An active atmospheric methane sink in high Arctic mineral cryosols

Supplementary Information

This supplementary file contains detailed methodology, supplemental figures (Fig. S1-S5) and tables (Table S1-S5), and additional references.

Methods and Materials

Field flux measurements

In situ CH₄ fluxes were measured in July 2011-2013 using a Picarro soil CO₂-CH₄ gas analyzer (Picarro Inc., Santa Clara, CA, USA) or Los Gatos Fast Methane Analyzer (Los Gatos Research Inc., Mountain View, CA) (Allan *et al.*, 2014; Stackhouse *et al.*, 2014 and this study).

Surface fluxes were measured in replicates using open-circuit dark chambers with continuous gas replacement from the air in 2011-2013 or closed-static chamber in 2013. For the open-circuit method, gas was continuously sampled (flow rate = $25 \text{ cm}^3 \text{ min}^{-1}$) and analyzed at approximately 1 hz sample rate for CH₄, CO₂, H₂O, and ¹³CO₂, with alternating analysis periods of atmosphere and standard calibration gas. The flux chamber interior was continuously mixed with a small fan, and sample periods ranged from 45-600 min, with 45 min found to be the time needed to reach steady state concentration. The CH₄ uptake rates were calculated from the difference between initial atmospheric CH₄ concentration and the stabilized CH₄ concentration, with molar volume corrected for

temperature using soil surface temperature and barometric pressure. For the closed-static method, the net loss of CH₄ was calculated by comparing the initial atmospheric CH₄ concentration and the final CH₄ concentration being measured at the end of a 4-minute duration. Subsurface CH₄ concentration was measured directly using gas sipper tubes installed into shallow boreholes at various depths and sealed into place with bentonite clay to prevent atmospheric contamination. Soil temperatures at corresponding depths were measured by LiCOR thermistor (Maxim Integrated Products, San Jose, CA, USA).

Long-term intact core warming experiments

The setup of this warming experiments being described briefly here is paraphrased from a submitted manuscript, (Stackhouse *et al.*, 2014), to provide basic information that is essential for understanding the metagenome and metaproteome analyses performed in this study.

Seventeen 1-m long core samples, collected from a 16x16 m rectangular, icewedge polygon at the study site, were divided into four treatments: saturated (4 cores, mimicking thermokarst-affected terrain), *in situ* (7 cores, *in situ* soil water saturation conditions), dark (2 cores), and a control group (4 cores, remain frozen below 70 cm). Initially, core samples were kept frozen in insulated 55 gallon barrels that were filled with 20% ethanol bath maintained at -3°C by recirculating thermochillers (ThermoCube 200-LT, Solid State Cooling System, USA). The cores were individually wrapped in double layers of plastic trash bag to prevent direct contact with the ethanol bath. The cores then underwent a progressively thawing, that took 13 weeks, to \sim 4°C in a walk-in cold room from top to bottom (except for the control group, which were thawed to 70 cm to keep the permafrost layer frozen), by adjusting the level of the ethanol bath.

Prior to thawing (T=0), small holes were drilled using a sterilized drill bit at 5 cm, 35 cm, 65 cm and ~80 cm (below permafrost table). From one replicate core of each treatment, frozen soil samples (10-15 g) were collected with a sterilized spatula at each depth for molecular analyses. After collection, the hole was plugged with a 1.3-cm diameter butyl-rubber stopper and sealed with waterproof tape. Similarly, cryosol samples were collected after 1-week thawing at each depth (T=0.25 month) from the same replicate cores processed at T=0. At later time points (T=6, 12 and 18 months post thaw), cryosol samples were collected from different replicate cores for each treatment in order to minimize unappreciated effect on the overall porosity of the cores due to soil removal.

During the long-term warming experiment, gas samples from the headspace of all 17 cores were analyzed for O_2 , N_2 , CO_2 , CH_4 , H_2 and CO. Rhizon tubes (2.5 mm diameter, 50 mm length) were installed at 5 cm, 35 cm, 65 cm and ~80 cm near the drill holes from which cryosol samples were collected. Pore water samples were collected using Rhizon tubes and were analyzed for aqueous chemistry. Operation details, results and discussion are presented in (Stackhouse *et al.*, 2014).

Abundance of methanotrophs and methanogens in metagenomic studies

As part of the long-term intact core warming experiments, 4 g of cryosols were collected and processed as described in (Stackhouse *et al.*, 2014). Total DNA was extracted using Fast DNA SPIN Kit (MP Biomedical, Irvine, CA) (Vishnivetskaya *et al.*, 2014). The extracted DNA samples were used to prepare metagenome shotgun libraries using the Illumina Nextera DNA library preparation kit (Illumina, Inc., San Diego, CA, USA), and sequenced (2 x 100 bp) on an Illumina HiSeq 2000 platform (Chauhan *et al.*, 2014). Results of 16 near-surface (at 5 cm depth) cryosoal samples representing different time point (T=1 week, 6 and 12 months) were analyzed.

Raw data was processed through MG-RAST pipeline (Meyer *et al.*, 2008) which first demultiplexed and removed sample identifier and then joined overlapping pair-end reads. Low quality sequences, artificial duplicate sequences were removed as part of the quality control (QC) pipeline. The number of post-QC reads per library averaged 1.7 x 10^7 with an average library size of 4.85 Gbp. All gene features were predicted and annotated by searching against M5NR database and taxonomically classified to species level by "Best Hit Classification" using the default values (Max. e-Value Cutoff=1e⁻⁵, Min. % Identity Cutoff = 60% and Min. Alignment Length Cutoff = 15). The frequency data of these 16 libraries was exported from MG-RAST into STAMP for statistical analyses (Parks & Beiko, 2010). Hit abundance data was normalized to the total sequences passing the QC pipeline. Only the methanotrophic and methanogenic genera (as reviewed by (Nazaries *et al.*, 2013)) with relative abundances > 0.001% were considered. The relative abundance of individual genus was not statistically different at alpha=0.05 (ANOVA in STAMP) and therefore means (and standard deviations) of all 16 samples were reported.

Assembly of pmo gene from metagenomes and their abundances

De novo co-assembly of raw sequences from 10 libraries (five 1-week and five 6months thawed samples at 5 cm depth) were performed using MetaVelvet (Namiki *et al.*, 2012). Functional classifications were annotated separately via IMG/ER and MG-RAST (ID: 4530050.3) using SEED Subsystem and GenBank using the default values (Max. e-Value Cutoff=1e⁻⁵, Min. % Identity Cutoff = 60% and Min. Alignment Length Cutoff = 15). Contigs identified as "methane monooxygenase" were searched for protein-coding genes because they may contain fragments of more than one gene. Phylogenetic affiliation of individual gene was queried against the NCBI non-redundant protein database using BlastX.

Raw reads were mapped to each of contigs, that are comprised of *pmo* genes (encodes for particulate methane monooxygenase), using Bowtie (Langmead *et al.*, 2009) to compute the relative abundance. Mean abundances (and standard deviations) of 16 samples were calculated by dividing the number of matched reads by the total number of mappable reads. Co-assembly of sequences from multiple libraries usually masks the genetic variations within and between populations or libraries, and the resultant contigs likely contain mixed genetic signals from the dominant population. We used prefix panto indicate that the detected genes are not derived from a single clonal population.

De novo assembly is more preferred when compared to reference-based assembly because the latter prevents the discovery of new genotypes variants by setting an *a priori* framework for read alignment. Nonetheless, raw reads of five 1-week thawed samples (5 cm depth) were mapped to the representative *pmoCAB* operon of USC α recovered by bacterial artificial chromosome (BAC) cloning (GenBank Acc. No. CT005232) (Ricke *et al.*, 2005) to demonstrate that a complete *pmoCAB* operon of the USC α genotype was successfully assembled from our data.

Phylogenetic analyses of pmo genes

Phylogenetic trees were constructed from deduced amino acid (aa) sequences for pmoA, pmoB and pmoC genes that encodes for α , β and γ subunit, respectively. All sequences had no frame-shift errors and no curation was applied. Three datasets were created. The pmoA gene dataset contained (1) as sequences of pan-pmoA genes from this study. One of them was too short and thus omitted; (2) as sequences of the best three BlastX matches; (3) as sequences of all pmoA gene copies in published genomes of methanotrophs; (4) as sequences of pmoA genes recovered from environmental studies of permafrost and atm CH₄-oxidizing sites; and (5) as sequences (2) – (5) were downloaded from NCBI (http://www.ncbi.nlm.nih.gov/). For cases where as sequences were not available, nucleotide sequences were downloaded and translated. The dataset for pmoB and pmoC genes were created using the same approach.

For each dataset, sequences were aligned using MAFFT (Katoh *et al.*, 2005) included in freeware JalView package and manually edited using freeware Se-Al. Positions covered by more than half of the sequences were included while unaligned and ambiguous positions were trimmed. Alignments of 161 taxa and 171 aa (*pmo*A genes), 69 taxa and 377 aa (*pmo*B) genes) and 82 and 244 aa (*pmo*C genes) were used for phylogenetic tree construction. ProtTest (v3.3) (Darriba *et al.*, 2011) selected the best-fit amino acid evolutionary model (LG+G and LG+G for *pmo*A and *pmo*B and LG+I+G for *pmo*C gene) (Le & Gascuel, 2008) based on Bayesian Information Criterion. RAxML (v7.2.7 alpha) (Stamatakis, 2006; Stamatakis *et al.*, 2008) was used to search for the best-scoring maximum likelihood (ML) tree with the selected matrix and empirically estimated base frequencies, and to perform a rapid bootstrap analysis of 100 iterations in single run. Tree editing was done using freeware FigTree (v1.3.1).

Assembly of pmo genes from metatranscriptome and their abundances

Cryosols for metatranscriptomic analysis were collected on July 15, 2013 from an ice-wedge polygon, namely polygon interior and trough (79°24'57"N, 90°45'48"W). The samples were preserved using LifeGuardTM Soil Preservation Solution (MO BIO Laboratories Inc., Carlsbad, CA, USA) and stored at -20°C. Total RNA was extracted from 15 g of soil using the RNA PowerSoil Total RNA Isolation Kit (MO BIO Laboratories Inc., Carlsbad, CA, USA). Illumina TruSeq libraries were generated from the total RNA following manufacturer's protocols (Illumina) and sequenced on MiSeq (1 x 150 nt). After filtering and trimming using CLC Genomics Workbench (version 7.0)

(CLC bio, Boston, MA, USA), the number of reads obtained for the polygon interior and trough sample were 18,390,227 and 11,577,752 respectively. Then the post-QC reads were mapped to the USC α *pmoCAB* operon (GenBank Acc. No. CT005232) (Ricke *et al.*, 2005).

The reads were also assembled using CLC Genomics Workbench (built-in assembler velvet) and uploaded to MG-RAST for annotation (ID 4548476.3 and 4548477.3 for the polygon interior and trough sample respectively). Within CLC Genomics Workbench, metatranscriptomic reads were mapped against the metatransriptome (or transcript) contigs to determine read abundances (the number of matched reads divided by the total number of mappable reads). Transcript contigs were blasted against the assembled metagenome contigs from the 5 cm soil samples (ID 4530050.3) to determine the proportion of transcript contigs that are similar to the metagenome contigs. Transcript contigs containing *pmo*B genes were translated and used as template for the alignment of the peptide sequences detected from the proteome experiment (described below).

Identification of pMMO in metaproteome

Cores showing high CH₄ uptake flux in the intact core thawing experiment (Stackhouse *et al.*, 2014) were selected. Cryosols at 5 cm depth from 1-week drained cores were subsampled and kept frozen at -20°C. Three grams of cryosol was mixed with SDS-based lysis buffer and the slurry subjected to 15 min of boiling in a water bath with

intermittent vortexing as described earlier (Chourey *et al.*, 2010). The slurry was briefly cooled and centrifuged at 21,000 g for 15 min and supernatant aliquoted to fresh tubes and amended with chilled 100% TCA to final concentration of 25% followed by an overnight incubation at -20°C. The TCA-precipitated proteins were collected via centrifugation at 21,000 g for 15 min and the resulting protein pellet was washed with chilled acetone (thrice), air dried and solubilized in guanidine buffer [6M Guanidine HCl, 10 mM DTT in Tris CaCl₂ buffer (10 mM Tris, 50 mM CaCl₂, pH 7.8)] as described earlier (Chourey *et al.*, 2010). Total protein extracted from the samples was estimated using the RC/DC protein estimation kit (Bio-Rad Laboratories, Hercules, CA, USA) as per the manufacturer's protocol. The dissolved protein sample was subjected to trypsin proteolysis for 16 h at 37°C as described earlier (Chourey *et al.*, 2010; Brown *et al.*, 2006). The reaction was stopped by adding 10% formic acid to final concentration of 0.1% and kept frozen at -80°C until MS analysis.

An aliquot of digested peptides was pressure loaded onto an in-house packed SCX (Luna)-C18 (Aqua) column. The loaded sample column was subjected to an offline wash with solvent A (5% acetonitrile, 0.1% formic acid in HPLC-grade water) for 5 min followed by a gradient with 100% solvent B (70% acetonitrile, 0.1% formic acid in HPLC-grade water) over 10 min. This step was repeated 3 times for a total offline wash time of 45 min to desalt the column and get rid of any loosely attached contaminants. The sample column was then connected to an in-house C18 packed Picofrit column (New Objective, Woburn, MA) and the setup aligned on a Proxeon nanospray source in front of an LTQ-Orbitrap (Thermo Fisher Scientific Inc., San Jose, CA, USA) coupled to an

Ultimate 3000 HPLC system (DionexTM, Thermo Fisher Scientific, Waltham, MA, USA). Peptides were chromatographically separated and analyzed via 24 h Multi-Dimensional Protein Identification Technology (MuDPIT) approach as described earlier (Thompson *et al.*, 2006; Sharma *et al.*, 2012) and the tandem mass spectra (MS/MS scans) were acquired in a data dependent mode using Xcalibur software, V2.1.0 at settings described previously (VerBerkmoes *et al.*, 2009). The raw spectra acquired by 12-step MS/MS runs were searched via SEQUEST v.27 (Eng *et al.*, 1994) against an artificially constructed pMMO database using parameters described elsewhere (Thompson *et al.*, 2006; Sharma *et al.*, 2012). The output files were sorted and filtered using DTASelect v. 1.9 (Tabb *et al.*, 2002) with Xcorr values of at least 1.8 (+1), 2.5 (+2), 3.5 (+3). Identification of at least two peptides per protein sequence was set as criteria for positive protein identifications. Three technical replicates were analyzed for each protein sample.

pMMO database included amino acid sequences translated from (1) *pmo* contigs co-assembled from DNA sequences of the 10 metagenomic libraries stated above; (2) *pmo* contigs assembled from subsets of raw metagenome reads annotated as "methane monoxygenase" by MG-RAST and JGI/IMG; (3) *pmo* contigs generated by mapping to the USCα *pmoCAB* operon (GenBank Acc. No. CT005232) (Ricke *et al.*, 2005); and (4) *pmo* genes of methane monoxygenases obtained from GenBank. Sequences of common contaminants such as trypsin and keratin were also concatenated to the database.

Microcosm incubation experiments

Two sets of microcosms were set up to study the effect of water saturation and temperature on atm CH₄ oxidation rates. Prior to the experiment, 160 mL serum vials were soaked in 10% HNO₃ overnight to remove trace metals, rinsed using distilled water and combusted at 450°C for 8 h. New butyl rubber stoppers were boiled in 0.1 N NaOH for 45 min, soaked in distilled water for 8 hours and autoclaved.

A frozen core collected in April 2011 (Stackhouse *et al.*, 2014) was dissected into sections for every 10 cm. The peripheral rim of 5-cm thick was discarded to remove any potential contaminants from the core liner. The pristine cryosols were put into sterile Whirl-pak bags and homogenized by hand. The 0-10 cm section was used in this experiment. The original water content of the sample was determined to be 30.4±2.0 wt% by drying three subsamples of 5 g at 50°C for four days. The cryosols were visibly fully saturated, thus 10 wt%, 20 wt% and 30 wt% were regarded as equivalent to water saturation levels of 33%, 66% and 100% respectively. Cryosols were preconditioned to attain the desired water saturation by storing subsamples in a desiccator at 4°C. Eight to ten grams (wet weight) of cryosol were put into vials and sealed with treated butyl rubber stoppers and Al-crimps. Blank vials containing no soils were used to track abiotic gas exchanges and minor instrumental drift.

