shown in Supplementary Figure 3, where experimental and theoretical results are shown as a black solid line and a black
dashed line, respectively. The theoretical results were modeled by a sum of the Lorentzian functions with linewidths 2Γgk for
k ∈ {1, 2, 3, 4, 5}, each of which describes the absorption of band k: each Lorentzian function is shown as a colored dashed line.
The estimated values of the parameters lead to ~δω ≈ 1.6 cm−1 and ~δγ ≈ 2.1 cm−1, which are smaller than the experimental
resolution of ∼ 40 cm−1. This implies that for the case of C8O3, we can approximate ∆Ω′31 and ν′1 by ∆Ω31 and ν1, respectively,
with δω ≈ 0 and δγ ≈ 0. More specifically, when the exciton-vibrational coupling is sufficiently small, such that ν1

√
S 1 <

|i∆ν1 − Γ13| with ∆ν1 = ∆Ω31 − ν1, and the dissipation rate of the vibrational mode is negligible within the timescale of the total
measurement time, i.e. γv ≈ 0, the response function determining N11 in Eq. (28) is reduced to

R1g(ω1, t2, ω3) ≈ µ2
1pµ

2
3n

1
i(ω1 −Ω1) − Γg1

1
i(ω3 −Ω1) − Γg1

[
e(i∆Ω31−Γ13)t2 (1 − ε2

2 ) + eiν1t2ε2
2

]
, (31)

with ε2 representing the degree of vibronic mixing during waiting time t2

ε2 = iν1
√

S 1(i∆ν1 − Γ13)−1, (32)

where the vibronic eigenstates 〈3̃0| and 〈1̃1| are approximated by 〈3̃0| ∝ 〈30| + ε2 〈11| and 〈1̃1| ∝ 〈11| − ε2 〈30|, respectively, with
|ε2|

2 � 1 (in the main text, ε2 was denoted by ε for the sake of simplicity). It can be seen in Eq. (32) that |ε2| increases as
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the exciton-vibrational coupling ν1
√

S 1 increases or the detuning |∆ν1| = |∆Ω31 − ν1| between exciton splitting and vibrational
frequency decreases. This implies that the vibronic mixing of the coherences |10〉 〈30| and |10〉 〈11| requires resonance between
excitons and vibrations and induces the observed long-lived beating signal in N11. In this respect, when |ε2| decreases as a result
of a high electronic decoherence rate Γ13, the coherence |10〉 〈30| generated by the second pulse (see Supplementary Figure 2a)
will decohere too quickly and thereby suppressing the vibronic mixing of |10〉 〈30| and |10〉 〈11| during waiting time t2, which
in turn will suppress the long-lived beating signal in N11. This is related to the fact that ε2 is proportional to the exciton-
vibrational coupling ν1

√
S 1 and the amplitude of the long-lived component eiν1t2 in Eq. (31) is proportional to ε2

2 . As such, when
ν1
√

S 1 < |i∆ν1 − Γ13|, the response function for N11 can be effectively described by two transitions between |10〉 〈30| and |10〉 〈11|

during waiting time t2, mediated by exciton-vibrational coupling ν1
√

S 1, i.e. |10〉 〈30| → |10〉 〈11| → |10〉 〈30|, within the timescale
of the electronic decoherence rate Γ13, as shown in Supplementary Figure 2a. When the condition of ν1

√
S 1 < |i∆ν1 − Γ13| is not

satisfied, the response function for N11 is represented by R1g(ω1, t2, ω3) =
∑∞

n=0 hn(ω1, t2, ω3)(iν1
√

S 1)2n with the higher order
terms proportional to (iν1

√
S 1)2n, which describe multiple transitions between |10〉 〈30| and |10〉 〈11| during t2.

In summary, when ν1
√

S 1 < |i∆ν1 − Γ13| and γv ≈ 0, the response function for N11 at (ω1, ω3) = (Ω1,Ω1) is given by

R1g(t2) ≈ µ2
1pµ

2
3nΓ−2

g1

[
e(i∆Ω31−Γ13)t2 + eiν1t2ε2

2

]
, (33)

with ε2 defined in Eq. (32). The lineshape of N11 is symmetric along ω1- and ω3-axes with a linewidth of 2Γg1. These results
are in line with the experimental observations shown in Figures 2 and 3 of the main text.

1-4. The response function for R31

Here we provide the response function for the beating signals in R31, which is the cross peak in the rephasing spectra centered
at (ω1, ω3) ≈ (Ω3,Ω1). The response function for R31 can be derived using the same approach described above for N11. Here
we provide the results without derivation. Supplementary Figures 2b-e show the Feynman diagrams contributing to the beating
signals in R31. In Supplementary Figures 2b-d, the vibronic system is in the electronic excited states during t2, while in
Supplementary Figure 2e, the system is in the electronic ground state, each of which is called the stimulated emission (SE) and
ground state bleaching (GSB) diagram, respectively.

