
 

S1 population genetics model for allele counts

As an alternative to the pairwise comparison of populations’ allele frequencies (“Method 1”), we
also considered an approach based on a standard population genetics model (e.g. (1; 2)). One
advantage of this alternative approach is that it compares allele frequencies simultaneously
across all three populations, e.g. testing whether allele frequencies are lower in the Gambia
cohort at the SNPs of interest relative to both the North Carolina and Maasai cohorts. This
technique matches that described in (3) when fixing the values of “drift” defined below (i.e.
dG, dC , dM) to be constant across all SNPs within each population, though di↵ers in mechanistic
details for inferring these “drift” terms and other values.

Let nG, nC and nM be the number of non-missing haplotypes at a given SNP for the samples
from Gambia, North Carolina and the Maasai, respectively. (For notational clarity we do not
index the SNP here.) Let G  nG, C  nC and M  nM be the counts of allele type x,
which is defined as the less frequent sampled allele at this SNP in the North Carolina samples.
Furthermore, let pG, pC and pM be the true (unobserved) proportion of allele type x at this
SNP in the Gambia, North Carolina and Maasai populations.

The counts G, C, M conditional on pG, pC , pM (and the number of non-missing haplotypes
nG, nC , nM) are assumed to follow independent Binomial distributions, i.e.

Pr(G | pG) = Binomial(nG, pG),
Pr(C | pC) = Binomial(nC , pC),

Pr(M | pM) = Binomial(nM , pM).

Following (1), we assume that the frequencies for each of the three populations are related by
a star-shaped phylogeny to an ancestral population that has frequency pA. (I.e. pG, pC , pM are
independent after conditioning on pA. Note that in this three population set-up this simply
means assuming a root at the junction in the tree where all three populations merge, and then
measuring the relative drift from this root.) Under a null model of “no selection” at SNP l, we
assume:
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with dG, dC and dM measuring the level of relative amount by which Gambia, North Carolina
and the Maasai are drifted from this hypothetical ancestral population. Note that under this
formulation, pG has mean pA and variance dGpA(1�pA), so that dG 2 (0, 1) measures the factor
decrease in variance when predicting pG from pA, with analogous interpretations of dC and dM

for their respective populations.

Finally we assume

Pr(pA) = Uniform(0, 1),

i.e. we do not make any assumption about the ancestral population’s frequency pA. Then we
have:
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We can integrate Pr(G | pG) Pr(pG | pA, dG) over pG, giving a beta-binomial probability for
Pr(G | pA, dG), and do the analogous for C and M , giving:

Pr(G, C, M | dG, dC , dM) =
R
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(S1)

As an exact integration over pA is analytically challenging, in the last step of (S1) we approxi-
mate this integration by replacing pA with j

J for j 2 [1, ..., J�1] for some large number J (note
that (S1) is undefined at j = 0, J). In practice we use J = 1000 for results here.

Now let Gl, Cl and Ml be the data at SNP l, for l 2 [1, ..., L] with L the total number
of SNPs. Here we used L = 174 of the total 212 SNPs that remained after an LD-pruning
procedure (see “SNP Filtering” in “Methods”) and were polymorphic in at least one of the
three populations and non-missing in at least two of the the three cohorts. (I.e. we included
28 of the 34 SNPs that were not imputed – and hence missing – in the Maasai, and two SNPs
that had genotyping rates <90% – and hence were considered missing – in either the Gambia
or North Carolina cohorts.) As SNPs are assumed independent after LD-pruning, we have:

L(dG, dC , dM) =
LY

l=1

Pr(Gl, Cl, Ml | dG, dC , dM). (S2)

We maximize (S2) for dG, dC , dM , using a 15-point equally-spaced grid for each di 2 [0.02, ..., 0.30].
This gave a maximum-likelihood-estimates d̂G, d̂C , d̂M of {0.08, 0.22, 0.04}. (When using all
211 SNPs with data in at least two of the three cohorts, the estimates were extremely similar:
{0.08, 0.24, 0.04}.)

Our alternative hypothesis is that for a given SNP the count G of allele type x in the
Gambian population is lower than expected under the neutral model of no selection we just
derived (i.e. shows evidence for negative selection). Fixing d̂ ⌘ {dG = d̂G, dC = d̂C , dM = d̂M},
for a given SNP we can use (S1) to calculate the probability of observing G or fewer haplotypes
of type x under the null hypothesis of no selection, for any particular values of C, M :
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(S3)

From (S1) and (S3), we can then condition on our observed values of C, M and calculate:

Pr(g  G | C, M, d̂) = Pr(g  G, C, M | d̂)/ Pr(C, M | d̂)
= Pr(g  G, C, M | d̂)/

⇥PnG

h=0 Pr(h, C, M | d̂)
⇤
.

(S4)

We calculated (S4) for each of rs12325817, rs2236225 and rs12676, giving values of 0.270,
0.073 and 0.101, respectively (Figure S1-left). (In an analysis using the d̂ values estimated using
all 211 SNPs that were non-missing in at least two of the three cohorts, these probabilities were
very similar: {0.275, 0.074, 0.102}.)

We also calculated the probability in (S4) for each of the L = 144 SNPs with data in all
three populations (i.e. excluding the 34 SNPs that were not imputed in the Maasai, the two
additional SNPs with low genotyping rates in either the Gambia or North Carolina cohorts, and
the SNPs removed during the LD-pruning procedure). Assuming any 3 sampled SNPs chosen at
random are not under any selective pressure, we can generate an empirical null distribution for
these probabilities averaged across any 3 SNPs under a model of no selection. I.e. analogous
to the test presented in “Method 1” of the main paper, we considered all

�
144
3

�
= 487, 344

subsets of 3 SNPs taken from the total 144, and calculated the mean value of (S4) within each
subset. The mean value for SNPs rs12325817, rs2236225 and rs12676 is smaller than all
but 0.0086 of these 3-SNP combinations (Figure S1-right), which is significant at ↵ = 0.05 to
reject the null model of no selection. (This empirical p-value was 0.0125 when considering all�
210
3

�
= 1, 521, 520 subsets of 3 among the total 210 SNPs that were non-missing in the Gambia

cohort.) This provides evidence that, relative to other sampled SNPs, the minor allele counts
at these 3 SNPs taken jointly are smaller than expectations under the neutral drift model.
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Figure S1: (Left) Distribution of Pr(g  G | C, M, ˆd) from equation (S4) across all 144 non-excluded

SNPs, with 3 CD SNPs highlighted in red. (Right) Distribution of Pr(g  G | C, M, ˆd) averaged over

3 SNPs, for all
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3-SNP combinations. The average for the 3 CD SNPs is highlighted in red.
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