Manufactured air (Airgas USA LLC, PA, USA) was used to flush the headspace for 2-4 min. The gas composition of the manufactured air was analyzed by Peak Performer 1 gas chromatography systems (Peak Laboratories LLC, CA, USA), which are equipped with a thermal conductivity detector (for O₂ and N₂), a reduced compound detector (for H₂ and CO) and a flame-ionization detector (for CO₂ and CH₄). Argon (ARUHP300, Airgas USA LLC, PA, USA) was used as carrier gas at a pressure of 82 psi. Calibration curves for O₂ and N₂ were generated from dilutions of fresh outdoor air in Argon. Standard gas (Scotty® Analyzed Gases, Air Liquide America Specialty Gases LLC, PA, USA) containing 1% atm of CO, CO₂, H₂, CH₄ and C₂H₄ was diluted in Argon to make gas mixtures of 0.5, 1, 2.5, 5, 7.5 and 10 ppm for all gases and 50, 100, 500 and 1000 ppm for all gases except H₂ and CO. Three measurements were made for each dilution. All calibration curves have high correlation coefficient ($R^2 > 0.99$).

Additional manufactured air was injected with a gas-tight glass syringe to overpressurize the vials to 1.5 atm. All treatments were run in triplicates. One set of 12 vials was incubated at 4°C while another set was incubated at 10°C. Gas was sampled from the headspace at T=0, twice for the first 2 weeks and weekly for another 2 weeks (period of incubation = 31 days). Headspace volume was maintained by replacement of respective gas. Analysis was performed on Picarro iCO2 (Model # G2101-I) using the G2101-i coordinator (Picarro Inc., Santa Clara, CA, USA). Instrumental sample dilution was accounted for by multiplying a factor of 1.302 and the values were then corrected for dilution due to replacement.

The conversion between moles and ppm followed the ideal gas law:

$$10^{-6}mol = ppmv \times \frac{V}{RT} \qquad \text{where } V \text{ is volume in L; } R \text{ is gas constant,} \\ 0.0821 \text{ Latm } \text{K}^{-1} \text{mol}^{-1} \text{; } T \text{ is temperature in K} \qquad \text{Eq. 1}$$

Atm CH₄ oxidation follows first-order kinetics and hence rate constants, k, were calculated and used to estimate the oxidation rates at standardized CH₄ concentration of 1.813 ppmv and expressed in nmol (g of soil)⁻¹ day⁻¹.

Atm CH₄ oxidation rates obtained from microcosms experiments were scaled up to CH₄ fluxes to compare with the *in situ* flux measurements at the field. The following formula was used:

$$F = \frac{r \times FW}{d \times D}$$
 where F is CH₄ flux in mg C m⁻²day⁻¹; r is CH₄ oxidation rate in
nmol g⁻¹day⁻¹; FW is formula weight of carbon, 12 g; d is density;
D is depth in m

The density of 1.8×10^6 g m⁻³ (Stackhouse *et al.*, 2014) was used and the assumption of methanotrophic activity within the first 5 cm of active layer was taken. This may underestimate the flux values because field flux measurements indicated that atm CH₄ oxidation at AHI occurred down to 45 cm depth.

Temperature coefficients (Q $_{10}$ *)*

 Q_{10} is used to measure the rate of change of a chemical or biological reaction as a consequent of temperate increase of 10°C. It is a factor calculated from the following equation:

$$Q_{10} = \left(\frac{R_2}{R_1}\right)^{\left(\frac{10}{T_2 - T_1}\right)} \qquad \text{where } R_2 \text{ and } R_1 \text{ are rates, in the same unit, measured} \\ \text{respectively at } T_2 \text{ and } T_1, \text{ in the same unit; for } T_2 > T_1 \qquad \text{Eq. 3}$$

 Q_{10} values were computed for methanotrophy using (1) mean CH₄ oxidation rates obtained from microcosms for each treatment and corresponding incubation temperatures; and (2) mean CH₄ oxidation rates reported in the literature for which temperature data was available. The criterion that the temperature difference between T_2 and T_1 being larger than 5°C was applied.

Arrhenius relationship between in situ CH₄ uptake flux and surface soil temperature

Since we are cautious about quantitatively extrapolating the observed effects of temperature and water saturation under laboratory conditions to the real situation and model prediction, only CH₄ fluxes and the corresponding surface soil temperatures measured during 2011-2013 expeditions were used to determine the Arrhenius relationship. Fluxes measured by open-circuit chambers were used to determine the relationship whereas those measured by closed-static chambers were excluded to eliminate the variation resulted from different collection methods (Whalen et al., 1992). Natural logarithm of CH_4 uptake fluxes (v-axis) was plotted against 1000/temperature (xaxis) to create an Arrhenius plot, which showed a potential change in the slope. The data "Segmented" R then analyzed was using the package (cran.rproject.org/web/packages/segmented/). Davies' test was used to determine whether the change in the slope was statistically significant. Given the result suggested a breakpoint occurred at 3.588 (equivalent to 5.6°C; p = 0.006), function segmented() was used to estimate the breakpoint and the slopes (Results in Fig. S7).

Linear regression equations were fitted to data points below and above 5.6°C.

where *F* is CH₄ flux in mg C m⁻²day⁻¹; E_a is activation energy in kJ mol⁻¹; *R* is gas constant, 8.314 J K⁻¹mol⁻¹; *T* is temperature, in K; density; *A* is pre-exponential factor

 $LN(F) = \frac{-E_a}{R} (\frac{1000}{T}) + LN(A)$

Eq. 4

 Q_{10} and active energy (E_a) of atm CH₄ oxidation were derived from Eq. 3 and Eq. 4 respectively. 95% confidence intervals were calculated for each slope.

For comparative purpose, other data were overlain on the plot (Fig. 4), which include: (1) CH₄ fluxes estimated from our microcosm experiments at 2.0 ppmv of CH₄; (2) CH₄ fluxes estimated from intact core thawing experiments (Stackhouse *et al.*, 2014); and (3) atm CH₄ oxidation sites at lower latitudes.

Estimation of monthly and annual atm CH₄ uptake fluxes

Monthly air temperatures at AHI during 1990s and 2090s were simulated through the Climate Model Intercomparison Project (CMIP5) using 8 climate models (BCC-CSM1.1, CCSM4, CSIRO-Mk3.6.0, GFDL-ESM2M, GISS-E2-R, HadGEM2-AO, IPSL-CM5A-MR and NorESM1-M) (Taylor *et al.*, 2012). The 'high emissions scenario' assuming mitigation policies in action (RCP8.5) was used to project the climate change in 2090s. Monthly and annual atm CH₄ uptake were estimated for temperatures from each model with the following assumptions:

a) Atm CH₄ uptake occurs at ground temperatures above 0°C. Field measurements taken during initial thaw in 2013 when soil surface temperature slowly warmed from -2°C to 10°C, CH₄ uptake increased from undetectable to -0.24 mg CH₄-C m⁻² day⁻¹). First detectable consumptive flux corresponded roughly to the time when soil surface temperature was consistently above freezing.

 b) Atm CH₄ uptake fluxes increase with temperature following an Arrhenius relationship (Eq. 4) and at a faster rate below 5.6°C than that above 5.6°C.

The sum of monthly uptake fluxes multiplied by the number of days in the month equaled the mean annual uptake flux. Upper and lower 95% confidence intervals were regarded as maximum and minimum annual uptake fluxes. Multi-model means were obtained by taking average across all models.

Air temperatures at Eureka, Ellesmere Island, Nunavut, Canada (N80°00'03", W86°00'25"; 112 km NE of AHI) were available for 2010 and 2011 through Total Carbon Column Observing Network (TCCON) (Wunch *et al.*, 2011). Temperature data (T) from late March to August 2011 was used. Missing data was gap-filled by linear interpolation between the two neighboring values. The data of 2010 tracked nicely that of 2011, thus the average temperature in Sept 2010 was used to substitute the missing data of Sept 2011. Mean daily temperatures were calculated by averaging multiple measurements on the day, which were then averaged to give monthly temperatures. The monthly and annual uptake fluxes were estimated as aforementioned. Eureka is located at higher latitude where the temperature is slightly cooler than that at AHI. CH₄ uptake fluxes therefore were also calculated for T+1°C and T+6°C which, respectively, are more representative for our study site and also to mimic severe summer warming which was not projected by climate models.

Legends to supplementary figures and tables

Fig. S1. Phylogenetic tree of *pmo*A genes constructed from deduced amino acid sequences (161 taxa and 171 aa). Highlighted is the pan-*pmo*A gene recovered in this study. Sequences of ammonia-oxidizing monoxygenase (*amo*A) were used as the outgroup. Clusters of atmospheric CH₄ oxidizers are annotated in reference to Kolb (2009) (Kolb, 2009). Bootstrap values greater than 50% are shown as branch label. The scale bar represents a substitution rate of 0.2 changes per position.

Fig. S2. Phylogenetic tree of *pmo*B genes constructed from deduced amino acid sequences (69 taxa and 377 aa). Highlighted are the pan-*pmo*B genes recovered in this study. Sequences of ammonia-oxidizing monoxygenase (*amo*B) were used as the outgroup. Bootstrap values greater than 50% are shown as branch label. The scale bar represents a substitution rate of 0.2 changes per position.

Fig. S3. Phylogenetic tree of *pmoC* genes constructed from deduced amino acid sequences (82 taxa and 244 aa). Highlighted are the pan-*pmo*C genes recovered in this study. Sequences of ammonia-oxidizing monoxygenase (*amo*C) were used as the outgroup. Bootstrap values greater than 50% are shown as branch label. The scale bar represents a substitution rate of 0.2 changes per position.

Fig. S4. Alignment of translated amino acids of *pmo*B contigs from metagenomic and metatranscriptomic libraries. Histidine residues (H33, H137 and H139) that coordinate the di-copper center (aka the active site of pMMO) are highlighted in blue. GenBank

sequences YP_115247 and CAJ01562 encode for pmoB of MOB *Methylococcus capsulatus* str. Bath and atmMOB USC α .

Fig. S5. Predicted monthly air temperatures at Axel Heiberg Island, Canada. Monthly air temperatures at AHI during 1990s and 2090s were simulated through the Climate Model Intercomparison Project (CMIP5). T: Gap-filled monthly air temperatures in 2011 at Eureka, Ellesmere Island, Nunavut, Canada downloaded from Total Carbon Column Observing Network (TCCON).

Table S1. CH₄ field fluxes in the Northern Circumpolar permafrost region.

Table S2. Methanotrophic (A) and methanogenic (B) taxa identified in near-surface cryosols (at 5 cm depth) in the intact core warming experiments.

Table S3. Genes of methane monooxygenases and homologous enzymes identified in (a) metagenome data from near-surface cryosols (at 5 cm depth) in the intact core warming experiments and (b) metatranscriptome data from the polygon trough sample (collected on July 15, 2013).

Table S4. Aerobic methanotrophs detected in Arctic permafrost-affected region.

Table S5. Methanotrophic proteins identified in near-surface cryosols (at 5 cm depth) in

 the intact core warming experiments.

References:

Adachi M, Ohtsuka T, Nakatsubo T, Koizumi H. (2006). The methane flux along topographical gradients on a glacier foreland in the High Arctic, Ny-Ålesund, Svalbard. *Polar Biosci* **20**:131–139.

Allan J, Ronholm J, Mykytczuk NCS, Greer CW, Onstott TC, Whyte LG. (2014). Methanogen community composition and rates of methane production in Canadian high Arctic permafrost soils. *Environ Microbiol Rep* **6**:136–144.

Bäckstrand K, Crill PM, Jackowicz-Korczyński M, Mastepanov M, Christensen TR, Bastviken D. (2010). Annual carbon gas budget for a subarctic peatland, Northern Sweden. *Biogeosciences* 7:95–108.

Barbier BA, Dziduch I, Liebner S, Ganzert L, Lantuit H, Pollard W, *et al.* (2012). Methane-cycling communities in a permafrost-affected soil on Herschel Island, Western Canadian Arctic: active layer profiling of mcrA and pmoA genes. *FEMS Microb Ecol* **82**:287–302.

Bockheim JG. (2007). Importance of cryoturbation in redistributing organic carbon in permafrost-affected soils. *Soil Sci Soc Am J* **71**:1335–1342.

Brown SD, Thompson MR, Verberkmoes NC, Chourey K, Shah M, Zhou JZ, *et al.* (2006). Molecular dynamics of the Shewanella oneidensis response to chromate stress. *Mol Cell Proteomics* **5**:1054–1071.

Brummell ME, Farrell RE, Hardy SP, Siciliano SD. (2014). Greenhouse gas production and consumption in High Arctic deserts. *Soil Biol Biochem* **68**:158–165.

Brummell ME, Farrell RE, Siciliano SD. (2012). Greenhouse gas soil production and surface fluxes at a high arctic polar oasis. *Soil Biol Biochem* **52**:1–12.

Chauhan A, Layton AC, Vishnivetskaya TA, Williams D, Pfiffner SM, Rekepalli B, *et al.* (2014). Metagenomes from thawing low-soil-organic-carbon mineral cryosols and permafrost of the Canadian high Arctic. *Genome Announc* **2**:e01217–14.

Chourey K, Jansson JK, VerBerkmoes N, Shah M, Chavarria KL, Tom LM, *et al.* (2010). Direct cellular lysis/protein extraction protocol for soil metaproteomics. *J Proteome Res* **9**:6615–6622.

Christensen TR, Friborg T, Sommerkorn M, Kaplan J, Illeris L, Soegaard H, *et al.* (2000). Trace gas exchange in a high-arctic valley 1. Variations in CO_2 and CH_4 flux between tundra vegetation types. *Glob Biogeochemcial Cycles* **14**:701–713.

Christiansen CT, Svendsen SH, Schmidt NM, Michelsen A. (2012). High arctic heath soil respiration and biogeochemical dynamics during summer and autumn freeze-in - effects of long-term enhanced water and nutrient supply. *Glob Chang Biol* **18**:3224–3236.

Darriba D, Taboada GL, Doallo R, Posada D. (2011). ProtTest 3: fast selection of best-fit models of protein evolution. *Bioinformatics* **27**:1164–1165.

Elberling B, Jakobsen BH, Berg P, Søndergaard J, Sigsgaard C. (2004). Influence of vegetation, temperature, and water content on soil carbon distribution and mineralization in four high Arctic soils. *Arctic* **36**:528–538.

Emmerton CA, St. Louis VL, Lehnherr I, Humphreys ER, Rydz E, Kosolofski HR. (2014). The net exchange of methane with high Arctic landscapes during the summer growing season. *Biogeosciences Discuss* **11**:1673–1706.

Eng JK, McCormack AL, Yates JRI. (1994). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. *J Am Soc MassSpectrometry* **5**:976–989.

Graef C, Hestnes AG, Svenning MM, Frenzel P. (2011). The active methanotrophic community in a wetland from the High Arctic. *Environ Microbiol Rep* **3**:466–472.

Johansen KML, Berg LK, Feld T. (2011). Methane fluxes measured at Flakkerhuk, Disko Island (West Greenland) at different vegetation specific sites. In: *Methane dynamics in a permafrost landscape at Disko Island, West Greenland (Field Course in Physical Geography 2011)*, Hansen, BU & Elberling, B (eds), Faculty of Science, University of Copenhagen, pp. 43–55.

Kaliuzhnaia MG, Makutina VA, Rusakova TG, Nikitin D V, Khmelenina VN, Dmitriev V V, *et al.* (2002). Methanotrophic communities in the soils of Russian northern taiga and subarctic tundra. *Mikrobiologiya* **71**:264–271.

Katoh K, Kuma K, Toh H, Miyata T. (2005). MAFFT version 5: Improvement in accuracy of multiple sequence alignment. *Nucleic Acids Res* **33**:511–518.

Kolb S. (2009). The quest for atmospheric methane oxidizers in forest soils. *Environ Microbiol Rep* **1**:336–346.

Kutzbach L, Wagner D, Pfeiffer E. (2004). Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia. *Biogeochemistry* **69**:341–362.

Langmead B, Trapnell C, Pop M, Salzberg SL. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome Biol* **10**:R25.

Le SQ, Gascuel O. (2008). An improved general amino acid replacement matrix. *Mol Biol Evol* **25**:1307–1320.

Liebner S, Rublack K, Stuehrmann T, Wagner D. (2009). Diversity of aerobic methanotrophic bacteria in a permafrost active layer soil of the Lena Delta, Siberia. *Microb Ecol* **57**:25–35.

Liebner S, Svenning MM. (2013). Environmental transcription of mmoX by methaneoxidizing Proteobacteria in a sub-Arctic palsa peatland. *Appl Environ Microbiol* **79**:701– 706.

Liebner S, Wagner D. (2007). Abundance, distribution and potential activity of methane oxidizing bacteria in permafrost soils from the Lena Delta, Siberia. *Environ Microbiol* **9**:107–117.

Liebner S, Zeyer J, Wagner D, Schubert C, Pfeiffer E-M, Knoblauch C. (2011). Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra. *J Ecol* **99**:914–922.