When ν1
√

S 1 < |i∆ν1 − Γ13|, ν1
√

S 1 <
∣∣∣i∆ν1 + Γg1 − Γg3

∣∣∣ and γv ≈ 0, which are satisfied for the case of C8O3, the contribution
of the SE diagrams to R31 is approximated by

R2g(ω1, t2, ω3) ≈ µ2
1pµ

2
3n

{
1

−i(ω1 −Ω3) − Γg3

1
i(ω3 −Ω1) − Γg1

[
e(i∆Ω31−Γ13)t2 (1 − ε2

2 ) + eiν1t2ε2
2

]
(34)

+

(
−

1
−i(ω1 −Ω3) − Γg3

+
1

−i(ω1 −Ω3 + ∆ν1) − Γg1

)
1

i(ω3 −Ω1) − Γg1

(
−e(i∆Ω31−Γ13)t2 + eiν1t2

)
ε1ε2

+

(
−

1
−i(ω1 −Ω3) − Γg3

+
1

−i(ω1 −Ω3 + ∆ν1) − Γg1

)
1

i(ω3 −Ω1) − Γg1
e(i∆Ω31−Γ13)t2ε2

1

}
,

with ε1 representing the degree of vibronic mixing during coherence time t1

ε1 = iν1
√

S 1(i∆ν1 + Γg1 − Γg3)−1, (35)

where ∆Ω′31 and ν′1 are approximated by ∆Ω31 and ν1, respectively. More specifically, ε1 is associated with the transition
between |g0〉 〈30| and |g0〉 〈11| during t1, while ε2 is associated with the transition between |10〉 〈30| and |10〉 〈11| during t2. In
Eq. (34), the first term proportional to ε2

2 describes the transition |10〉 〈30| → |10〉 〈11| → |10〉 〈30| during t2 (see Supplementary
Figure 2b), the second term proportional to ε1ε2 describes the transition |g0〉 〈30| → |g0〉 〈11| during t1 and the subsequent
transition |10〉 〈11| → |10〉 〈30| during t2 (see Supplementary Figure 2c), and the last term proportional to ε2

1 describes the transition
|g0〉 〈30| → |g0〉 〈11| → |g0〉 〈30| during t1 (see Supplementary Figure 2d). In the second and last terms, the lineshape function
along the ω1-axis contains (−i(ω1 −Ω3 + ∆ν1)−Γg1)−1, which describes the presence of a sub-peak centered at ω1 = Ω3 −∆ν1 =

Ω1 + ν1 < Ω3 with a linewidth of 2Γg1, which is induced by exciton-vibrational coupling. However, due to the condition of
|ε1|

2 � 1 and |ε2|
2 � 1, the first term in Eq. (34) determines the overall lineshape of R31, which is given by (−i(ω1 − Ω3) −

Γg3)−1(i(ω3 −Ω1)−Γg1)−1 that is centered at (ω1, ω3) = (Ω3,Ω1) with the asymmetric linewidths of 2Γg3 and 2Γg1 along ω1- and
ω3-axes, respectively.

The contribution of the GSB diagram to R31, with ground state coherence14 during t2, is given by

R3g(ω1, t2, ω3) ≈
(

1
−i(ω1 −Ω3) − Γg3

−
1

−i(ω1 −Ω3 + ∆ν1) − Γg1

) (
1

i(ω3 −Ω1 − ∆ν1) − Γg3
−

1
i(ω3 −Ω1) − Γg1

)
eiν1t2ε1ε3,

(36)
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with ε3 representing the vibronic mixing during t3

ε3 = −iν1
√

S 1(−i∆ν1 + Γg1 − Γg3)−1, (37)

which is associated with the transition |30〉 〈g1| → |11〉 〈g1| during t3 shown in Supplementary Figure 2e. Here the vibrational
frequency ν1 in eiν1t2 stems from the vibrational coherence |g0〉 〈g1| in the electronic ground-state manifold and not the result of
the approximation δω ≈ 0.

In summary, when ν1
√

S 1 < |i∆ν1 − Γ13|, ν1
√

S 1 < |i∆ν1 + Γg1 − Γg3| and γv ≈ 0, the response function for R31 at (ω1, ω3) =

(Ω3,Ω1) is given by

R2g(t2) + R3g(t2) ≈ µ2
1pµ

2
3nΓ−1

g3 Γ−1
g1 [e(i∆Ω31−Γ13)t2 + eiν1t2ε2

2 (ηe − ηg)], (38)

where ηe = (Γg1 + Γ13)(Γg1 + i∆ν1)−1 stems from the SE diagrams shown in Supplementary Figures 2b-d, while ηg = (Γ13 −

