Anion-Responsive Metallopolymer Hydrogels for Healthcare Applications

Jiuyang Zhang,[†] Jing Yan,[†] Parasmani Pageni,[†]Yi Yan,[†] Adam Wirth,[†] Yun-Ping Chen,[‡] Yali,

Qiao,[†] Qian Wang,[†] Alan W. Decho,[‡] Chuanbing Tang[†]*

[†]Department of Chemistry and Biochemistry, and [‡]Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, USA

Supporting Information

Figure S1. ¹H NMR spectrum of cobaltocenium-containing monomer (CoAEMAPF₆).

Figure S2. ¹³C NMR spectrum of cobaltocenium-containing monomer (CoAEMAPF₆).

Scheme S1. Procedure for the measurement of compositions of cobaltocenium-containing gels (PCoPF6-Gel).

Figure S3. (A) UV-vis absorption of CoAEMAPF₆ in a series of solutions with different dilutions; (B) A standard curve of monomer concentrations from UV-vis absorption for the cobaltocenium-containing monomer (CoAEMAPF₆).

Scheme S2. A procedure for the preparation of a chloride-paired PCoCl-Gel hydrogel from a PCoPF₆-Gel organogel via tetrabutylammonium chloride (TBACl).

Table S1. Water contents of PCoPF6-Gel and PCoCl-Gel.

PCoPF ₆ -Gel	Dry Gel (mg)	Wet Gel (mg)	Water Content%
1	18.7	87.8	78.7
2	26.1	129.0	79.8
3	26.5	148.2	82.1
Average	23.8	121.7	80.4
PCoCl-Gel	Dry Gel (mg)	Wet Gel (mg)	Water Content%
1	12.6	333.0	96.2
2	9.1	321.1	97.2
3	8.5	191.0	95.6
Average	10.1	281.7	96.4

Figure S4. Time-dependent UV-vis absorption spectra using PCoCl-Gel (1.5 mg/mL) as the absorbent for (A) 10 mg/L cefazolin and (B) 10 mg/L cefoxitin.

Figure S5. Time-dependent UV-vis absorption spectra using PCoCl-Gel (2.25 mg/mL) as the absorbent for (A) 2 g/L cefazolin and (B) 2 g/L cefoxitin solutions.

Figure S6. Time-dependent UV-vis absorption spectra using PCoCl-Gel (1.5 mg/mL) as the absorbent for 10 mg/L cefazolin in 3 mL tap water.

Figure S7. SEM images for (A) PCoPF₆-Gel and (B) PCoCl-Gel. Inserts are zoom-in pictures. Scale bars: 20 µm.

Theoretical calculation for the capacity of PCoCl-Gel to absorb antibiotics in water. Based on the composition for PF_6^- anion-paired gel (see the main text), the weight percentage of cobaltocenium moieties (*CoPF6*%) was 67.3%, which indicated 32.7% of the gel was PEO crosslinkers (*PEODMA*%). After fully exchanging PF_6^- anions to Cl^- , the moles for cobaltocenium moieties would not change. The weight percentage of chloride-paired cobaltocenium moieties (*CoCl*%) could be calculated according to Equation S1:

$$CoCl\% = \left(\frac{CoPF6\%}{M_{PF6}} \times M_{Cl}\right) / \left(\frac{CoPF6\%}{M_{PF6}} \times M_{Cl} + PEODMA\%\right)$$
(Equation S1)

 M_{PF6} and M_{Cl} were molecular weights of PF6⁻- and chloride-paired cobaltocenium moieties, which are 488 g/mol and 378 g/mol, respectively. Therefore *CoCl*% would be 61.5%.

Assuming that one cobaltocenium complexes with one antibiotic molecule, the amount of antibiotics taken by 1 mg PCoCl-Gel can be calculated by following Equation S2:

$$m = \frac{1 mg \times CoCl\%}{M_{Cl}} \times M_{Antibiotics}$$
(Equation S2)

 $M_{Antibiotics}$ is the molecular weight of antibiotics. For example, for amoxicillin, the molecular weight is 364 g/mol. Then, **m** would be 0.60 mg, which indicates that the **PCoCl-Gel** can take up to 0.60 mg amoxicillin in aqueous condition.