Lupascu M, Wadham JL, Hornibrook ERC, Pancost RD. (2012). Temperature sensitivity of methane production in the permafrost active layer at Stordalen, Sweden: a comparison with non-permafrost Northern Wetlands. *Arctic, Antarct Alp Res* **44**:469–482.

Mackelprang R, P.Waldrop M, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, *et al.* (2011). Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. *Nature* **480**:368–371.

Martineau C, Pan Y, Bodrossy L, Yergeau E, Whyte LG, Greer CW. (2014). Atmospheric methane oxidizers are present and active in Canadian high Arctic soils. *FEMS Microbiol Ecol* **89**: 257–269.

Martineau C, Whyte LG, Greer CW. (2010). Stable isotope probing analysis of the diversity and activity of methanotrophic bacteria in soils from the Canadian high Arctic. *Appl Environ Microbiol* **76**:5773–5784.

Mastepanov M, Sigsgaard C, Dlugokencky EJ, Houweling S, Ström L, Tamstorf MP, *et al.* (2008). Large tundra methane burst during onset of freezing. *Nature* **456**:628–631.

Meyer F, Paarmann D, M DS, Olson R, Glass EM, Kubal M. (2008). The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. *BMC Bioinformatics* **9**:386.

Namiki T, Hachiya T, Tanaka H, Sakakibara Y. (2012). MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. *Nucleic Acids Res* **40**:e155.

Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK. (2013). Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. *Environ Microbiol* **15**:2395–2417.

Pacheco-Oliver M, McDonald IR, Groleau D, Murrell JC, Miguez CB. (2002). Detection of methanotrophs with highly divergent pmoA genes from Arctic soils. *FEMS Microbiol Lett* **209**:313–319.

Parks DH, Beiko RG. (2010). Identifying biologically relevant differences between metagenomic communities. *Bioinformatics* **26**:715–721.

Pickett-Heaps CA, Jacob DJ, Wecht KJ, Kort EA, Wofsy SC, Diskin GS, *et al.* (2011). Magnitude and seasonality of wetland methane emissions from the Hudson Bay Lowlands (Canada). *Atmos Chem Phys* **11**:3773–3779.

Ricke P, Kube M, Nakagawa S, Erkel C, Reinhardt R, Liesack W. (2005). First genome data from uncultured Upland Soil Cluster alpha methanotrophs provide further evidence for a close phylogenetic relationship to *Methylocapsa acidiphila* B2 and for high-affinity methanotrophy involving particulate methane monooxygenase. *Appl Environ Microbiol* **71**:7472–7482.

Sachs T, Wille C, Boike J, Kutzbach L. (2008). Environmental controls on ecosystemscale CH4 emission from polygonal tundra in the Lena River Delta, Siberia. *J Geophys Res* **113**:G00A03.

Sharma R, Dill BD, Chourey K, Shah M, VerBerkmoes NC, Hettich RL. (2012). Coupling a detergent lysis/cleanup methodology with intact protein fractionation for enhanced proteome characterization. *J Proteome Res* **11**:6008–6018.

Stackhouse B, Vishnivetskaya T, Layton A, Pfiffner S, Mykytczuk N, Whyte LG, *et al.* (2014). Simulated spring thaw of permafrost from mineral cryosol reveals increases in CO_2 emissions and atmospheric CH_4 sink. *J Geophys Res: Biogeo* submitted.

Stamatakis A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* **22**:2688–2690.

Stamatakis A, Hoover P, Rougemont J. (2008). A rapid bootstrap algorithm for the RAxML web servers. *Syst Biol* **57**:758–771.

Ström L, Tagesson T, Mastepanov M, Christensen TR. (2012). Presence of Eriophorum scheuchzeri enhances substrate availability and methane emission in an Arctic wetland. *Soil Biol Biochem* **45**:61–70.

Sturtevant CS, Oechel WC. (2013). Spatial variation in landscape-level CO2 and CH4 fluxes from arctic coastal tundra: influence from vegetation, wetness, and the thaw lake cycle. *Glob Chang Biol* **19**:2853–2866.

Sturtevant CS, Oechel WC, Zona D, Kim Y, Emerson CE. (2012). Soil moisture control over autumn season methane flux, Arctic Coastal Plain of Alaska. *Biogeosciences* **9**:1423–1440.

Tabb DL, McDonald WH, Yates JRI. (2002). DTASelect and contrast: Tools for assembling and comparing protein identifications from shotgun proteomics. *J Proteome Res* **1**:21–26.

Tagesson T, Mölder M, Mastepanov M, Sigsgaard C, Tamstorf MP, Lund M, *et al.* (2012). Land-atmosphere exchange of methane from soil thawing to soil freezing in a high-Arctic wet tundra ecosystem. *Glob Chang Biol* **18**:1928–1940.

Taylor KE, Stouffer RJ, Meehl GA. (2012). An overview of CMIP5 and the experiment design. *Bull Am Meteorol Soc* **93**:485–498.

Thompson MR, VerBerkmoes NC, Chourey K, Shah M. (2006). Dosage-dependent proteome response of Shewanella oneidensis MR-1 to acute chromate challenge. *J Proteome Res* 6:1745–1757.

Tveit A, Schwacke R, Svenning MM, Urich T. (2012). Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. *ISME J* **7**:1–13.

VerBerkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson J, *et al.* (2009). Shotgun metaproteomics of the human distal gut microbiota. *ISME J* **3**:179–189.

Vishnivetskaya T, Layton A, Lau M, Chauhan A, Meyers A, Murphy J, *et al.* (2014). Commercial DNA extraction kits impact observed microbial community composition in permafrost samples. *FEMS Microb Ecol* **87**:217–230.

Wagner D, Lipski A, Embacher A, Gattinger A. (2005). Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality. *Environ Microbiol* 7:1582–1592.

Wartiainen I, Hestnes AG, Svenning MM. (2003). Methanotrophic diversity in high arctic wetlands on the islands of Svalbard (Norway) — denaturing gradient gel

electrophoresis analysis of soil DNA and enrichment cultures. *Can J Microbiol* **612**:602–612.

Whalen SC, Reeburgh WS. (1990). Consumption of atmospheric methane by tundra soils. *Nature* **346**:160–162.

Whalen SC, Reeburgh WS, Barber VA. (1992). Oxidation of methane in boreal forest soils: a comparison of seven measures. *Biogeochemistry* **16**:181–211.

Wilhelm RC, Niederberger TD, Greer C, Whyte LG. (2011). Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. *Can J Microbiol* **57**:303–315.

Wunch D, Toon GC, Blavier J-FL, Washenfelder RA, Notholt J, Connor BJ, *et al.* (2011). The Total Carbon Column Observing Network. *Phil Trans R Soc A* **369**:doi:10.1098/rsta.2010.0240.

Yergeau E, Hogues H, Whyte LG, Greer CW. (2010). The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. *ISME J* **4**:1206–1214.

Upland Soil Cluster alpha (USCa) and Cluster 5 (CL5)

Methylacidiphilum fumariolicum SolV [CCG92189]

L Methylacidiphilum infernorum V4 [YP_001940242]

Uncultured bacterium AC-A2 [CAI30616]

Cluster 4 (CL4)

----- Nocardioidaceae bacterium Broad-1 [WP_008359136]

Nocardioidaceae bacterium Broad-1 [WP_008359134]

100 Methylacidiphilum infernorum V4 [ABX56605] Methylacidiphilum infernorum V4 [YP_001940158] 99 Methylacidiphilum fumariolicum SolV [CCG92749] Methylacidiphilum fumariolicum [WP_009060833] L Methylacidiphilum kamchatkense Kam1 [AFC75742] Methylacidiphilum infernorum V4 [YP_001940161] 100 Methylacidiphilum fumariolicum SolV [CCG92188] Methylacidiphilum fumariolicum [WP_009059717] Methylacidiphilum kamchatkense Kam1 [AFC75748] - Methylacidiphilum infernorum V4 [YP_001940241]

Upland Soil Cluster alpha (USCa)

Fig. S3. Phylogenetic tree of pmoC genes constructed from deduced amino acid sequences (82 taxa and 244 aa). Highlighted are the pan-pmoC genes recovered in this study. Sequences of ammonia-oxidizing monoxygenase (amoC) were used as the out-group. Bootstrap values greater than 50% are shown as branch label. The scale bar represents a substitution rate of 0.2 changes per position.

contig19544 USCa-like	
	Cluster alpha (L
USCa-like	Justel alpha (C
a acidiphila [CAJ01616]	
SC2 pmoC2 [YP_006590304]	
tis sp. SC2 [YP_006593635]	
tis sp. SC2 [YP_006592928]	
tis sp. SC2 [YP_006590954]	
stis sp. SC2 [CAE47799]	
100 Methylosinus trichosporium [WP_003612568]	
Methylosinus trichosporium OB3b [EFH02634]	
 Methylocystis sp. SC2 [CCD32212] 	
trichosporium OB3b [EFH00841]	
trichosporium [WP_003616009]	
GSC357 [ABD57884]	
Methylocystis sp. SC2 [YP_006590829]	
3759908]	
P_344486]	
42]	
100 Methylomicrobium japanense [BAE86884]	
Methylomicrobium alcaliphilum 20Z [YP_004915811]	
Methylomicrobium album [WP_005374468]	
59 Methylovulum miyakonense HT12 [BAJ17640]	
10q Methylobacter tundripaludum [WP_006891796]	
Methylobacter tundripaludum SV96 [ZP_08781392]	
53 Methylococcaceae bacterium SF-BR [BAH22844]	
Methylomonas methanica MC09 [YP_004511252]	
L Methylomarinum vadi [BAH22841]	
(P_115249]	
′P_114236]	
AB49820]	
Bath [AAD43965]	
Bath [YP_112829]	
128855]	
erium [BAL55376]	
terium [BAL55374]	
/ [CCG92751]	
2_009060837]	
/ [ABU88151]	
am1 [AFC75740]	
YP_001940163]	
n infernorum V4 [YP_001940152]	
infernorum V4 [ABX56606]	
fernorum V4 [YP_001940160]	
hatkense Kam1 [AFC75743]	
	9 Methylacidiphilum fumariolicum SolV [CCG92
	⁷⁸ Methylacidiphilum fumariolicum [WP_009059
100	L Methylacidiphilum kamchatkense Kam1 [AFC]
	Methylacidiphilum infernorum V4 [YP_00194
lomirabilis oxyfera [YP_003207216]	
lomirabilis oxyfera [YP_003207325]	
100	Mycobacterium chubuense NBB
	Mycobacte

2190] 9720] C75746] 40243]

B4 [YP_006442845] erium rhodesiae NBB3 [YP_005000795] d-1 [WP_008359138]

Fig. S4 Alignment of translated amino acids of *pmo*B contigs from metagenomic and metatranscriptomic libraries. Histidine residues (H33, H137 and H139) that coordinates the di-copper center (aka the active site of pMMO) are highlighted in blue. GenBank sequences YP_115247 and CAJ01562 encode for pmoB of MOB *Methylococcus capsulatus* str. Bath and atmMOB USCα.

	1 H33
YP_115247	MKTIKDRIAKWSAIGLLSAVAATAFYAPSASAHGEKSQAAFMRMRTIHWYDLSWSKEKVKINETVEIKGKFHVFEGWPETVDEPDVAFLNV
CAJ01562	$\tt MTTTMFSSLARQTGRLWALVLAAALAVTMAAIGPADAHGEKSQAAFLRMRTLNWYDVVWSKTNVAVNEEYEITGKLHIMNSWPAAIKVPDQCFLNTGQP$
Transcript Contig_7963	${\tt MTTTMFSSLARQAGRLWLLVLAAGLALTMAAIGPADA}{\tt HGEKSQAAFLRMRTLNWYDVKWSKTNVTVNEEYEITGKLHIMNAWPAAVRIPERCFLNT{\tt}$
Transcript Contig 7223	
Metagenome Contig60426	VRIPERCFLNTGQP
Metagenome Contig78492	IEVPAQCFLNTGQP
Transcript Contig_7286	
Genomic Contig20276	
	100 H137, H139
YP_115247	-GMPGPVFIRKESYIGGQLVPRSVRLEIGKTYDFRVVLKARRPGDWHVHTMMNVQGGGPIIGPGKWITVEGSMSEFRNPVTTLTGQTVDLENYNEGNTY
CAJ01562	${\tt GAMAARL} GV {\tt WVGAPGQMQFTPRSMRLDVGKTYAFRILLKGRRPGH {\tt WHTH} VQLSV {\tt MTGGPIPGPGQYIDIKGNFSDFVDDVKLLNGTTVDIETYGIGKIY}$
Transcript Contig_7963	
Transcript Contig_7223	QFTPRSMELKVGDTYEFRVLLRARRPGHWHTHVQLSVETGGPIPGPGQYIDIKGNYNDFTDPVKLLNGTTVDIESYQLGRIY
Metagenome Contig60426	GAIANRIGVWVGGQFTPRSMELKVGDTYEFRVLLRARRPGHWHTHVQLSVETGGPIPGPGQYIDIKGNYNDFTDPVKLLNGTTVDIESYQLGRIY
Metagenome Contig78492	GAMAARLGVWVGGTFTPRSMKLELGKTYAFRVLLKARRPGHWHTHVQLSVKTGGPIPGPGQYIDIKGNFSDYTDEVKLLNGSTVDIETYGQGKIY
Transcript Contig_7286	
_Metagenome Contig20276	
	201
YP_115247	${\tt FW} {\tt AFW} {\tt FAIGVAWIGYW} {\tt SRRPIFIPRLLMVD} {\tt AGRADELV-SATDRKV} {\tt AMGFLAATILIVV} {\tt MAMSSANSKYPITIPLQ} {\tt AGTMRG} {\tt MKPLELPAPTV} {\tt SVK} {\tt AGAT} {\tt AGA$
CAJ01562	MWHLFWIVVGGWWILYWFGKRGFIGRFAWVASGKAEEVI-TPQERVVGAITLLAVLLVVIIFYAITVSGNPNTIPLQAGDFRNITALENEVDSGPITIK
Transcript Contig_7963	
_Transcript Contig_7223	GWHLLWYIAGAAWIVYWFSKRGLVGRF
Metagenome Contig60426	${\tt GWHLLWYIAGVAWIVYWFSKRGLVGRFMAVASGQAEDLIITPQERIVGAISLAAVLGTVIIFYGMTAASYPNTIPLQAGDFHNIQPLAGEVDSGPLKIK$
Metagenome Contig78492	MWHLLWIIAGGAWILYWFGKRGFIGRFAWVASGKAE—LITPQERMVGAFTLLAVLLVVIIFYAITVR
Transcript Contig_7286	
Metagenome Contig20276	
	301
YP_115247	${\tt VEDATYRVPGRAMRMKLTITNHGNSPIRLGEFYTASVRFLDSDVYKDTTGYPEDLLAEDGLSVSDNSPLAPGETRTVDVTASDAAWEVYRLSDIIYDPD$
CAJ01562	$\tt YLNGTYKVPGRELVANFKITNNGKEPLRIGEFNTAGLRFLNPDVYTAKVVYPDYLLAERGLSLNDNSPIAPGETRDVAVTVQDARWDTERLSGLAYDVD$
Transcript Contig_7963	
Transcript Contig_7223	
Metagenome Contig60426	YLGGTYKE
Metagenome Gontig78492	
Transcript Contig_7286	FRITNEGKEAVRIGELNTAGLRFLNPDVYTTKVDYPDYLLADRGLTLSDNAPIQPGETKDVAVTVQDARWDTERLSGLAYDVD
_Metagenome Contig20276	RELVANFRITNEGKEAVRIGELNTAGLRFLNPDVYTTKVDYPDYLLADRGLTLSDNTPIQPGETKDVAVTVQDARWDTERLSGLAYDVD
	401
YP_115247	SRFAGLLFFFDATGNRQVVQIDAPLIPSFM
CAJ01562	SSFAGVLFFFSPSGARYPMEVGGPVIPTFMPV
Transcript Contig_7963	
Transcript Contig_7223	
Metagenome Contig60426	
Metagenome Contig78492	
■ Transcript Contig_7286	SSFAGVLFFYTSSGTRYPMEVGGAVIPTFLP-
Metagenome Contig20276	SSFAGVLFFYTSSGTRYPMEVGGAVIPTFLPV

Fig. S5. Predicted monthly air temperatures at Axel Heiberg Island, Canada. Monthly air temperatures at AHI during 1990s and 2090s were simulated through the Climate Model Intercomparison Project (CMIP5). T: Monthly air temperatures in 2011 at Eureka, Ellesmere Island, Nunavut, Canada downloaded from Total Carbon Column Observing Network (TCCON)