i∆ν1)2(Γg1 + i∆ν1)−1(Γg3 + i∆ν1)−1 originates from the GSB diagram shown in Supplementary Figure 2e. It is interesting to note
that the origin of the long-lived oscillations at R31, whether predominantly vibrational or vibronic, depends upon the electronic
decoherence rates {Γg1,Γg3,Γ13} and detuning ∆ν1 = ∆Ω31 − ν1. In Supplementary Figure 4a, the ratio |ηe/ηg| between the
contributions of the vibronic and vibrational coherences to the long-lived beating signal in R31 is displayed as a function of the
inter-exciton decoherence rate Γ13, where {Γg1,Γg3,∆ν1} are taken to be the values estimated from experimental results. Here
|ηe/ηg| > 1 implies that the long-lived beating signal in R31 is dominated by the vibronic coherence |1〉 〈1̃1| in the electronic
excited-state manifold. By fitting the experimentally measured beating signals in N11 and R31 to the theoretical model, we
found that ~Γ13 ≈ 80 cm−1, which is marked by a vertical dashed line in Supplementary Figure 4a, where the contribution of the
vibronic coherence is ∼ 2.5 times greater than the vibrational coherence. These results imply that the long-lived beating signal
in R31 is dominated by vibronic coherence, originating from electronic excited states. It is notable that the vibronic contribution
outweighs the vibrational part for a wide range of Γ13. This is mainly due to the fact that the vibronic mixing ε2 ∝ (i∆ν1 − Γ13)−1

during t2 depends on the inter-exciton decoherence rate Γ13, while the other vibronic mixings ε1 ∝ (i∆ν1 + Γg1 − Γg3)−1 and
ε3 ∝ (−i∆ν1 + Γg1 − Γg3)−1 during t1 and t3 are independent of Γ13. Considering that vibronic coherence depends on ε2 (see
Eq. (34) and Supplementary Figures 2b and c), while vibrational coherence depends on ε1ε3 (see Eq. (36) and Supplementary
Figure 2e), the vibronic contribution is increased as Γ13 decreases. We note that these results are in line with the experimental
observation that the amplitude of the long-lived beating signal in N11 is greater than that of R31 (see Figures 3b and c in the
main text). In Supplementary Figure 4b, the ratio Γg3(Γg1|ηe − ηg|)−1 between the amplitudes of the long-lived beating signals in
N11 and R31 is displayed as a function of the inter-exciton decoherence rate Γ13. Here the amplitude of the long-lived beating
signal in N11 is greater than R31, i.e. Γg3(Γg1|ηe − ηg|)−1 > 1, for a range of Γ13 where the vibronic coherence dominates the
long-lived beating signal in R31, as shown in Supplementary Figure 4a.

1-5. Numerical simulation of N11 and R31

So far the analytic form of the response functions for N11 and R31 were derived with the assumption that the vibronic system
is well described within the subspace of the vibrational ground and first excited states, which is valid for a small Huang-Rhys
factor S 1. To clarify the validity of this assumption, we performed numerical simulation of the beating signals in N11 and R31
with higher vibrational excited states, i.e. {|g0〉 , |g1〉 , · · · , |gn〉 , |10〉 , |11〉 , · · · , |1n〉 , |30〉 , |31〉 , · · · , |3n〉} with n ≥ 1. We found
that the theoretical beating signals converge for n ≥ 1 and the numerical results are well matched to the analytical results. Here
the electronic decoherence was modeled by a convex combination of two effective dissipators, i.e. pD1[ρ(t)] + (1 − p)D2[ρ(t)]
with 0 ≤ p ≤ 1, where the dissipators are given by

D1[ρ(t)] = Γg1(2 |1〉 〈1| ρ(t) |1〉 〈1| − {|1〉 〈1| , ρ(t)}) + Γg3(2 |3〉 〈3| ρ(t) |3〉 〈3| − {|3〉 〈3| , ρ(t)}), (39)

D2[ρ(t)] = 2
(√

Γg1 |1〉 〈1| +
√

Γg3 |3〉 〈3|
)
ρ(t)

(√
Γg1 |1〉 〈1| +

√
Γg3 |3〉 〈3|

)
− {Γg1 |1〉 〈1| + Γg3 |3〉 〈3| , ρ(t)}. (40)

By substituting electronic coherences |g〉 〈1| and |g〉 〈3| to the dissipators, one can show that bothD1[ρ(t)] andD2[ρ(t)] give rise
to the same set of decoherence rates Γg1 and Γg3 for |g〉 〈1| and |g〉 〈3|, respectively, implying that the decoherence rates of |g〉 〈1|
and |g〉 〈3| are independent of the value of p in the convex combination. For |1〉 〈3|, on the other hand,D1[ρ(t)] andD2[ρ(t)] lead
to different decoherence rates Γg1 + Γg3 and (

√
Γg1 −

√
Γg3 )2, respectively. This enables us to vary the inter-exciton decoherence

rate Γ13 within a range of (
√

Γg1 −
√

Γg3 )2 ≤ Γ13 ≤ Γg1 + Γg3 by changing the value of p in the convex combination. In addition
to the electronic decoherence, the relaxation of the vibrational mode was modeled by Eq. (20) in the simulations. We found that
Eq. (20) can be approximated by Eq. (21) due to the high vibrational frequency (~ν1 � kBT ).