Table S1. CH, field fluxes in the Northern Circumpolar permafrost region.
our

	ce											
	Site	Latitude			Vegetation	pH	Soil moisture (wt%)	Bulk Soil C (wt%)	Field season	Soil temp. (°C) ¹	CH4 flux (mg CH4-C m ⁻² day ⁴)	Reference
1	Quttinirpaaq National Park, Ellesmere Island, Canada	82°47'60" N		Meadow wetland	Sedge/grass, moss meadow	NA	58.2±1.3 to 80.6±0.6	NA	2011 - 2012 late Jun - early Aug	8.2±0.1 to 10.8±0.2 @ 5 cm depth	0.12±0.11 to 0.32±0.33	Emmerton et al. (2014)
2	Ny-Alesand, Svalbard	79° N		Arctic tundra	Cardamine	7 - 7.5	50 - 75	10-12	2008 Aug	NA		Adachi et al. (2006)
2	Ny-Ålesand, Svalbard	79° N	12° E	Arctic tundra	Salix	6 - 7.7	50 - 100	4-25	2008 Aug	NA	9.6	Adachi et al. (2006)
2	Ny-Ålesund, Svalbard	79° N	12° E	Arctic tundra	Oxyria/Luzula	6.5 - 7.5	40 - 50 40 = 50	4-10	2008 Aug	NA	2.4	Adachi et al. (2006)
2	Ny-Ålesund, Svalbard	79° N 78°53' N	12° E 75°55' W	Arctic tundra	Bryophyte	6.8 - 7.3 7.6 - 7.8	40 - 50 31 - 46	4 - 12 0.41 - 0.52	2008 Aug	NA	7.2	Adachi et al. (2006)
3	Alexandra Fjord, Ellesmere Island, Canada	/8-53' N	/5-55 W	Barren	Cryptogam, herb barren (Dolomitic) Noncarbonate mountain complex	/.0 - /.8	31-46	0.41 - 0.52	2009 late Jun - early Aug	NA	0.4	Brummell et al. (2012)
2	Alexandra Fiord, Ellesmere Island, Canada	78°53' N	75°55' W	Mountain	(Granitic)	6.5 - 7.0	47 - 55	0.35 - 0.53	2009 late Jun and early Aug	NA	0.3	Brummell et al. (2012)
	Alexandra i jord, Literinere Brand, Canada	70 33 14	15 55 11		Prostrate dwarf-shrub, herb tundra	0.0 - 1.0	47-33	0.55-0.55	2007 and Jun and Carry Aug	134	0.5	Drummen er un (2012)
2	Alexandra Fiord, Ellesmere Island, Canada	78°53' N	75°55' W	Prostrate	(Dryas)	5.5 - 6.9	58 - 79	0.35 - 1.54	2009 late Jun and early Aug	NA	0.2	Brummell et al. (2012)
	Constanting () () () () () () () () () (Sedge/grass, moss wetland (Wet sedge	111 015	10 17		2000 and 100 and 100 y 100			
3	Alexandra Fjord, Ellesmere Island, Canada	ra Fjord, Ellesmere Island, Canada 78°53' N 75°55' W Arctic wetland r		meadow)	6.4-6.6	75 – 92	0.05 - 6.85	2009 late Jun and early Aug	NA	37.7	Brummell et al. (2012)	
					Sedgse (Carex stans, Dupontia	0.12 0.10	16.75	0100 0100	and and the second second second			
		1			psilosantha and Eriophorum							
		1			scheuchzeri), mosses (Tomenthypnum,							
		1			Scorpidium, Aulacomnium and							
4	Zackenberg Valley, Greenland	74°28' N	20°34' W	Arctic wetland - peat soil	Scorpiatum, Autacommum and Drepanoclaudus)	6.9+0.2	92	NA	Jun 25 – Aug 2	6 to 11°C @ 10 cm depth	88.2 to 251.8	Ström et al. (2012)
4	Zackenberg valley, Greenland	/4-28 N	20°34 W	Arctic wetiand - peat soil	Drepanoclaudus)	6.9±0.2	92	NA	Jun 25 – Aug 2	6 to 11°C @ 10 cm depth	88.2 10 251.8	Strom et al. (2012)
4	Zackenberg Valley, Greenland	74°28' N	20°34' W	Anti- under a set of	Dryas, Cassiope, Salix and Eriophorum	5.1-5.4	40 - 100	3.8-15.4	NA	5.49±1.8 to 9.13±3.8°C @ 5 cm depth	NA	Elberling et al. (2004)
4	Zackenberg valley, Greenland	/4-28 N	20°34 W	Arctic wetiand - pear soil	Fens (Eriophorum scheuchzeri, Carex	5.1 - 5.4	40 - 100	3.8 - 15.4	NA	5.49±1.8 to 9.13±3.8°C @ 5 cm deptn	NA	Elberling et al. (2004)
		1			stans, Dupontia psilosantha.							
		1										
		1			Arctagrostis latifolia, E. triste,							
		1			Alopecurus alpinus, and Salix arctica),							
		1			heaths (Cassiope tetragona, Dyras							
		1			octopetala and Vaccinium uliginosum)							
		1			and mosses (Tomenthypnum,							
					Scorpidium, Aulacomnium and		>100 below 3 cm (2008) and 10					
4	Rylekærene, Zackenberg Valley, Greenland	74°28' N	20°34' W	Arctic wetland - peat soil		6.9±0.2	cm (2009)	NA	2008 Jun 24 - 2009 Oct 31	0.5 to 10°C @ 10 cm depth	3.2 to 82.8	Tagesson et al. (2012)
	, , , , , , , , , , , , , , , , , , , ,		1	pear son	Eriophorum scheuchzeri, Dupontia							· · · · · · · · · · · · · · · · · · ·
4	Zackenberg Valley, Greenland	74°17'50" N	21°00'00" W	Arctic wetland - peat soil	psilosantha, Arctagrostis latifolia	NA	NA	NA	2007 late Jun - early Oct	-4 to 12°C @ 5 cm depth	58.9	Mastepanov et al. (2008)
	catalong (and), or the second s				Hummocky fen (mosses, Salix arctica							(2000)
4	Zackenberg Valley, Greenland	74°17'50" N	21°00'00" W	Arctic wetland - peat soil	and Polygonum viviparum)	NA	NA	NA	2008 thaw season	15.5°C	7.6	Christensen et al. (2000)
	catalong (and), or the second s								2000 1111 01000		110	(
		1			Continuous fen (Ertophorum							
4	Zackenberg Valley, Greenland	74°17'50" N	21°00'00" W	Arctic wetland - peat soil	scheuchzeri and Dupontia psilosantha)	NA	NA	NA	2009 thaw season	14.9°C	4.4	Christensen et al. (2000)
					Grassland (e.g. Carex saxatilis.				2007 1000 00000			()
		1			Eriophorum triste and Arctagrostis							
4	Zackenberg Valley, Greenland	74°17'50" N	21500000" W	Arctic wetland - peat soil	latifolia)	NA	NA	NA	2010 thaw season	15.1°C	14	Christensen et al. (2000)
				free states and the state	Salix arctica snowbeds (Salix arctica,							()
		1			Alopecurus alpinus and Pedicularis							
4	Zackenberg Valley, Greenland	74°17'50" N	21500000" W	Arctic wetland - peat soil	lapponica)	NA	NA	NA	2011 thaw season	13.7°C	8.8	Christensen et al. (2000)
5	Lena River Delta, Siberia	72°22'197" N	126°28'951" F	Submerged polygon	Scorpidium moss	7.1	100	NA	2009 early Jul	4 - 7°C	21.6	Liebner et al. (2011)
5	Lena River Delta, Siberia	72°22'13" N	126°29'10" E	Polygonal tundra	Vegetated	NA	NA	NA	2006 Jun - Sept	NA	14	Sachs et al. (2008)
					Carex aquatilis (dominant vascular		>100 below few cm at polygon					
5	Lena River Delta. Siberia	72°22'12" N	126°28'11" E	Wet polygonal tundra	plant), mosses and lichens	NA	centre and 35 cm at polygon rim	1.8 - 22.1	1999 Aug	1.6 to 6.7 °C @ 15 cm depth	3.2±0.6 to 21.0±4.1	Kutzbach et al. (2004)
		1										
		1										
		1										
		1										
6	Near Barrow, Alaska		1660261312	Drained thaw-lake basin	Sedges	"acidic"	NA	76 - 84	NA	-10 to -18°C	NA	Bockheim (2007)
		71°18' N										
		71°18' N	130 33 W									(2007)
		71°18' N	136 35 W									()
		71°18' N	130 33 W									
		71°18' N	130 33 W									
											22.8+2.5 (Eddy covariance) to 23.8+7.1	
6	Near Barrow, Alaska			Wet meadow tundra	Vegetated	"acidic"	>100 below 2.5±5.2 cm	NA	2009 Aug - Oct	NA		Shurtevant et al. (2012)
6	Near Barrow, Alaska			Wet meadow tundra	Graminoids (incl. Arctophila fulva,	"acidic"					22.8+2.5 (Eddy covariance) to 23.8+7.1	
6	Near Barrow, Alaska			Wet meadow tundra	Graminoids (incl. Arctophila fulva,	"acidic"					22.8+2.5 (Eddy covariance) to 23.8+7.1	
6	Near Barrow, Alaska			Wet meadow tundra	Graminoids (incl. Arctophila fulva, Dupontía fisheri, Eríophorum spp.,	"acidic"					22.8+2.5 (Eddy covariance) to 23.8+7.1	
6	Near Barrow, Alaska			Wet meadow tundra	Graminoids (incl. Arctophila fulva, Dupontia fisheri, Eriophorum spp., Carex aquatilis), mosses (incl.	"acidic"					22.8+2.5 (Eddy covariance) to 23.8+7.1	
6	Neur Barrow, Alaska			Wet meadow tundra	Graminoids (incl. Arctophila fulva, Dupontia fisheri, Eriophorum spp., Carex aquatilis), mosses (incl. Sphagnum, Dicranum elongatum),	"acidic"					22.8+2.5 (Eddy covariance) to 23.8+7.1	
		71°17'2.6" N	l 156°35'45.6" W		Graminoids (incl. Arctophila fulva, Dupontia fisheri, Eriophorum spp., Carex aquatilis), mosses (incl. Sphagnum, Dicranum elongatum), lichens and a few prostrate dwarf		>100 below 2.5±5.2 cm	NA	2009 Aug – Oct	NA	22.8±2.5 (Eddy covariance) to 23.8±7.1 (Chamber)	Sturtevant et al. (2012)
6	Nar Barrow, Alaska Nar Barrow, Alaska		i 156°35'45.6" W	Wet meadow tundra Wet meadow tundra	Graminoids (incl. Arctophila fulva, Dupontia fisheri, Eriophorum spp., Carec aquatilis), mosses (incl. Sphagnum, Dicranum elongatum), lichens and a few prostrate dwarf shrubs (Saltz spp., Cassiope teragona)	"acidic" NA					22.8+2.5 (Eddy covariance) to 23.8+7.1	
		71°17'2.6" N	l 156°35'45.6" W		Graminoids (incl. Arctophila fulva, Dapontia fitsheri, Eriophorum spp, Carex aquatilis), mosses (incl. Sphagnum, Dicranum elongatum), lichens and a few prostrate dwarf ahrubs (Saltx spp, Cassiope teragona) Hummocks, willows (Saltx arctophila		>100 below 2.5±5.2 cm	NA	2009 Aug – Oct	NA	22.8±2.5 (Eddy covariance) to 23.8±7.1 (Chamber)	Sturtevant et al. (2012)
		71°17'2.6" N	l 156°35'45.6" W		Graminoids (incl. Arctophila fulva, Dapontia fisheri, Eriophorum spp., Carex aquarilis), mosses (incl. Sphagnuw, Dicramuw clongatuw), lichens and a few prostrate dwarf shrubs (Saltx spp., Cassiope teregonu) Hummocks, willows (Saltx arctophila and Salid arctic), herbaceous plants		>100 below 2.5±5.2 cm	NA	2009 Aug – Oct	NA	22.8±2.5 (Eddy covariance) to 23.8±7.1 (Chamber)	Sturtevant et al. (2012)
		71°17'2.6" N	l 156°35'45.6" W		Graminoids (incl. Arctophila fulva, Daponta fisheri, Eriophorum spp., Carce aquattilo, mosses (incl. Sphagnum, Dicramum elongatum), lichens and a few prostrate dwarf shurbus (Saltx arctophila and Salid arctica), berbaceous plants (Pyrola grandifron), grasses (Carex L		>100 below 2.5±5.2 cm	NA	2009 Aug – Oct	NA	22.8±2.5 (Eddy covariance) to 23.8±7.1 (Chamber)	Sturtevant et al. (2012)
	Near Barrow, Alaska	71°172.6° N 71° N	(156°35'45.6" W 156° W	Wet meadow tundra	Graminolds (incl. Arecophile failvan, Dapontia ficheri, Eriophorum spp., Carce aquattilo, mosses (incl.) Sphagmun, Dicramon elenganon), lichens and a few prostrate dwarf shrubs (Salix spp., Cassiope teragono). Hummocks, willows (Salix arecophila and Salid arctica), herbaccoso plants (Pyroka grandiftora), grasses (Carex L and Derchampsta adpoin).	NA	>100 below 2.515.2 cm NA	NA	2009 Aug- Oct 2011 Jun – Aug	NA 3.FC	22.8x2.5 (Eddy covariance) to 23.8x7.1 (Chamber) 4.5 to 96	Shurtevant et al. (2012) Shurtevant & Oechel (2013)
		71°17'2.6" N	l 156°35'45.6" W		Graminolski (incl. Arcopablia fabra, Daponita fabra, Exisphorum spp., Carex aquatilis), mosses (incl. Sphagmun, Dicranom elongatum), lichens and a few postrate devarf abruhe (Sulix spp., Cassiope teregono) Hummocks, willows (Sulix arcophila and Sulid arctico), herbaceous plants (Ayrola grandfron), grasses (Carex L and Decchampsia alpina), mosses (Sphagnum)		>100 below 2.5±5.2 cm	NA	2009 Aug – Oct	NA	22.8±2.5 (Eddy covariance) to 23.8±7.1 (Chamber)	Sturtevant et al. (2012)
	Near Barrow, Alaska Pakkerbak, Disko Island, Gerenland	71°172.6" N 71° N 69° N	156°35'45.6" W 156° W 53° W	Wet meadow tundra Arctic wetland	Graminosis (incl. Arcspohla fabra, Dupontia fabra, Esiophorum spp., Carce aquattils), mosses (incl. Syndaguan, Diccumme elonganum), lichens and a few prostnae dwarf shubus (Safter spc., Cassiope ereagono) Hummocks, willows (Saftar arcspohla and Safta arcsis), herbasecous phatts (/yrola grandfilora), grasses (Carcs), and Deschampta adpond), monses (Sphagunum) Grasses (Eriophorum vaginatum and	NA	>100 below 2.5±5.2 cm NA ~95 - 100	NA NA NA	2009 Aug - Oct 2011 Jun - Aug 2011 Jul 1-12	NA	22.8x2.5 (Eddy covariance) to 23.8x7.1 (Chamber) 4.5 to 96 3.05	Statevant et al. (2012) Statevant & Occhel (2013) Johanson et al. (2011)
	Near Barrow, Alaska	71°172.6° N 71° N	(156°35'45.6" W 156° W	Wet meadow tundra	Graminolski (incl. Arcopablia fabra, Daponita fabra, Exisphorum spp., Carex aquatilis), mosses (incl.), Byhaganu, Dicranom elonganun), lichens and a few postrate devarf ahruhe (Sulix spp., Cassiope teregono) Hummocks, Willows (Sulix arcophila and Sulid arctica), herbaceous plants (Myrola grandfron), grasses (Carex L and Decchampsia alpina), mosses (Sphaganun)	NA	>100 below 2.515.2 cm NA	NA	2009 Aug - Oct 2011 Jun - Aug 2011 Jul 1-12 2012 Jul 1-12	NA 3.FC	22.8x2.5 (Eddy covariance) to 23.8x7.1 (Chamber) 4.5 to 96	Shurtevant et al. (2012) Shurtevant & Oechel (2013)
	Nar Barrow, Alaska Fakkerhal, Disko Island, Greenland Fakkerhal, Disko Island, Greenland	71°172.6" N 71° N 69° N 69° N	156°35'45.6" W 156° W 53° W 53° W	Wet meadow tundra Arctic wetland Arctic wetland	Graminoski (nel. Aresphila fohu, Dapontei fahret, Peiphonum spp., Carce aquatiki), mosses (nel. Syhopanun, Derastine diopanun, Shaphanun, Alexansi ediopanun, Shahbar (Sahl garter), Carsion (eraopond Hammocks, willows (Sahl ar expluida and Sahl arter), Derhaccon plante (Jyrola grandfora), grasses (Care L and Derchampun) Carses (Endopanun) Aresphila fuhva), mosses (Sphagaun)	NA NA NA	>100 below 2.545.2 cm NA -95 - 100 -95 - 100	NA NA NA	2009 Aug - Oct 2011 Jun - Aug 2011 Jul 1-12 2021 Jul 1-12 2022 - 2007 Tel da 1-12	NA 33°C NA NA	22.8c2.5 (fiddy covariance) to 23.8c7.1 (Clamber) 4.5 to 96 3.05 2.30	Statevast et al. (2012) Statevast & Occhel (2013) Johannen et al. (2011) Johannen et al. (2011)
	Near Barrow, Alaska Pakkerbak, Disko Island, Gerenland	71°172.6" N 71° N 69° N	156°35'45.6" W 156° W 53° W	Wet meadow tundra Arctic wetland Arctic wetland	Graminosis (incl. Arcspohla fabra, Dupontia fabra, Esiophorum spp., Carce aquattils), mosses (incl. Syndaguan, Diccumme elonganum), lichens and a few prostnae dwarf shubus (Safter spc., Cassiope ereagono) Hummocks, willows (Saftar arcspohla and Safta arcsis), herbasecous phatts (/yrola grandfilora), grasses (Carcs), and Deschampta adpond), monses (Sphagunum) Grasses (Eriophorum vaginatum and	NA	>100 below 2.5±5.2 cm NA ~95 - 100	NA NA	2009 Aug - Oct 2011 Jan - Aug 2011 Jal 1-12 2012 Jal 1-12 2002 - 2007 (Field measurements and sec-filment	NA	22.8x2.5 (Eddy covariance) to 23.8x7.1 (Chamber) 4.5 to 96 3.05	Statevant et al. (2012) Statevant & Occhel (2013) Johanson et al. (2011)
	Near Barrow, Alaska Flakkerhult, Disko Island, Greenland Flakkerhult, Disko Island, Greenland Storhulen mire, Sweden	71°172.6" N 71° N 69° N 69° N 68°22 N	156°35'45.6° W 156° W 53° W 53° W 19°03' E	Wet meadow tundra Arctic wetland Arctic wetland Intermediate thawed ground	Grammods (net. Acceptate phone. Deponent fibers, responsenn oppe- Carce aquartitis), mosses (net. Sphagmun, Dizensen elengatum), lichens and a fere prostrate doward abade (Salti age, Castinge terrogona). Hannenecks, withows (Saltar arcsphila Provide grandflow), granses (Carcer Provide grandflow), granses (Carcer Provide grandflow), granses (Carcer Carcos (Erophonem signatum and Acceptatic fabro, moses (Sphagnum) Schugmun spp. and Carce spp.	NA NA NA	>100 below 2.5±5.2 cm NA -95 - 100 -05 - 100 NA	NA NA NA NA	2009 Aug - Oct 2011 Jun - Aug 2011 Jun - Aug 2011 Jul 1-12 2012 Jul 1-12 2002 - 2007 (field meanments) 2002 - 2007 (field meanments)	NA 33FC NA NA NA	22.8c2.5 (Eddy constrained) to 23.8c7.1 (Chamber) 4.5 to 96 3.65 2.30 8.6 to 21.1	Surtevant et al. (2012) Surtevant & Occliel (2013) Johannen et al. (2011) Johannen et al. (2011) Biochannel et al. (2010)
	Nar Barrow, Alaska Fakkerhal, Disko Island, Greenland Fakkerhal, Disko Island, Greenland	71°172.6" N 71° N 69° N 69° N	156°35'45.6" W 156° W 53° W 53° W	Wet meadow tundra Arctic wetland Arctic wetland Intermediate thawed ground	Grammode (nel. Aresphala John, Daponter Johner, Senphoran spp., Carce aquatitist, mosses (nel. Syhogunu, Dicension elongatum), linkens and a few prostrate dwarf ahmbe (Salit agrech), Carcing terrogroup Hammocks, willows (Sulit a carcipatila and Sulid articu), berbaccous plants (Aybagunu), Grassien (Cours L and Decchamptic adpoint), mosses (Sphagunu) Grasses (Erophoran wagnatum and Arctophala fabru), mosses (Sphagun) Sphagunu pp. and Carce spp. Erophoran angustefalam	NA NA NA	>100 below 2.545.2 cm NA -95 - 100 -95 - 100	NA NA NA	2009 Aug - Oct 2011 Jan - Aug 2011 Jal 1-12 2012 Jal 1-12 2002 - 2007 (Field measurements and sec-filment	NA 33°C NA NA	22.8c2.5 (fiddy covariance) to 23.8c7.1 (Clamber) 4.5 to 96 3.05 2.30	Statevast et al. (2012) Statevast & Occhel (2013) Johannen et al. (2011) Johannen et al. (2011)
6 7 7 8 8	Near Barrow, Alaska Flakkerhuk, Disko Island, Greenland Hakkerhuk, Disko Island, Greenland Stordafen mire, Sweden Stordafen mire, Sweden	71°172.6" N 71° N 69° N 69° N 68°22 N 68°22 N	156°35'45.6° W 156° W 53° W 19'03' E 19'03' E	Wet meadow tundra Arctic wetland Arctic wetland Intermediate thawed ground Completely thawed ground	Grammoski (nel. Arcsphile fahru, Doposta fahrer, Forghamm rep., Carex aquatith, monses (nel. Spagnum, Deraum Spagnum, Deraum of opping), monses Spagnum, Deraum of opping, and and Hammocks, willow (Schlar arcsphile Ar base and Schlar arcschafteresen plants and Schlar arcschafteresen plants of the Schlar arcschafteresen plants and Schlar arcschaf	NA NA NA NA	>100 below 2.515.2 cm NA -95 - 100 -95 - 100 NA NA	NA NA NA NA NA	2009 Aug - Oct 2011 Jun - Aug 2011 Jul 1-12 2027 2047 field measurements and app efficient 2020 - 2007 field measurements and app efficient 2020 - 2007 field measurements and app efficient	NA 3.FC NA NA NA NA	22.8c2.5 (fidly covariance) to 23.8c7.1 (Chamber) 4.5 to 96 3.65 2.30 8.6 to 21.1 66.5 to 101.5	Statevant et al. (2012) Statevant & Orchel (2013) Johanson et al. (2011) Biokanson et al. (2011) Biokanson et al. (2010)
	Near Barrow, Alaska Flakkerhult, Disko Island, Greenland Flakkerhult, Disko Island, Greenland Storhulen mire, Sweden	71°172.6" N 71° N 69° N 69° N 68°22 N	156°35'45.6° W 156° W 53° W 53° W 19°03' E	Wet meadow tundra Arctic wetland Arctic wetland Intermediate thawed ground Completely thawed ground Mincrotrophic-scodge mire	Grammode (nel. Aresphala John, Daponter Johner, Senphoran spp., Carce aquatitist, mosses (nel. Syhogunu, Dicension elongatum), linkens and a few prostrate dwarf ahmbe (Salit agrech), Carcing terrogroup Hammocks, willows (Sulit a carcipatila and Sulid articu), berbaccous plants (Aybagunu), Grassien (Cours L and Decchamptic adpoint), mosses (Sphagunu) Grasses (Erophoran wagnatum and Arctophala fabru), mosses (Sphagun) Sphagunu pp. and Carce spp. Erophoran angustefalam	NA NA NA	>100 below 2.5±5.2 cm NA -95 - 100 -05 - 100 NA	NA NA NA NA	2009 Aug - Oct 2011 Jun - Aug 2011 Jun - Aug 2011 Jul 1-12 2012 Jul 1-12 2002 - 2007 (field meanments) 2002 - 2007 (field meanments)	NA 33FC NA NA NA	22.8c2.5 (Eddy constrained) to 23.8c7.1 (Chamber) 4.5 to 96 3.65 2.30 8.6 to 21.1	Surtevant et al. (2012) Surtevant & Occliel (2013) Johannen et al. (2011) Johannen et al. (2011) Biochannel et al. (2010)
6 7 7 8 8	Near Barrow, Alaska Pakkerhuk, Disko Island, Gerenland Piakkerhuk, Disko Island, Gerenland Stordafor mir, Sweden Stordafor mir, Sweden	71°172.6" N 71° N 69° N 69° N 68°22 N 68°22 N 68°22 N	156°35'45.6° W 156° W 53° W 19'03' E 19'03' E 18'49' E	Wet meadow tundra Arctic wetland Arctic wetland Intermediate thawed ground Completely thawed ground	Grammotic (net.: Acceptate) folion, Depositur folioter, Fordanem rego- Caroca aquesticitation, Tossano (net.) Magnetic Theorem, Fordanem (network) depositure folioter and solid acceptate depositure (network), between on patient and Static areas, la terto acceptation and and Static areas, la terto acceptation and and Static acceptation and solid acceptation and Static acceptation and solid acceptation and Static acceptation acceptation and derived hild, adv., messes (Solid acceptation derived hild, adv.), messes (Solid acceptation derived hild, adv.), messes (Solid acceptation) Solid acceptation acceptation acceptation derived hild acceptation acc	NA NA NA 5.4-6.0	>100 below 2.5x5.2 cm NA -05 - 100 -05 - 100 NA NA >100 below 2 cm	NA NA NA NA 24-59	2009 Aug - Oct 2011 Jan - Aug 2011 Jal - 12 2002 Jal 1-12 2002 - 2007 (field maximum 2002 - 2007 (field maximum 2002 - 2007 (field maximum and app effing) 2006 Jun, Aug and Sept	NA 3.3℃ NA NA NA 42 to 17.3℃ @ 5 cm depth	22.862.5 (Bdy covariance) to 23.867.1 (Chamber) 4.5 to 96 3.865 3.30 8.6 to 21.1 6.6 5 10.1 5 NA	Startevant et al. (2012) Startevant & Oechel (2013) Johanson et al. (2011) Johanson et al. (2011) Biokenmol et al. (2010) Lingusse et al. (2012)
6 7 7 8 8	Near Barrow, Alaska Flakkerhuk, Disko Island, Greenland Hakkerhuk, Disko Island, Greenland Stordafen mire, Sweden Stordafen mire, Sweden	71°172.6" N 71° N 69° N 69° N 68°22 N 68°22 N	156°35'45.6° W 156° W 53° W 19'03' E 19'03' E	Wet meadow tundra Arctic wetland Arctic wetland Intermediate thawed ground Completely thawed ground Mincrotrophic-scodge mire	Grammotic (net.). Accepting John, Deposite Johne, Frankmann rugs, Caroet aquaterity, Immone (net.). Caroet aquaterity, Immone (net.), Sheens and a fee growth and and Analys Carlos and Sand and Carooper deposite and Sand arctices), betheaeous Jahan and Decomparized apolicy. Incomes Carooperation and Sand and Decomposited apolicy. Interpretent and Decomposited apolicy. Incomes Consequences and Decomp	NA NA NA NA	>100 below 2.515.2 cm NA -95 - 100 -95 - 100 NA NA	NA NA NA NA NA	2009 Aug - Oct 2011 Jun - Aug 2011 Jul 1-12 2027 2047 field measurements and app efficient 2020 - 2007 field measurements and app efficient 2020 - 2007 field measurements and app efficient	NA 3.FC NA NA NA NA	22.8c2.5 (fidly covariance) to 23.8c7.1 (Chamber) 4.5 to 96 3.65 2.30 8.6 to 21.1 66.5 to 101.5	Statevant et al. (2012) Statevant & Orchel (2013) Johanson et al. (2011) Biokanson et al. (2011) Biokanson et al. (2010)
6 7 7 8 8	Near Barrow, Alaska Pakkerhuk, Disko Island, Gerenland Piakkerhuk, Disko Island, Gerenland Stordafor mir, Sweden Stordafor mir, Sweden	71°172.6" N 71° N 69° N 69° N 68°22 N 68°22 N 68°22 N	156°35'45.6° W 156° W 53° W 19'03' E 19'03' E 18'49' E	Wet meadow tundra Arctic wetland Arctic wetland Intermediate thawed ground Completely thawed ground Mincrotrophic-scodge mire	Grammotic (net.: Acceptate) folion, Depositur folioter, Fordanem rego- Caroca aquesticitation, Tossano (net.) Magnetic Robert, Fordanem (network) depositure folioter (network) depositure (network) and Salid acceptation and Salid acceptation accep	NA NA NA 5.4-6.0	>100 below 2.5x5.2 cm NA -05 - 100 -05 - 100 NA NA >100 below 2 cm	NA NA NA NA 24-59	2009 Aug - Oct 2011 Jan - Aug 2011 Jal - 12 2002 Jal 1-12 2002 - 2007 (field maximum 2002 - 2007 (field maximum 2002 - 2007 (field maximum and app effing) 2006 Jun, Aug and Sept	NA 3.3℃ NA NA NA 42 to 17.3℃ @ 5 cm depth	22.862.5 (Bdy covariance) to 23.867.1 (Chamber) 4.5 to 96 3.865 3.30 8.6 to 21.1 6.6 5 10.1 5 NA	Startevant et al. (2012) Startevant & Oechel (2013) Johanson et al. (2011) Johanson et al. (2011) Bischemand et al. (2010) Lingusses et al. (2012)
6 7 7 8 8	Near Barrow, Alaska Pakkerhuk, Disko Island, Gerenland Piakkerhuk, Disko Island, Gerenland Stordafor mir, Sweden Stordafor mir, Sweden	71°172.6° N 71° N 69° N 69° N 68°22 N 68°22 N 68°22 N	156°35'45.6° W 156° W 53° W 53° W 19'03' E 19'03' E 18'49' E	Wet meadow tundra Arctic wetland Arctic wetland Intermediate thawed ground Completely thawed ground Mincrotrophic-scodge mire	Grammotic (net.: Lengehat) folow, Departical folow, Forganian mgo, Caroca apartical folow, Forganian mgo, Caroca apartical folow, Forganian and Martin Schwarz, Caratage terangguan Martine Schwarz, Caratage terangguan and Saida erarcia), berbaecous patter Harmackos, willow Schwarz, Caratage Charles and Martine Schwarz, Caratage Charles (Engel Terange Schwarz, Caratage Charles, Caratage Schwarz, Caratage Schwarz, Caratage Schwarz, Sc	NA NA NA S.4-6.0 4.1-4.4	>100 below 2.5x5.2 cm NA -05 - 100 -05 - 100 NA NA >100 below 2 cm	NA NA NA NA 24-59	2009 Aug - Oct 2011 Jun - Aug 2011 Jul - 12 2012 Ad 1-12 2002 - 2000 High Haranness 2002 - 2000 High Haranness 2000 Jun, Aug and Sept 2000 Jun, Aug and Sept	NA 3.3℃ NA NA NA A 4.2 to 17.3℃ @ 5 en deph 3.4 to 13.7℃ @ 5 en deph	22.862.5 (Bdy covariance) to 23.867.1 (Chamber) 4.5 to 96 3.865 3.30 8.6 to 21.1 6.6 5 10.1 5 NA	Statevaat et al (2012) Santevaat & Ocobei (2013) Johanson et al (2011) Johanson et al (2011) Backstand et al (2010) Backstand et al (2010) Luguese et al (2012)
6 7 7 8 8 8 8 8 8	Near Barrow, Akaka Flakkorthal, Disko Island, Greenland Dakkorthal, Disko Island, Greenland Stordalen mire, Sweden Stordalen mire, Sweden Stordalen mire, Sweden Stordalen mire, Sweden	71°172.6° N 71° N 69° N	156°35'45.6° W 156° W 53° W 53° W 19°03' E 19°03' E 18°49' E 18°49' E	Wet mesdow tundra Actic wetland Actic wetland Intermediate flavered ground Completely harved ground Minecotrophic Sphagman mer Ombrotrophic Dop	Grammotic (net.): Acceptula John, Doportus Johnes, Toportus Johnes, Neurosci (Jones and Johnes, Standard Standard, Standard Standard, Standard Standard, Standard Standard, Standard Standard, Markin Schlark, Standard Standard, Standard Markin Schlark, Standard Standard, Standard Markin Schlark, Standard Standard, Markin Schlark, Standard Standard, Marking Standard, Standard Standard, Standard Standard, Standard Standard, Standard Standard, Standard Standard, Standard Standard, Standard Standard, Standard Standard, Standard Standard, Standard Standard, Standard Standard, Standard Standard, Standard Standard, Standard, Standard Standar	NA NA NA S.4-6.0 4.1-4.4 4.0-4.2	>100 below 2.5x52 cm NA -95 - 100 -85 - 100 NA NA NA >100 below 2 cm >100 below 2 cm	NA NA NA NA 24-59 -31-50 -45	2009 Aug - Oct 2011 Jun - Aug 2011 Jul - 12 2012 Ad 1-12 2002 - 2000 High Haranness 2002 - 2000 High Haranness 2000 Jun, Aug and Sept 2000 Jun, Aug and Sept	NA 3.3℃ NA NA NA NA 4.2 to 17.3℃ @ 5 en deph 3.4 to 13.7℃ @ 5 en deph	22.8c2.5 (fddy covariance) to 23.8c7.1 (Clamber) 4.5 to 96 3.05 2.30 8.6 to 21.1 6.6 5 to 101.5 NA NA	Startevan et al. (2012) Startevan & Oedul (2013) Johanon et al. (2011) Bokottand et al. (2011) Bikottand et al. (2010) Bikottand et al. (2010) Bikottand et al. (2012) Lugasco et al. (2012) Lugasco et al. (2012)
6 7 7 8 8	Near Barrow, Alaska Pakkerhuk, Disko Island, Gerenland Piakkerhuk, Disko Island, Gerenland Stordafor mir, Sweden Stordafor mir, Sweden	71°172.6° N 71° N 69° N 69° N 68°22 N 68°22 N 68°22 N	156°35'45.6° W 156° W 53° W 53° W 19°03' E 19°03' E 18°49' E 18°49' E	Wet meadow tundra Arctic wetland Arctic wetland Intermodiate thrawed ground Completely tharwed ground Ministeriophic-sodge mice mice	Grammotic (net.: Lengehat) folow, Departical folow, Forganian mgo, Caroca apartical folow, Forganian mgo, Caroca apartical folow, Forganian and Martin Schwarz, Caratage terangguan Martine Schwarz, Caratage terangguan and Saida erarcia), berbaecous patter Harmackos, willow Schwarz, Caratage Charles and Martine Schwarz, Caratage Charles (Engel Terange Schwarz, Caratage Charles, Caratage Schwarz, Caratage Schwarz, Caratage Schwarz, Sc	NA NA NA S.4-6.0 4.1-4.4	>100 below 2 54:5.2 cm NA -05 - 100 -05 - 100 NA NA >100 below 2 cm >100 below 2 cm	NA NA NA NA 24 - 59 -31 - 50	2009 Aug - Oct 2011 Jan - Aug 2011 Jal - 12 2002 Jal 1-12 2002 - 2007 (field maximum 2002 - 2007 (field maximum 2002 - 2007 (field maximum and app effing) 2006 Jun, Aug and Sept	NA 3.3℃ NA NA NA A 4.2 to 17.3℃ @ 5 en deph 3.4 to 13.7℃ @ 5 en deph	22.8c2.5 (fddy covariance) to 23.8c7.1 (Clamber) 4.5 to 96 3.05 2.30 8.6 to 21.1 6.6 5 to 101.5 NA NA	Statevaat et al (2012) Santevaat & Ocobei (2013) Johanson et al (2011) Johanson et al (2011) Backstand et al (2010) Backstand et al (2010) Luguese et al (2012)