1-6. Feynman diagrams represented in vibronic eigenbasis

Here we provide the Feynman diagrams for N11 and R31 represented in the vibronic eigenbasis of the time evolution super-
operatorU(t), which are equivalent to the Feynman diagrams in the uncoupled state basis shown in Supplementary Figure 2.
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For N11, the vibronic mixing ε2 takes place during waiting time t2 (cf. Supplementary Figure 2a), where the vibronic coher-
ences responsible for the short-lived and long-lived beating signals in N11 are given by

|10〉 〈3̃0| = (1 + ε2
2 )−1/2(|10〉 〈30| + ε2 |10〉 〈11|), (41)

|10〉 〈1̃1| = (1 + ε2
2 )−1/2(|10〉 〈11| − ε2 |10〉 〈30|), (42)

respectively, where the vibronic eigenstates 〈3̃0| ∝ 〈30| + ε2 〈11| and 〈1̃1| ∝ 〈11| − ε2 〈30| are normalized by (1 + ε2
2 )−1/2, not by

(1 + |ε2|
2)−1/2, due to the biorthogonality of the eigenstates of the non-Hermitian operator K in Eq. (25). When the light-induced

vibrational excitation of overtones, i.e. 〈11|, is negligible due to the small Franck-Condon factors, the transition dipole moments
of the vibronic eigenstates 〈3̃0| and 〈1̃1| are determined by their amplitudes in 〈30|, each of which is given by µ3n(1 + ε2

2 )−1/2

and −µ3n(1 + ε2
2 )−1/2ε2, respectively. Here µ3n denotes the transition dipole moment of 〈30|. In the eigenbasis, the Feynman

diagrams responsible for the short-lived and long-lived beating signals in N11 are described by Supplementary Figures 5a and b,
respectively. Given that there are two transitions between 〈g0| and 〈3̃0| (and also between 〈g0| and 〈1̃1|) by the second and third
pulses, the square of the transition dipole moments of 〈3̃0| and 〈1̃1| is reflected in the response function, each of which is given
by µ2

3n(1 + ε2
2 )−1 ≈ µ2

3n(1 − ε2
2 ) and µ2

3nε
2
2 , respectively. This is in line with the analytic form of the response function for N11

shown in Eq. (31).
For R31, on the other hand, vibronic mixing takes place during coherence, waiting and rephasing times (t1, t2, t3, respectively,

cf. Supplementary Figures 2b-e). The vibronic mixing ε1 during coherence time t1 leads to the vibronic eigenstates 〈3̃(1)
0 | ∝

〈30| + ε1 〈11| and 〈1̃(1)
1 | ∝ 〈11| − ε1 〈30|, where vibronic coherences during t1 are represented by

|g0〉 〈3̃
(1)
0 | = (1 + ε2

1 )−1/2(|g0〉 〈30| + ε1 |g0〉 〈11|), (43)

|g0〉 〈1̃
(1)
1 | = (1 + ε2

1 )−1/2(|g0〉 〈11| − ε1 |g0〉 〈30|). (44)

Here the superindex (1) of 〈3̃(1)
0 | and 〈1̃(1)

1 | reminds us that the vibronic mixing takes place during coherence time t1: throughout
this work, the vibronic eigenstates 〈3̃(2)

0 | and 〈1̃(2)
1 | responsible for the vibronic mixing ε2 during waiting time t2 have, for the sake

of simplicity, been denoted by 〈3̃0| and 〈1̃1|, respectively. We note that ε1 in Eq. (35) is different from ε2 in Eq. (32), as the time
evolution of the coherences |g0〉 〈30| and |g0〉 〈11| during coherence time t1 is governed by a different non-Hermitian operator K1

K1 = (iΩ3 − Γg3) |30〉 〈30| + (iΩ1 + iν1 − Γg1 − γv) |11〉 〈11| + iν1
√

S 1(|30〉 〈11| + |11〉 〈30|), (45)

defined by U(t1) |g0〉 〈30| = |g0〉 〈30| eK1t1 . In the eigenbasis, the SE diagrams shown in Supplementary Figures 2b-d can be
represented by four diagrams shown in Supplementary Figures 5c-f, where the transition dipole moments of 〈3̃(1)

0 | and 〈1̃(1)
1 |

are given by µ3n(1 + ε2
1 )−1/2 and −µ3n(1 + ε2

1 )−1/2ε1, respectively. It is notable that the vibronic eigenstates 〈3̃(1)
0 | and 〈1̃(1)

1 |

during coherence time t1 are different from the vibronic eigenstates 〈3̃0| and 〈1̃1| during waiting time t2, as the vibronic system
is in a superposition between electronic ground and excited states (see Eqs. (43) and (44)) and in the electronic excited-state
manifold (see Eqs. (41) and (42)), respectively, which leads in general to different values of the vibronic mixings ε1 and ε2. The
diagrams shown in Supplementary Figures 5c-f describe the fact that the vibronic eigenstates 〈3̃(1)

0 | and 〈1̃(1)
1 | can be represented

by superpositions of 〈3̃0| and 〈1̃1|. In Supplementary Figures 5c and d, for instance, the vibronic eigenstate 〈3̃(1)
0 | induced by the

first pulse can be represented by a superposition of 〈3̃0| and 〈1̃1|

〈3̃(1)
0 | = (1 + ε2

1 )−1/2(〈30| + ε1 〈11|) (46)

= (1 + ε2
1 )−1/2(1 + ε2

2 )−1/2[(1 + ε1ε2) 〈3̃0| + (ε1 − ε2) 〈1̃1|)]. (47)

Here the prefactors of 〈3̃0| and 〈1̃1|, i.e. (1+ ε2
1 )−1/2(1+ ε2

2 )−1/2(1+ ε1ε2) and (1+ ε2
1 )−1/2(1+ ε2

2 )−1/2(ε1− ε2), enable us to introduce
two separated diagrams shown in Supplementary Figures 5c and d, where the prefactors are multiplied to the response function,
similar to the transition dipole moment. Similarly, the other vibronic eigenstate 〈1̃(1)

1 | can be represented by a superposition of
〈3̃0| and 〈1̃1|, leading to the prefactors for the diagrams shown in Supplementary Figures 5e and f. Using the transition dipole
moments of 〈3̃0| and 〈1̃1| induced by the third pulse, one can show that the response function induced by the SE diagrams is given
by Eq. (34): here the lineshape functions (−i(ω1 −Ω3)− Γg3)−1 and (−i(ω1 −Ω3 + ∆ν1)− Γg1)−1 along the ω1-axis correspond to
the diagrams where the vibronic system is in |g0〉 〈3̃

(1)
0 | (cf. Supplementary Figures 5c and d) and in |g0〉 〈1̃

(1)
1 | (cf. Supplementary

Figures 5e and f), respectively, during coherence time t1.
The vibronic mixing ε3 during rephasing time t3 leads to the vibronic eigenstates |3̃(3)

0 〉 ∝ |30〉+ε3 |11〉 and |1̃(3)
1 〉 ∝ |11〉−ε3 |30〉,

where vibronic coherences during t3 are represented by

|3̃(3)
0 〉 〈g1| = (1 + ε2

3 )−1/2(|30〉 〈g1| + ε3 |11〉 〈g1|), (48)

|1̃(3)
1 〉 〈g1| = (1 + ε2

3 )−1/2(|11〉 〈g1| − ε3 |30〉 〈g1|). (49)
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The time evolution of the coherences |30〉 〈g1| and |11〉 〈g1| is governed by a non-Hermitian operator K3

K3 = (−iΩ3 + iν1 − Γg3 − γv) |30〉 〈30| + (−iΩ1 − Γg1) |11〉 〈11| − iν1
√

S 1(|30〉 〈11| + |11〉 〈30|), (50)

defined byU(t3) |30〉 〈g1| = eK3t3 |30〉 〈g1|. Similar to the SE diagrams, the GSB diagram shown in Supplementary Figure 2e can
be represented by four diagrams shown in Supplementary Figures 5g-j. Using the transition dipole moments of the vibronic
eigenstates, one can show that the response function induced by the GSB diagrams is given by Eq. (36), where the lineshape
functions (i(ω3 − Ω1 − ∆ν1) − Γg3)−1 and (i(ω3 − Ω1) − Γg1)−1 along the ω3-axis correspond to the diagrams where the vibronic
system is in |3̃(3)

0 〉 〈g1| and in |1̃(3)
1 〉 〈g1|, respectively, during t3.

These results imply that the Feynman diagrams for N11 and R31 can be represented in both uncoupled state basis and vibronic
eigenbasis equivalently, and the analytic form of the response functions in Eqs. (31), (34) and (36) is independent of the basis
chosen to represent the Feynman diagrams.

2. The response function for N22

Here we provide a vibronic model for bands 2 and 3 of C8O3, where bands 2 and 3 are coupled to the intramolecular
vibrational modes with frequency ~ν2 ≈ 470 cm−1.

In Supplementary Figure 6a, the absolute square of the Fourier transform of the beating signal in N22 is displayed as a
function of ω2, which is normalized by the amplitude of N11 at ~ω2 ≈ 705 cm−1. The amplitude of N22 is maximized around
~ω2 ≈ 460 cm−1 with an amplitude in the range of 5 % of the N11 peak. When bands 2 and 3 are coupled to a vibrational mode
with frequency ν2 mediated by an effective Huang-Rhys factor S 2, the response function for N22 is given by