CH ₄ sink												
	Site	Latitude	Longitude	Soil description	Vegetation	pH	Soil moisture (wt%)	Bulk Soil C (wt%)	Field season	Soil temp. (°C) ²	CH4 flux (mg CH4-C m2 day3)	Reference
					Grass, prostrate dwarf-shrub forb							
	Quttinirpaaq National Park, Ellesmere Island, Canada	82°47'60" N		Polar desert	tundra	7.2 - 7.3	9.4±0.1 to 17.5±0.2	1.4 - 1.48	2008 - 2012 late Jun - early Aug	11.1±0.4 to 13.7±0.3 @ 5 cm depth	-0.68±0.17 to -1.34±0.15	Emmerton et al. (2014)
a	Quttinirpaaq National Park, Ellesmere Island, Canada	82°47'60" N		Meadow wetland	Sedge/grass, moss meadow	NA	NA	NA	2011 - 2012 Jul (first 2 weeks)	NA	-0.30±0.09	Emmerton et al. (2014)
	Patterson River, Ellesmere Island, Canada	82°35'47" N	63°45'32" W		Grass (<5% cover)	8.6 - 8.7	0.04 (Water-filled porosity)	5.18 - 7.17	2010 Jul 30 - Aug 1	1.4 to 4.4°C	-0.14±0.27 (Light) to -0.61±0.13 (Dark)	Brummell et al. (2014)
b	Expedition Fjord, Axel Heiberg Island, Canada	79°24'55" N	90°45'27" W	High-centered polygon	Lichen/mossess and sparse grass	NA	NA	NA	2011 Jul 15-16	12.3 to 18.4°C @ 5 cm depth	-0.11 to -0.17	Allan et al. (2014)
b	Expedition Fjord, Axel Heiberg Island, Canada	79°24'52" N	90°45'30" W	Arctic wetland	Cotton grass	NA	NA	NA	2011 Jul 15-16	7.9°C @ 5 cm depth	-0.13	Allan et al. (2014)
ь	Expedition Fjord, Axel Heiberg Island, Canada	79°24'57" N	90°45'46" W	High-centered polygon	Sparse cover by grasses (e.g. Puccinellia arestica, Salix arestica, Polygonum viviparum, Dryas sp., Saxifraga sp., Papaver sp., Ertophorum sp.) and lichens	5.5-6	15 - 20	1-6	2011 Jul 9-14	12.4°C @ 5 cm depth	-0.07±0.01	Stackhouse et al. (submitted)
					Heavily cover by grasses (e.g. Puccinellia arctica, Salix arctica, Polygonum viviparum, Dryas sp., Saxifraga sp., Papaver sp.,							
b	Expedition Fjord, Axel Heiberg Island, Canada	79°24'57" N	90°45'47" W		Eriophorum sp.)	5.5 - 6	15 - 20	1 - 6	2011 Jul 9-14	14.7°C @ 5 cm depth	-0.10±0.03	Stackhouse et al. (submitted)
ь	Expedition Fjord, Axel Heberg Island, Canada	79°24'57" N	90°45'46" W		Sparse cover by grasses (e.g. Paccinella arettca, Salta arettca, Polygonum vivgarum, Dryus sp., Saxifraga sp., Papover sp., Eriophorum sp.) and lichens Sparse cover by grasses (e.g. Paccinellia arettca, Salta arettca, Polygonum vivgarum, Dryus sp., Saxifraga sp., Papovers sp.,	5.5-6	15-20	1-6	2012 Jul 6-8	8.4 ⁴ C @ 5 cm depth	-0.08±0.02	Stackhouse et al. (submitted)
h	Expedition Fiord. Axel Heiberg Island. Canada	0000 0100 N	000404030	High-centered polygon	Saxyraga sp., Papaver sp., Eriophorum sp.) and lichens	5.5-6	15 - 20	1-6	2013 Jul 4-19	1.3 to 12.9°C @ 5 cm depth	-0.02±0.01 to -0.14±0.02	This study (using open-circuit method)
	Expedition Fjord, Axel Heiberg Island, Canada	79°24'57" N		High-centered polygon	Sparse cover by grasses (e.g. Puccinellia arctica, Saltx arctica, Polygonum viviparum, Dryas sp., Saxifraga sp., Papaver sp., Eriophorum sp.) and lichens	5.5-6	15-20	1-6	2013 mid Jul	9.2°C @ 5 cm denth	-0.84±0.18	This study (using closed-static method)
D C	Expedition Fjord, Axel Heiberg Island, Canada Ny-Ålesund. Svalbard	79°2457° N	90°45'47" W 12° E	Hign-centered polygon Arctic tundra	Salix	5.5-6	15 - 20 50 - 100	4-25	2013 mid Jul 2008 Aug	9.2°C @ 5 cm deptn NA	-0.84±0.18	Adachi et al. (2006)
	Ny-Alesand, Svalbard Ny-Ålesand, Svalbard	79° N	12° E	Arctic tundra Arctic tundra	Satix Oxyria/Luzula	6.5 - 7.5	50 - 100 40 - 50	4-25	2008 Aug 2008 Aug	NA	-2.4 -3.6	Adachi et al. (2006) Adachi et al. (2006)
	Ny-Alesand, Svalbard Ny-Ålesand, Svalbard	79° N	12° E	Arctic tundra Arctic tundra	Bryophyte	6.8 - 7.3	40 - 50	4 - 10	2008 Aug 2008 Aug	NA	-3.6	Adachi et al. (2006) Adachi et al. (2006)
					Prostrate/hemiprostrate dwarf-shrub							
	Alexandra Fjord, Ellesmere Island, Canada	78°53' N	75°55' W	Hemiprostrate	tundra (Cassiope) Nontussoek sedge, dwarf-shrub, moss	6.3 - 7.0	54 - 75	0.26 - 0.52	2009 late Jun and early Aug	NA	-0.03	Brummell et al. (2012)
d	Alexandra Fjord, Ellesmere Island, Canada	78°53' N	75°55' W	Sedge/dwraft-shrub	tundra (Willow) Sedge/grass, moss wetland (Wet sedge	5.2 - 5.8	43 - 51	1.16 - 4.17	2009 late Jun and early Aug	NA	-0.1	Brummell et al. (2012)
d	Alexandra Fiord. Ellesmere Island. Canada	78°53' N	75°55' W	Arctic wetland	meadow)	6.4-6.6	75 - 92	0.05 - 6.85	2009 late Jun and early Aug	NA	-17.8	Brummell et al. (2012)
	Dome, Ellesmere Island, Canada	78°51'31" N	75°55'37" W		Grass (<5% cover)	8.6	0.06 (Water-filled porosity)	3.61 - 4.78	2010 Jul 20-21	2.3 to 13.9°C	-1.55±0.32 (Dark) to -1.92±0.58 (Light)	
	Okse Bay. Ellesmere Island. Canada	77°8'88" N	87°39'10" W		Sedge/grass (<5% cover)	7.7 - 7.9	0.06 (Water-filled porosity)	3.32	2010 Jul 13-17	6.4 to 12.9°C	-1.15±0.31 (Dark) to -1.85±0.46 (Light)	
					Cassiope heaths (Cassiope tetragona							
f	Zackenberg Valley, Greenland	74°17'50" N	21°00'00" W	Arctic soil	and Vaccinium uliginosum) Dwarf shrub (Dryas octopetala x integrifolia) and grasses (Kobresia	NA	NA	NA	2007 thaw season	16.1°C	-0.02	Christensen et al. (2000)
f	Zackenberg Valley, Greenland Lena River Delta. Siberia	74°30' N 72°22'13" N		Arid lowland Submerged polygon	myosuroides, Carex rupestris and Poa glauca) Scorpidium moss	7.25±0.04	~4 - 16	2 - 10 NA	2009 Jul – Oct 2009 carly Jul	-6.5 to 20°C @ 5 cm depth 4 to 7°C	NA -1.7	Christiansen et al. (2012) Liebner et al. (2011)
	Flakkerhuk, Disko Island, Greenland	69° N		Arctic tundra	Willows (Salix arctica, Salix glauca)	NA	~35 - 40	NA	2013 Jul 1-12	NA	-0.78	Johansen et al. (2011)
	Flakkerhuk, Disko Island, Greenland	69° N	53° W	Arctic tundra	Willows (Saltx arctica, Saltx glauca), heaths (Cassiope tetragona), birches (Betula nana), shrabs (Empetrum hermaphroditum)	NA	~25	NA	2014 Jul 1-12 2002 = 2007 (field measurements	NA	-1.18	Johansen et al. (2011)
1	Stordalen mire, Sweden	68°22' N	19°03' E	Drained palsa areas	Woody herbaceous vegetation	NA	NA	NA	and gap-filling)	-20 to 20°C3	<-9	Bäckstrand et al. (2010)
i	Stordalen mire. Sweden	68°22' N	19°03' E	Intermediate thawed ground	Sphagnum spp. and Carex spp.	NA	NA	NA	2002 - 2007 (field measurements and gap-filling)	-20 to 20°C1	< <u>11</u>	Bäckstrand et al. (2010)
1	Bonanza Creek, Alaska, USA	64°45' N		Upland soils	North-facing black spruce	5	491	91	1990 Oct	0.2°C @ 10 cm depth	-0.41	Whalen et al. (1992)
					south-facing aspen (Populus							
	Bonanza Creek, Alaska, USA	64°45' N	148°18' W	Upland soils	tremuloides)	6.4	56	16	1990 Oct	3.6°C @ 10 cm depth	-0.17	Whalen et al. (1992)
j	Bonanza Creek, Alaska, USA	64°45' N	148°18' W	Upland soils	North-facing birch (Betula papyrifera)	5.9	69	24	1990 Oct	3.3°C @ 10 cm depth	-0.47	Whalen et al. (1992)
					South-facing white spruce (Picea							
j	Bonanza Creek, Alaska, USA	64°45' N	148°18' W	Upland soils	glauca) Mosses, liches, cottongrasses	4.9	139	50	1990 Oct	2.2°C @ 10 cm depth	-0.41	Whalen et al. (1992)
k	Unalaska Island, Aleutian Islands	53° N	167° E	Moist tundra meadow	(Eriophorum sp.), low-lying ferns and dwarf shrubs (Faccinium sp.)	NA	>100	16-38	1987 Oct	7°C	-2.03	Whalen & Reeburg (1990)

Note: ¹ Percentage by weight (wt%) unless specified ² Ambient temperature unless specified ³ Temperature range in year 2004 NA: Not available

Table S2. Methanotrophic (A) and methanogenic (B) taxa identified in near-surface cryosols (at 5 cm depth) in the intact core warming experiments.

(A)

Class/Phylum	Family	Genus ¹	Dominant Species	Mean % abundance > 0.001% (± SD) ³	Methanotrophy/Type of Intracytoplasmic membrane (ICM)	Formaldehyde Assimilation Pathway	Type of MMO ⁴
α-Proteobacteria	Beijerinckiaceae	Methylocapsa	Methylocapsa acidopilla ²	0.0046 (±0.0024)	Facultative/Type II	Serine	pMMO only
α-Proteobacteria	Beijerinckiaceae	Methylocella	Methylocella silvestis	0.2930 (±0.1124)	Facultative/Type II	Serine	sMMO only
α-Proteobacteria	Methylocystaceae	Methylocystis	Methylocystis sp. ATCC 49242	0.0921 (±0.0282)	Obligate/Type II	Serine	pMMO & sMMO
α-Proteobacteria	Methylocystaceae	Methylosinus	Methylosinus trichosporum	0.0966 (±0.0309)	Obligate/Type II	Serine	pMMO & sMMO
				Subtotal = 0.49%			
y-Proteobacteria	Methylococcaceae	Methylobacter	Methylobacter tundripaludum	0.0446 (±0.0118)	Obligate/Type I	Ribulose monophosphate (RuMP)	pMMO & sMMO
y-Proteobacteria	Methylococcaceae	Methylococcus	Methylococcus capsulatus	0.0706 (±0.0191)	Obligate/Type I	Ribulose monophosphate (RuMP)	pMMO & sMMO
				Subtotal = 0.12%			
Verrucomicrobia	Methylacidiphilaceae	Methylacidiphilum	Methylacidiphilum infernorum	0.0887 (±0.0200)	Obligate/No ICM	Serine variant	pMMO only
				Total =0.69%			

(B)

Phylum	Class	Family	Genus ⁵	Mean % abundance > 0.001% (± SD) ³	Methanogenesis pathway
Euryarchaeota	Methanobacteria	Methanobacteriaceae	Methanobrevibacter	0.0011 (±0.0033)	Hydrogenotrophic
Euryarchaeota	Methanobacteria	Methanobacteriaceae	Methanothermobacter	0.0107 (±0.0080)	Hydrogenotrophic
Euryarchaeota	Methanobacteria	Methanothermaceae	Methanothermus	0.0011 (±0. 0018)	Hydrogenotrophic
Euryarchaeota	Methanococci	Methanocaldococcaceae	Methanocaldococcus	0.0052 (±0.0103)	Hydrogenotrophic
Euryarchaeota	Methanococci	Methanococcaceae	Methanococcus	0.0034 (±0.0054)	Hydrogenotrophic
Euryarchaeota	Methanococci	Methanocellaceae	Methanocella	0.0081 (±0.0065)	Hydrogenotrophic
Euryarchaeota	Methanococci	Methanocorpusculaceae	Methanocorpusculum	0.0010 (±0.0270)	Hydrogenotrophic
Euryarchaeota	Methanococci	Methanomicrobiaceae	Methanoculleus	0.0035 (±0.0100)	Hydrogenotrophic
Euryarchaeota	Methanococci	Methanospirillaceae	Methanospirillum	0.0085 (±0.0123)	Hydrogenotrophic
Euryarchaeota	Methanococci	Methanomicrobiales	Methanoregula	0.0163 (±0.0101)	Hydrogenotrophic
Euryarchaeota	Methanococci	Methanomicrobiales	Methanosphaerula	0.0120 (±0.0100)	Hydrogenotrophic
Euryarchaeota	Methanococci	Methanosaetaceae	Methanosaeta	0.0072 (±0.0071)	Aceticlastic
Euryarchaeota	Methanococci	Methanosarcinaceae	Methanococcoides	0.0088 (±0.0056)	Methylotrophic
Euryarchaeota	Methanococci	Methanosarcinaceae	Methanohalobium	0.0029(±0.0049)	Methylotrophic
Euryarchaeota	Methanococci	Methanosarcinaceae	Methanohalophilus	0.0027 (±0.0023)	Methylotrophic
Euryarchaeota	Methanococci	Methanosarcinaceae	Methanosarcina ⁶	0.0686 (±0.0263)	Aceticlastic
				Total =0.16%	

Notes:

¹Genera not detected: Clonothrix, Crenothrix, Methylohalobius, Methylosoma, Methylothermus, Methylosphaera, Methylomarinum, Methylocaldum and Methylogaea.