R1g(t2) ≈ µ2
2pµ

2
3nΓ−2

g2

e(i∆Ω32−Γ23)t2 + eiν2t2

(
iν2
√

S 2

i∆ν2 − Γ23

)2 , (51)

with ∆ν2 = ∆Ω32 − ν2, µ2p denotes the transition dipole moment of band 2 for light polarized parallel to the longitudinal axis
of C8O3 and ~Γg2 ≈ 110 cm−1 represents the electronic decoherence rate of band 2, both of which can be estimated using the
absorption spectrum shown in Supplementary Figure 3. From the experimentally measured beating signal in N22, we found that
~Γ23 ≈ 200 cm−1 < ~(Γg2 + Γg3) (not shown). In Supplementary Figure 6b, the amplitude of the theoretical N22 is displayed as
a function of the Huang-Rhys factor S 2, which is about 5 % of N11 over a range of realistic S 2 values. For a comparison, the
Huang-Rhys factor S 1 of the vibrational mode with frequency ~ν1 ≈ 668 cm−1 is marked by a vertical dashed line. These results
imply that the small amplitude of the beating signal in N22 is mainly due to the high electronic decoherence rate of band 2.

Supplementary Note 3: Theory of Markovian Correlated Fluctuations

Here we provide a correlated fluctuation model for bands 1 and 3 of C8O3 where coherent interaction between excitons
and quasi-resonant vibrations is not considered. Within the level of Markovian quantum master equations, we show that the
experimentally measured long-lived beating signals in N11 and R31 cannot be explained by correlated fluctuations.

The main idea of the correlated fluctuations is that when bands 1 and 3 are coupled to a common environment, the correlated
noise enables the inter-exciton coherence |1〉 〈3| to decohere very slowly compared to the coherences |g〉 〈1| and |g〉 〈3| between
electronic ground state and excitons. This is similar in spirit to the decoherence-free subspaces in quantum information theory15.
Here we consider a Markovian quantum master equation in the form of

d
dt
ρ(t) = −

i
~

[H̃e, ρ(t)] +
∑
ω

∑
α,β

γαβ(ω)
(
Aβ(ω)ρ(t)A†α(ω) −

1
2
{A†α(ω)Aβ(ω), ρ(t)}

)
, (52)

which is the same to Eq. (3.143) in The Theory of Open Quantum Systems by H.-P. Breuer and F. Petruccione12, which is
called the Redfield equation with the secular approximation in some literature16. Here the interaction Hamiltonian is modeled
by He−ph =

∑
α Aα ⊗ Bα with Aα = A†α and Bα = B†α, each of which is a Hermitian operator of the system and environmental

degrees of freedom, respectively. With the exciton states |k〉 defined by H̃e |k〉 = ~Ωk |k〉, we introduce a projection operator
Π(Ω) =

∑
Ω=Ωk

|k〉 〈k| =
∑

k δ(Ω,Ωk) |k〉 〈k| where the Kronecker delta is defined by δ(i, j) = 1 if i = j and δ(i, j) = 0 other-
wise. In other words, Π(Ω) is a projection operator onto the exciton subspace belonging to the exciton energy Ω. In Eq. (52),
Aα(ω) =

∑
Ω′−Ω=ω Π(Ω)AαΠ(Ω′) =

∑
Ω,Ω′ δ(ω,Ω′ − Ω)Π(Ω)AαΠ(Ω′). The interaction Hamiltonian He−ph between excitons and

background phonons is modeled by Aα = |eα〉 〈eα| and Bα =
∑
ξ ~gαξ(a

†

ξ + aξ), where gαξ denotes the coupling of the local
excitation of site α to a background phonon mode ξ. When gαξ , 0 and gβξ , 0 for different α and β, spatially separated sites
α and β are coupled to a common phonon mode ξ, leading to correlated fluctuations in the energy levels of the different sites α
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and β. The correlated fluctuations are absent when each site is coupled to an independent phonon bath, such that gαξgβξ = 0 for
all α , β and ξ. The information of the correlated fluctuations is included in the definition of γαβ(ω) in Eq. (52)

γαβ(ω) =
1
~2

∫ ∞

−∞

dseiωs 〈B†α(s)Bβ(0)〉 , (53)

where for fixed ω, γαβ(ω) form a positive matrix12. Here γαβ(ω) = 0 for all α , β if each site is coupled to an independent
phonon bath and γαβ(ω) , 0 for some α , β if different sites α and β are coupled to the same phonon modes.

Using experimentally measured absorption and 2D spectra of C8O3, we found that the electronic decoherence rate Γgk of the
coherence |g〉 〈k| between electronic ground state and band k is given by ~Γg1 ≈ 65 cm−1 and ~Γg3 ≈ 150 cm−1 for bands 1 and
3, respectively. Within the level of the Markovian quantum master equation in Eq. (52), the decoherence rates Γg1 and Γg3 are
given by

Γg1 =
1
2

∑
l,1

γ1→l + γg1, (54)

Γg3 =
1
2

∑
l,3

γ3→l + γg3, (55)

where γk→l denotes the incoherent population transfer rate from band k to band l, and γgk represents the pure dephasing rate of
the coherence |g〉 〈k|. The population transfer rates γ1→l and γ3→l can be estimated using the exponential dynamics in 2D spectra.
To estimate these rates, we performed a global target analysis on all parallel 2D spectra of C8O317. We found that the population
transfer rates from band 3 to lower energy bands 1 and 2 are approximately given by γ3→1 ≈ (300 fs)−1 and γ3→2 ≈ (66 fs)−1,
corresponding to ~γ3→1 ≈ 18 cm−1 and ~γ3→2 ≈ 80 cm−1, respectively, and the other population transfer processes are slow in
comparison, i.e. γk→l . (2 ps)−1. In this case, the pure dephasing rates of |g〉 〈1| and |g〉 〈3| are given by ~γg1 ≈ ~Γg1 ≈ 65 cm−1

and ~γg3 ≈ ~(Γg3 −
1
2γ3→1 −

1
2γ3→2) ≈ 101 cm−1, respectively.

The electronic decoherence rate Γ13 of the inter-exciton coherence |1〉 〈3| between bands 1 and 3 is given by

Γ13 =
1
2

∑
l,1

γ1→l +
1
2

∑
l,3

γ3→l + γ13, (56)

where γ13 is the pure dephasing rate of the inter-exciton coherence in the presence of correlated fluctuations. We found that for
given γg1 and γg3, the inter-exciton dephasing rate γ13 should be higher than a theoretical lower bound given by

γ13 ≥
(√
γg1 −

√
γg3

)2
. (57)

Within the level of the Markovian quantum master equation in Eq. (52), the lower bound is not violated by any spectral densities
and correlated fluctuations, as will be shown below. Using the estimated values of the pure dephasing rates ~γg1 ≈ 65 cm−1 and
~γg3 ≈ 101 cm−1, we found that the lower bound in Eq. (57) is reduced to ~γ13 & 4 cm−1. Therefore, even in the presence of
correlated fluctuations, the decoherence rate Γ13 of the inter-exciton coherence |1〉 〈3| in Eq. (56) should be higher than a lower
bound given by

Γ13 ≥
1
2

(γ3→1 + γ3→2) +
(√
γg1 −

√
γg3

)2
≈ (100 fs)−1. (58)

It is notable that the lowest decoherence rate Γ13 ≈ (100 fs)−1 (cf. ~Γ13 ≈ 53 cm−1) is too high to explain the long-lived beating
signals observed in the experiment, as shown in Supplementary Figure 7a, where the simulated results based on the correlated
fluctuation model are shown as a blue solid line and the experimental results are shown as a light blue line. These results are
mainly due to the fast population transfer from band 3 to bands 1 and 2 observed in the experiment.

We note that our results are not sensitive to the estimated values of the population transfer rates. The inter-exciton decoherence
rate Γ13 is minimized when there is no population transfer between excitons, i.e. γk→l = 0 for all k , l, where the coherences
between electronic ground state and excitons are destroyed only by pure dephasing noise, i.e. ~Γg1 = ~γg1 ≈ 65 cm−1 and
~Γg3 = ~γg3 ≈ 150 cm−1. Even though this condition is not satisfied for C8O3, this is the best scenario of the correlated
fluctuation model where the decoherence rate Γ13 of the inter-exciton coherence is minimized

Γ13 = γ13 ≥
(√
γg1 −

√
γg3

)2
≈ (303 fs)−1. (59)

However, even in this case, the lowest decoherence rate Γ13 ≈ (303 fs)−1 supported by correlated fluctuations is not low enough
to explain the experimentally measured long-lived beating signals in N11 and R31, which persist beyond t2 ≈ 800 fs, as shown in
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Supplementary Figure 7b. This is due to the different decoherence rates Γg1 < Γg3 of |g〉 〈1| and |g〉 〈3| observed in the experiment.
This leads to a non-zero lower bound on the inter-exciton decoherence rate Γ13, as shown in Eq. (59). In addition, the beating
signals in N11 and R31 consist of a short-lived component with 1/e decay time of ∼ 66 fs as well as a long-lived component
persisting up to t2 ≈ 1 ps. This is contrary to the prediction of the correlated fluctuation model where a single oscillatory
component is expected with 1/e decay time of Γ−1

13 . For a comparison, the theoretical prediction of the vibronic model is shown
in Supplementary Figure 7c, where both short-lived and long-lived components are present. We note that in the vibronic model,
the decay rate of the long-lived component is independent of Γg1 and Γg3, as it is determined by the other degrees of freedom,
such as the dissipation rate γv of the vibrations and the degree of vibronic mixing ε2 leading to a lifetime borrowing effect δγ, as
shown in Eq. (30).