²The closest related isolate to atm CH₄-oxidizing bacterium Upland Soil Cluster alpha (USCα), as proposed by the phylogeny of the pmoCAB operon and 4 other open read frames (Ricke et al., 2005) ³Mean abundance of 16 cryosol samples collected at different time during the course of incubation (1 week, 6 and 12 months).

⁴MMO: Methane monooxygenase; pMMO: particulate MMO; sMMO: soluble MMO

⁵Genera that were sporadically present in some samples with a relative abundances < 0.001% include: *Methanobacterium, Methanosphaera, Methanothermus, Methanothermococcus, Methanoplanus* and *Methanopvrus.* ⁶This genus contains representatives that are capable of oxidizing CH₄ anaerobically. Table S3. Genes of methane monooxygenases and homologous enzymes identified in (A) metagenome data from near-surface cryosols (at 5 cm depth) in the intact core warning experiments and (B) metatranscriptome data from the polygon trough sample (collected on July 15, 2013).

(A)	

				Closest protein match (BlastX)										
De Novo Assembly ID	¹ Size (bp)	Mean % abundance (± SD)	² Putative gene	Accesion no.	Taxon	Protein superfamily	Enzyme Encoded	% of identity						
Contig25620	1117	0.00015 (±0.00014)	pmoA	CAJ01563.1	Upland soil cluster alpha (USCalpha)	Pmo/Amo	a subunit of particulate methane monoxygenase (27-kDa)	87						
Contig19544	1301	0.00015 (±0.00012)	pmoC	CAJ01564.1	Upland soil cluster alpha (USCalpha)	Pmo/Amo	y subunit of particulate methane monoxygenase	85						
G		0.00020 (0.00022)	pmoA	CAJ01564.1	Upland soil cluster alpha (USCalpha)	Pmo/Amo	a subunit of particulate methane monoxygenase (27-kDa)	73						
Contig25961	1116	0.00029 (± 0.00033)	pmoC	CAJ01565.1	Upland soil cluster alpha (USCalpha)	Pmo/Amo	y subunit of particulate methane monoxygenase	86						
Contig60426	646	0.00005 (± 0.00003)	pmoB	CAJ01562.1	Upland soil cluster alpha (USCalpha)	Pmo/Amo	β subunit of particulate methane monoxygense (45-kDa)	70						
Contig78492	528	0.00003 (± 0.00003)	pmoB	CAJ01562.1	Upland soil cluster alpha (USCalpha)	Pmo/Amo	β subunit of particulate methane monoxygense (45-kDa)	85						
Contig20276	1272	0.00013 (± 0.00009)	pmoB	CAJ01562.1	Upland soil cluster alpha (USCalpha)	Pmo/Amo	β subunit of particulate methane monoxygense (45-kDa)	84						
Contig20270	12/2	0.00013 (± 0.00009)	Unknown	CAJ01561.1	Upland soil cluster alpha (USCalpha)		Conserved hypothetical protein	74						
Contig01417	4093	0.00039 (± 0.00033)	amoC	YP_006863929.1	Candidatus Nitrososphaera gargensis Ga9.2	Pmo/Amo	Subunit C of ammonia monooxygenase/methane monooxygenase	95						
Config01417	4095	0.00039 (± 0.00033)	amoA	AEQ03735.1	Uncultured crenarchaeote	Pmo/Amo	Subunit A of ammonium monooxygenase	99						
Contig08394	1973	0.00011 (± 0.00009)	pmo homolog	YP_001239622.1	Bradyrhizobium sp. BTAil	Ferritin-like	a subunit of methane/phenol/toluene monooxygenase	97						
Contig62491	620	0.00006 (± 0.00002)	pmo homolog	YP_481616.1	Frankia sp. CcI3	Ferritin-like	Methane monooxygenase	83						
Contig61701	655	0.00012 (± 0.00003)	pmo homolog	YP_004330745.1	Pseudonocardia dioxanivorans CB1190	Ferritin-like	Methane monooxygenase	96						
Contig61059	630	0.00006 (± 0.00004)	pmo homolog	YP_005283808.1	Gordonia polyisoprenivorans VH2	Ferritin-like	Small subunit of putative phenol and propane monooxygenase	68						
Contig46385	636	0.00006 (± 0.00003)	pmo homolog	WP_010242492.1	Pseudonocardia sp. P1	Ferritin-like	Methane monoxygenase	68						
Contig56456	674	0.00005 (± 0.00003)	pmo homolog	WP 016880985.1	Rhodococcus sp. DK17	Ferritin-like	Methane monoxygenase	88						

(B)

				Closest metagenome			Closest protein match (BlastX)		
				match (contig ID in					
De Novo Assembly ID ³	Size (bp)	Mean % abundance	Putative gene	Table S3a)	Accesion no.	Taxon	Protein superfamily	Enzyme Encoded	% of identity
Contig_6812	288	0.00042%	pmoC	Contig25961	CAJ01564.1	Upland soil cluster alpha (USCalpha)	Pmo/Amo	y subunit of particulate methane monoxygenase	90
Contig_7751	236	0.00011%	pmoC	Contig25961	CAJ01564.1	Upland soil cluster alpha (USCalpha)	Pmo/Amo	γ subunit of particulate methane monoxygenase	66
Contig_6846	284	0.00011%	pmoC	Contig19544	CAJ01564.1	Upland soil cluster alpha (USCalpha)	Pmo/Amo	y subunit of particulate methane monoxygenase	90
Contig 6861	435	0.00007%	pmoA	Contig25620	CBJ05749.1	Upland soil cluster alpha (USCalpha)	Pmo/Amo	β subunit of particulate methane monoxygense (45-kDa)	98
Contig_7936	454	0.00005%	pmoB	-	CAJ01562.1	Upland soil cluster alpha (USCalpha)	Pmo/Amo	β subunit of particulate methane monoxygense (45-kDa)	88
Contig_7223	346	0.00008%	pmoB	Contig60426	CAJ01562.1	Upland soil cluster alpha (USCalpha)	Pmo/Amo	β subunit of particulate methane monoxygense (45-kDa)	84
Contig_7286	344	0.00005%	pmoB	Contig20276	CAJ01562.1	Upland soil cluster alpha (USCalpha)	Pmo/Amo	β subunit of particulate methane monoxygense (45-kDa)	83
Contig_5304	570	0.00018%	amoC	Contig01417	YP_006863092.1	Candidatus Nitrososphaera gargensis Ga9.2	Pmo/Amo	Subunit C of ammonia monooxygenase/methane monooxygenase	97
Contig_2448	491	0.00015%	pmo homolog	Contig56456	WP_018330673.1	Actinomycetospora chiangmaiensis	Ferritin-like	Methane monooxygenase	90
Contig 6461	411	0.00020%	pmo homolog	Contig62491	YP 004330745.1	Pseudonocardia dioxanivorans CB1190	Ferritin-like	Methane monooxygenase	94

Notes: ¹Metagenome contigs are available on MG-RAST (ID: 4530050.3) ²Mean abundance of 10 cryosol samples collected at different time during the course of incubation (T=1 week and 6 months). ³Metatranscriptome (or transcript) contigs are available on MG-RAST (ID: 4548477.3)