We now derive Eqs. (54)-(57) using the Markovian quantum master equation in Eq. (52).
(Dephasing noise) We start with the case thatω = 0, leading to the pure dephasing noise. For the sake of simplicity, we assume

that there is no degeneracy in the exciton energies Ωk, such that Ωk , Ωl for all k , l. In this case, Aα(0) =
∑

k |k〉 〈k| Aα |k〉 〈k| =∑
k |〈k|eα〉|

2
|k〉 〈k|. By substituting |g〉 〈1|, |g〉 〈3| and |1〉 〈3| to the dissipator of the quantum master equation for ω = 0

d
dt
ρ(t) =

∑
α,β

γαβ(0)
(
Aβ(0)ρ(t)A†α(0) −

1
2
{A†α(0)Aβ(0), ρ(t)}

)
, (60)

one obtains the following pure dephasing rates of the coherences |g〉 〈1|, |g〉 〈3| and |1〉 〈3|

γg1 =
1
2

∑
α,β

|〈1|eα〉|2 γαβ(0) |〈1|eβ〉|2 = |~v1|
2 , (61)

γg3 =
1
2

∑
α,β

|〈3|eα〉|2 γαβ(0) |〈3|eβ〉|2 = |~v3|
2 , (62)

γ13 =
1
2

∑
α,β

(
|〈1|eα〉|2 − |〈3|eα〉|2

)
γαβ(0)

(
|〈1|eβ〉|2 − |〈3|eβ〉|2

)
= |~v1 − ~v3|

2 , (63)

where ~vk represents a vector defined by ~vk = 2−1/2γ̂1/2~wk: here ~wk is a real vector with elements |〈k|eα〉|2 ≥ 0 and γ̂ is a positive
matrix12 with elements γαβ(0), leading to to a positive matrix γ̂1/2 defined by γ̂ = γ̂1/2γ̂1/2. For given pure dephasing rates
γg1 = |~v1|

2 and γg3 = |~v3|
2, the inter-exciton pure dephasing rate γ13 is constrained by

γ13 = |~v1 − ~v3|
2
≥ (|~v1| − |~v3|)2 =

(√
γg1 −

√
γg3

)2
, (64)

due to the triangle inequality, |~v1 − ~v3| + |~v3| ≥ |~v1| and |~v1 − ~v3| + |~v1| ≥ |~v3|. Here the equality holds if and only if ~v1 is parallel
to ~v3, which depends on γ̂1/2 (spectral densities and correlated fluctuations) as well as ~w1 and ~w3 (the spatial overlap between
excitonic wavefunctions). Note that the lower bound in Eq. (64) has been derived based on the positivity of γ̂1/2, which is
satisfied for any spectral densities and correlated fluctuations. These results imply that the inter-exciton dephasing rate γ13 can
be reduced by the correlated fluctuations as well as the spatial overlap between excitonic wavefunctions.

(Exciton relaxation) We now consider the case that ω , 0, leading to the incoherent population transfer between excitons.
With ∆Ωkl = Ωk − Ωl denoting the exciton energy splitting between bands k and l, Aα(ω) =

∑
k,l δ(ω,∆Ωkl) |l〉 〈l| Aα |k〉 〈k| =∑

k,l δ(ω,∆Ωkl) 〈l|eα〉 〈eα|k〉 |l〉 〈k| and the dissipator of the quantum master equation for ω , 0 is given by

d
dt
ρ(t) =

∑
k,l

∑
α,β

γαβ(∆Ωkl)
(
Aβ(∆Ωkl)ρ(t)A†α(∆Ωkl) −

1
2
{A†α(∆Ωkl)Aβ(∆Ωkl), ρ(t)}

)
, (65)

where the population transfer rate γk→l from band k to band l is given by

γk→l =
∑
α,β

〈k|eα〉 〈eα|l〉 γαβ(∆Ωkl) 〈l|eβ〉〈eβ|k〉 ≥ 0, (66)

which is positive, as γαβ(∆Ωkl) form a positive matrix12 for given ∆Ωkl. By substituting |g〉 〈1|, |g〉 〈3| and |1〉 〈3| to the dissipators
in Eqs. (60) and (65), one can show that the electronic decoherence rates Γg1, Γg3 and Γ13 satisfy Eqs. (54)-(57). These results
are valid for any spectral densities and correlated fluctuations within the level of the Markovian quantum master equation in
Eq. (52), which includes the theoretical models considered in previous studies16.

In summary, the correlated fluctuation model cannot explain the long-lived beating signals in N11 and R31 within the level
of Markovian quantum master equations, as the decoherence rate Γ13 of the inter-exciton coherence |1〉 〈3| is constrained by the
experimentally observed asymmetric decoherence rates Γg1 and Γg3, i.e. Γg3 ≈ 2Γg1, and the fast population transfer from band
3 to bands 1 and 2. We note that the asymmetric decoherence rates Γg1 and Γg3 are related to the fact that i) the lineshape of R31
is elongated along ω1-axis (cf. Figures 2b and d in the main text), ii) the amplitudes of the short-lived beating signals in N11
and R31 are different in magnitude (cf. Figures 3b and c in the main text), and iii) the absorptive linewidths of bands 1 and 3 are
different (cf. Supplementary Figure 3).
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