Table S4. Aerobic methanotrophs detected in Arctic permafrost-affected region

			1	1	-	1	1																-	1	1	1	
			Mantineer	Martine	et Yergeau et	Yergeau et al.	Wilhelm et	Mandin and a	Martineau e	M			Wartiainen et	Tveit et al.	Tveit et al.	Court at al	Liebner et al.	Liebner et al.	Wagner et	Lishnen et al.	Dashing of al	T internet	Mackelprang et	V-limberie et	Deshare Oliver	Pacheco-Oliver	Bashara Oliver
			al (2010)			(2010)	al (2011)	al (2014)	al (2014)	al (2014)	This study	This study	al. (2003)	(2012)	(2012)	(2011)	(2009)	(2009)	al. (2005)		(2012)		al. (2011)	al. (2002)			et al. (2002)
			al. (2010)	al. (2010)	al. (2010)	(2010)	expedition	Expedition	expedition	expedition	Expedition	Expedition	al. (2003)	(2012)	(2012)	(2011)	(2009)	(2009)	al. (2005)	(2007)	(2012) Drained	al. (2013)	al. (2011)	al. (2002)	et al. (2002)	et al. (2002)	et al. (2002)
			Eureka,	Eureka.	Eureka.	Eureka.	Fiord, Axel	Fjord, Axel	Fiord, Axel	Fjord, Axel	Fiord, Axel	Fiord, Axel									Lake'.						
			Ellesmere	Ellesmere	Ellesmere	Ellesmere	Heiberg	Heiberg	Heiberg	Heiberg	Heiberg	Heiberg		Nv -	Nv –		Smoylov	Smoylov	Samoylov		Herschel						
			Island.	Island	Island	Island	Island.	Island	Island	Island.	Island.	Island,	Spitsbergen,	Ålesund,	Ålesund,	Califaberran	Island, the	Island, the	Island, the	Samovlov	Island				V	V	V
			Canadian			Canadian high	Canadian		Canadian	Canadian	Canadian	Canadian			Svalbard,	Svalbard,	Lena Delta,	Lena Delta,					Hess Creek.		Kuujjuaq, Northern	Kuujjuaq,	Kuujjuaq, Northern
				Canadian	Canadian			Canadian																-		Northern	
		Location	high Arctic	high Arctic	high Arctic	Arctic	high Arctic	high Arctic	high Arctic	high Arctic	high Arctic	high Arctic	Norway	Norway	Norway	Norway	Siberia	Siberia	Siberia	Delta, Siberia	Arctic	Norway	Alaska, US	Russia	Quebec, Canada	a Quebec, Canada	Quebec, Canada
													20.02221	78.926N,	78.926N,												
													78.933N,														
													11.883E and		11.944E and												
			80.000N,	80.000N,	80.000N,	80.000N,	79.433N,	79.433N,	79.433N,	79.433N,	79.415N,	79.415N,	78.250N,	78.933N,	78.933N,	78.917N,	72.367N,	72.367N,		72.367N,	69.729N,		65.670N,				
		Lat, Long	85.839W	85.839W	85.839W	85.839W	90.766W	90.766W	90.766W	90.766W	90.757W	90.757W	15.5000E	11.818E	11.818E	11.933E	126.467E	126.467E		126.467E	138.957W	29.383E	149.077W	NA	NA	NA	NA
											High-	High-					Rim of low-	Rim of low-	Rim of low-	Rim of low-							
									Upland	Wet	centered	centered					centered	centered	centered	centered	Low-centered				Peat-like tundra		Peat-like tundra
		Soil description	Wet tundra	Wet tundra	1 Tundra	Tundra	Wetland	Acidic	tundra	meadow	polygon	polygon	Wetland	Peat bog	Peat bog	Wetland	polygon	polygon	polygon	polygon	polygon	palsa	Peat soil	Subarctic tundra	a (K3)	(K3)	(K3)
		Vegetation cover	NA	NA	NA	NA	NA	NA	NA	NA	Vegetated	Vegetated	Vegetated	Vegetated	Vegetated	Vegetated	NA	NA	Vegetated	NA	Vegetated	Vegetated	Vegetated	NA	NA	NA	NA
		Depth below surface (cm)	0-10	0 - 10	Surface	Surface	14 - 19	0-15	0-15	0-15	0-5	0-5	0 - 10	0-10		0-6	41436	41436	0-20	0 - 18	0 - 20	0-10	Active layer	41409	15 - 30	15 - 30	15-30
		Soil pH	6.7 - 7.1	6.7 - 7.1		7.9	4.48	4.8	6.4	6	5.5	5.5	5.0-6.7		5.2 - 5.8	NA	6.5	6.5	7.9	NA	5.2 - 5.6	4.2	6.48	NA	8.35	8.35	8.35
		Soil water content (wt%)	16-23	16-23		12.7	29.6	NA	NA	NA	15 - 20	15 - 20	75 - 90		70 - 90	NA	NA	NA	26.2 - 30.1		77 - 79	NA	82	NA	14.1	14.1	14.1
		Soil organic content (wt%)				3	0.98	NA	NA	NA	1-6	1-6	24 - 87		90-91	NA	2.1	2.1	2.1 - 2.4		23 - 28	NA	40	NA	9.43	9.43	9.43
			incubated	incubated	1	1			1					1				1				1		1	1	1	
			soils at 4°C			1	1		1					1		Incubated at		1				1	Incubated soils	1	1	1	1
			and RT in	and RT in	1	1	1		1		Incubated at	Incubated at		1		15C with	1	1				1	at 5°C for 1	1	1	1	1
			NMS	NMS	1	1	1	Incubated	Incubated	Incubated		4°C with 2		1		10,000 and	1	1				1	week with 20	1	1	1	1
		Incubation condition of soi		medium	1	1	1			soils at 10°C		ppmv CH4		1		50,000	1	1				1	ppmv CH4	1	1	1	1
		being studied (if) with >8,000	1	1	1	10 and 1000		10 and 1000		for 1 – 26		1		ppmv of	1	1				1		1	1	1	1
																							(trapped in	NA			
		applicable)	ppmv CH ₄	ppmv CH ₄	NA	NA	NA	ppmv CH ₄	ppmv CH ₄	ppmv CH ₄	weeks	weeks	NA	NA	NA	¹³ CH ₄	NA	NA	NA	NA	NA	NA	frozen soils)	NA	NA	NA	NA
								ncn	PCR-	PCR-				Martin	M-4-												
								PCR-						Meta-	Meta-												
					Meta-					Cloning and		Meta-		transcriptom	transcriptom	PCR-					PCR-Cloning						
		Molecular method^	PCR-DGGE	E PCR-DGGE	E genomics	qPCR	PCR-DGGE	Microarray	Microarray	Microarray	genomics	genomics	PCR-DGGE	ics	ics	Cloning	PCR-DGGE	PCR-DGGE	GC/MS	FISH	and TRFLP		PCR	PCR	PCR-Cloning	PCR-Cloning	PCR-Cloning
																						pmoA (no					
					all genes	16S rDNA							16S rDNA				16S rDNA			16S rDNA			16S rDNA	16S rDNA			16S rRNA
			16S rDNA		(but no	(methanotroph-				pmoA/		All raw	(methanotroph-			16S rRNA	(methanotroph-			(methanotroph-		and no	(methanotroph-	(methanotroph-			(methanotroph-
		Biomarker	(universal)	pmoA	pmoA)	specific)	(universal)	pmoA	pmoA	amoA	pmo	sequences	specific)	16S rRNA	pmoA	(universal)	specific)	pmoA	PFLA	specific)	pmoA	mmoX)	specific)	specific)	pmoA	mmoX	specific)
	ss Family Genus																										
					-																						
Proteobacteria																											
	ha-proteobacteria					x		x		x																	
	Beijerinckiaceae					x		x		x										x			x				
	Beijerinckiaceae Methylocapsa					x		x		x		x								x	x		x				
	Beijerinckiaceae Methylocapsa Methylocella					X		x		x		x X								x	x		x				
	Beijerinckiaceae Methylocapsa Methylocella Methyloferula					x		x		x										x	x						
	Beijerinckiaceae Methylocapsa Methylocella Methyloferula Methylocystaceae					x	×	x		X		x								x							
	Beijerinckiaceae Methylocapsa Methylocella Methylocystaceae Methylocystas					X	x	X		x		x								x	x	×		x			x
	Beijerinckiaceae Methylocapsa Methylocella Methyloferula Methylocystaceae	Mahalaring birker				x	x	x		X		x	x						<u>x</u>	X	x X	x		x			x
	Beijerinckiaceae Methylocapsa Methylocella Methyloferula Methylocystaceae Methylocystis Methylosinus	Methylosinus trichosporium				x	X					x	x						x x x	X	x	X		x			X
Alpl	Beijerinckiaceae Methylocapsa Methylocella Methylocrula Methylocystaceae Methylocystis Methylosinus Upper soil cluster alpha	Methylosinus trichosporium					X	x	X	x	x	x	x							X	x X	X		x		x	x
Alpl	Beijerinckiaceae Methylocapsa Methyloceila Methylocytaceae Methylocystis Methylosinus Upper soil cluster alpha ma-proteobacteria	Methylosinus trichosporium				x	X		x		X	x	X					v			x X	X		X		x	x
Alpl	Beijerinckiaceae Methylocapsa Methylocapsa Methylocystaceae Methylocystaseae Methylocystis Methylocystis Upper soil cluster alpha ima-proteobacteria Methylococcaceae	Methylosinus trichosporium			X		X		x		X	x	X					X		x	x X x	X		x		X	x
Alpl	Beijerinckiaceae Methylocapsa Methylocapsa Methylocapsa Methylocystis Methylocystis Methylocystis Methylosinus Upper soil cluster alpha ma-proteobacteria Methylococcaceae	Methylosinus trichosporium			X		X		x		X	x	X					X			x X	X		x		X	x
Alpl	Beijerinckiaccae Methylocapsa Methylocytaccae Methylocytaccae Methylocytaccae Upper soil cluster alpha ma-protobacteria Methylocaccaecae Clonothrix Cronothrix	Methylosinus trichosporium			X		X	X			X	x	X					X			x X x	X		x		X	x
Alpl	Beijerinckiaceae Methylocapsa Methylocapsa Methylocapsa Methylocystis Methylocystis Methylocystis Methylosinus Upper soil cluster alpha ma-proteobacteria Methylococcaceae	Methylosinus trichosporium Methylobacter Intens		x	X		X		x		X	x	X					X			x X x	X				X	x
Alpl	Beijerinckiaccae Methylocapsa Methylocytaccae Methylocytaccae Methylocytaccae Upper soil cluster alpha ma-protobacteria Methylocaccaecae Clonothrix Cronothrix	Methylobacter luteus		X	X		X	X			X	x		×				X			x X x			x		X	x
Alpl	Beijerinckiaccae Methylocapsa Methylocytaccae Methylocytaccae Methylocytaccae Upper soil cluster alpha ma-protobacteria Methylocaccaecae Clonothrix Cronothrix	Methylobacter luteus Methylobacter psychrophilus	6		X		X	X			X	X X X X	x				X	X			x X x					X	x x
Alpl	Beijerinckiaceae Methylocepta Methylocetla Methylocytaceae Methylocytaceae Upper soli cluster alpha ume-protosbacteria Methylocycaeeae Methylocycaeeae Methylocycaeeae Methylocycaeaeae Methylocycaeaeae Methylobacter	Methylobacter luteus		x	X		X	X			X	x		x	X		X	X			x X x					X	x
Alpl	Beijerinckiaccae Methylocensa Methylocella Methylocrytaccae Upper soil cluster alpha Methylococcaecae Upper soil cluster alpha Methylococcaecae Methylococcaecae Cronothrix Methylococcaecae Methylococcaecae Methylococcaecae Methylococcaecae Methylococcaecae Methylocaeter	Methylobacter luteus Methylobacter psychrophilus	6		X		X	X			X	X X X X	x		X	X	X	X			x X x					X	X
Alpl	Beijerinckiaceae Beijerinckiaceae Methylocens Methylocella Methylocystaceae Upper soil cluster alpha ume-proteobacteria Methylocystaceae Methylococcaecae Methylococcae Methylococcaecae Methylococcaecae Methylococcaecae Methylococcaecae Methylococcae Methyloc	Methylobacter luteus Methylobacter psychrophilus	6		x		X	X			X	X X X X	x		X	X	X	X			x X x					X	x x
Alpl	Beijerinckiaccae Methylocensa Methylocenta Methylocenta Methylocritaccae Upper soil cluster alpha Methylococcaecae Methylococcaecae Cronothrix Methylococcaecae Methylococcaecae Methylococcaecae Methylococcaecae Methylococcaecae Methylococcaecae Methylocaecael Methylocaecael Methylocaecael Methylocaecael	Methylobacter luteus Methylobacter psychrophilus	6		X		X	x	x	X	X	X X X X	x		X	X	X	X			x X x					X	x x
Alpl	Beijerinckiaccae Methyloccysac Methylocysaccae Methylocystaccae Upper soil cluster alpha man-protosbacteria Methylocystaccae Methylocystaccae Methylocystaccae Methylocystaccae Methylocystaccae Methylocystaccae Methylocystaccae Methyloccecaecae Methylocystaccae Methylocystaccae Methyloccecaecae Methyloccecaecae Methyloccecaecae Methyloccecaecae Methyloccecaecae Methylocaecae Methylocaecae Methylocaecae Methylocaeae Methylocaeae Methylocaeae Methylocaeae Methylocaeae Methylocaeae	Methylobacter luteus Methylobacter psychrophilus	6		X		X	X			X	X X X X	x		X	X	X	X			x X x					X	X
Alpl	Beijerinckiaccae Beijerinckiaccae Methylocensa Methylocenta Methylocrystaccae Upper soil cluster alpha Methylococcaecae Methylococccaecae Methylococcaecae Methyloc	Methylobacter luteus Methylobacter psychrophilu Methylobacter tundripaludur	6		x		X	x	x	X	X	X X X X	x		X	X	X	X			x X x					X	X X X
Alpl	Beijerinckiaccae Methylocepsa Methylocytaccae Methylocytaccae Upper soil cluster alpha man-protosbacciae Methylococcaccae Methyloclucocbae Methyl	Methylobacter luteus Methylobacter psychrophilu Methylobacter tundripaludur	6		X		X	x	x	X	X	X X X X	x		X	X	X	X	x		x X x			x		X	X
Alpl	Beijerinckiaceae Beijerinckiaceae Methylocenta Methylocenta Methylocenta Methylocenta Methylocenta Methylocenta Ipper soil Luster alpha Ima-protesbasteria Methylobaster Clonothrix Cronothrix Methylobaster Methylo	Methylobacter luteus Methylobacter psychrophilu Methylobacter tundripaludur	6		X		X	x	x	X	X	X X X X	x		X	X	X	X	x		x X x			x		X	X
Alpl	Beijerinckiaccae Methyloccysa Methylocysaccae Methylocystaccae Upper soil cluster alpha man-protochactera Methylococcaecae Clenothris Methylococcaecae Methylococcaecae Clenothris Methylococcaecae Methylococcaecae Clenothris Methylococcaecae Methylococaecae Methylococcaecae	Methylobacter luteus Methylobacter psychrophilu Methylobacter tundripaludur	6		X		X	x	x	X	X	X X X X	x	X	X	X	X	X	x		x X x			x		X	X
Alpl	Beijerinckiaceae Beijerinckiaceae Methylocenta Methylocenta Methylocytaceae Upper soil Latert alpha ma-ytoteobaeteria Methyloceaeaeae Methyloceaeaeae Methyloceadum Methyloceatum Methyl	Methylobacter luteus Methylobacter psychrophilu Methylobacter tundripaludur	6		X		X	x	x	X	X	X X X X	x		X	x	X	X	x		x X x			x		X	X
Alpl	Beijerinckiaccae Methyloccysa Methylocysaccae Methylocystaccae Upper soil cluster alpha man-protochactera Methylococcaecae Clenothris Methylococcaecae Methylococcaecae Clenothris Methylococcaecae Methylococcaecae<	Methylobacter luteus Methylobacter psychrophilu Methylobacter tundripaludur	6		X		X	x	x	X	X	X X X X	x	X	X	X	X	X	x x x x x x		x X x			X X X X		X	x
Alpl	Beijerinckiaccae Beijerinckiaccae Methylocapta Methylocapta Methylocaptaccae Methylofrau Methylocystaccae IUpper soil Laster alpha ma-protecobacteria Methylocactaecae Methylocactaecae Methylocactaecae Methylocactae Methylocact	Methylobacter luteus Methylobacter psychrophilu Methylobacter tundripaludur	6		X		X	x	x	X	X	X X X X	x	X	X	X	X	X	x		x X x			x		X	х х
Alpl	Beijerinckiaccae Methyloccysa Methylocysaccae Methylocysaccae Upper soil cluster alpha martylococcaecae Clonothrix Methylococcaecae Clonothrix Methylococcaecae Methylococcaecae Clonothrix Methylococcaecae	Methylobacter luteus Methylobacter psychrophilu Methylobacter tundripaludur	6		X		X	x	x	X	X	X X X X	x	X	X	X	X	X	x x x x x x		x X x			X X X X		X	х х х
Gam	Beijerinckiaccae Methylocapia Methylocap	Methylobacter luteus Methylobacter psychrophilu Methylobacter tundripaludur	6		X		X	x	x	X	X	X X X X	x	X	X	X	X	X	x x x x x x		x X x			X X X X		X	X
Gan Uncharacterized pmo/	Beijerinckiaccae Methylocapia Methylocap	Methylobacter luteus Methylobacter psychrophilu Methylobacter tundripaludur	6		X		X	x	X	X	X	X X X X	x	X	X	X	X	X	x x x x x x		x X x			X X X X		X	х х х
Garr Uncharacterized proof. Verrucomicrobia	Beijerinckiaccae Methylocapia Methylonapia Methylonap	Methylobacter luteus Methylobacter psychrophilu Methylobacter tundripaludur	6		X		X	x	x	X	X	X X X X	x	X	X	X	X	X	x x x x x x		x X x			X X X X		X	χ
Gan Uncharacterized pmo/ Verncomicrobia	Beijerinckiaccae Methylocesha Methylocesha Methylocesha Methylocesha Methylocesha Methylocesha Methylocystaccae Upper soil cluster alpha ma-protoshacteria Methylococcaecae Crenothrix Methylococcaecae Methylococcaecae Methylococcaecae Methylococcaecae Methylococcaecae Methylococcaecae Methylococcaecae Methylococcaecae Methylococcae Methylococcae <	Methylobacter luteus Methylobacter psychrophilu Methylobacter tundripaludur	6		X		X	x	x	X	X	X X X X	x	X	X	X	X	X	x x x x x x		x X x			X X X X		X	X X X
Garr Uncharacterized pmo/ Vermcomicrobia	Beijerinckiaccae Methyloccysac Methylocysaccae Methylocysaccae Methylocysaccae Upper soil cluster alpha ume-protochacteria Methylocysaccae Methylocysaccae Methylocysaccae Methylocysaccae Methylocysaccae Methylocycaccae Methylocycaccae Methylocycaccae Methylococcaccae Methylococcac	Methylobacter luteus Methylobacter psychrophilus Methylobacter tundripahdur	6		X		X	x	x	X	X	X X X X	x	X	X	X	X	X	x x x x x x		x X x			X X X X		X	х х х
Garr Uncharacterized pmo/ Vermcomicrobia	Beijerinckiaccae Methylocesha Methylocesha Methylocesha Methylocesha Methylocesha Methylocesha Methylocystaccae Upper soil cluster alpha ma-protoshacteria Methylococcaecae Crenothrix Methylococcaecae Methylococcaecae Methylococcaecae Methylococcaecae Methylococcaecae Methylococcaecae Methylococcaecae Methylococcaecae Methylococcae Methylococcae <	Methylobacter luteus Methylobacter psychrophilus Methylobacter tundripahdur	6				X	x	x	X	X	X X X X	x	X	X	X	X	X	x x x x x x		x X x			X X X X		X	X X X

Notes: Beige highlighted cells are soil samples with empirical support of atmospheric CH₁ oxidation Blue highlighted species are known pachrophilic or psychroloireant methanotophs "X" and "x" indicate the presence of methanotophs in the sample and "X" donotes the most dominant group. For studies that the relative abundance of methanotrophs is not known, "x" informs only the taxa being detected (no implication on the dominance). "X" and "x" indicate the presence of methanotophs in the sample and "X" donotes the most dominant group. For studies that the relative abundance of methanotrophs is not known, "x" informs only the taxa being detected (no implication on the dominance). Columns to the right of the dotted lines are studies of sub-Arctic regions which are provided as reference NA: Not available

Table S5. Methanotrophic proteins identified in near-surface cryosols (at 5 cm depth) in the intact core warming experiments.

		Sequence	Spectrum	Sequence	Protein	Aujusteu		MolWt				Г			Peptide		
Sample	Locus ¹	Count	Count	Coverage	Length	NSAF ²	Descriptive Name		pI	XCorr	DeltCN	ObsM+H+	CalcM+H+	Ion%	Count	Sequence ³	Charge
	pMMOJGIMGRASTw1Acontig00008*	2	2	34.7%	75	22.8	pmoB [unculturedbacterium]	7873	5.2	4.54	0.76	1613.8099	1614.7526	70.0%	1	R.GLSLSDNSPIAPGETR.D	2
Core A15, 1wk thaw	pMMOw1w26Acontig00005*	2	2	34.7%	75	22.8	pmoB [unculturedbacterium]	7873	5.2	2.60	0.51	1086.4727	1088.2059	61.1%	1	R.DVAVTIQDAR.W	2
(Techical replicate 1)	fig 543016.3.peg.43*	2	2	10.9%	247	6.9	[Methylocapsa USClike uncultured] [Particulate methane monooxygenase B-subunit (EC 1.14.13.25)]	27489	9.6	3.51	0.72	1840.9594	1842.0563			R.NIQALENEVDSGPITIK.Y	¥ 2
	pmoB_contig00023*	2	2	6.5%	413	4.1	manually translated USCalphalikepMMO	45464	7.1	3.22	0.64	1077.5647	1078.2133	94.4%	1	R.IGEFNTAGLR.F	2
	fig 543016.3.peg.43*	3	6	15.4%	247	224.9	[Methylocapsa USClike uncultured] [Particulate methane monooxygenase B-subunit (EC 1.14.13.25)]	27489	9.6	3.29	0.79	1840.9528	1842.0563			R.NIQALENEVDSGPITIK.Y	¥ 2
Core A15, 1wk thaw	pmoB contig00023*	3	6	9.2%	413	134.5	manually translated USCalphalikepMMO	45464	71	3.20	0.58	1077.5667	1078.2133			R.IGEFNTAGLR.F	2
(Technical replicate 2)	phos_conigo0023	3	0	9.270	415	134.5	inandariy nansiated Oscarphankepwiwo	43404	/.1	2.72	0.67	1353.668	1354.5022			K.VEYPDYLLADR.G	2
(recurrence 2)	gi 83308654 emb CAJ01562.1	2	4	4.7%	427	86.7	pmoB [Uncultured USCa Ricke]	47044	85	3.20	0.58	1077.5667	1078.2133			R.IGEFNTAGLR.F	2
			-		427				0.5	2.66	0.52	1073.5527	1074.179			R.DVAVTVQDAR.W	2
	pMMOJGIMGRASTw1Acontig00008*	2	3	21.3%	75	65.5	pmoB [unculturedbacterium]	7873	5.2	4.28	0.75	1613.8127	1614.7526			R.GLSLSDNSPIAPGETR.D	D 2
	pMMOw1w26Acontig00005*	2	3	21.3%	75	65.5	pmoB [unculturedbacterium]	7873	5.2	1.80	0.70	1617.13	1614.7526			R.GLSLSDNSPIAPGETR.D	
	fig 543016.3.peg.43*	4	6	15.4%	247	39.8	[Methylocapsa USClike uncultured] [Particulate methane monooxygenase B-subunit (EC 1.14.13.25)]	27489	9.6	3.06	0.75	1840.9568	1842.0563		1	R.NIQALENEVDSGPITIK.Y	Y 2
Core A15, 1wk thaw										2.66	0.52	1077.5645	1078.2133		3	R.IGEFNTAGLR.F	2
(Technical replicate 3)	pmoB_contig00023*	4	6	9.2%	413	23.8	manually translated USCalphalikepMMO	45464	7.1	1.99	0.52	1077.57	1078.2133		1	R.IGEFNTAGLR.F	1
										2.57	0.57	1353.6667	1354.5022			K.VEYPDYLLADR.G	2
	gi 83308654 emb CAJ01562.1	2	4	2.3%	427	15.3	pmoB [Uncultured USCa Ricke]	47044	05	2.66	0.52	1077.5645	1078.2133			R.IGEFNTAGLR.F	2
	gi 85508054 entb CA501502.1	2	4	2.370	427	15.5	philos [Oncandred OSCa Ricke]	47044	0.5	1.99	0.52	1077.57	1078.2133	44.4%	1	R.IGEFNTAGLR.F	1
Core A7, 12 month thaw	fig 543016.3.peg.43*	2	4	8.5%	247	18.3	[Methylocapsa USClike uncultured] [Particulate methane monooxygenase B-subunit (EC 1.14.13.25)]	27489	9.6	3.26	0.69	1077.5636	1078.2133		3	R.IGEFNTAGLR.F	2
(Technical replicate 1)	pmoB_contig00023*	2	4	5.1%	413	10.9	manually translated USCalphalikepMMO	45464	7.1	2.67	0.64	1353.6624	1354.5022		1	K.VEYPDYLLADR.G	2
(Technical replicate 1)	gi 83308654 emb CAJ01562.1	2	4	4.7%	427	10.6	pmoB [Uncultured USCa Ricke]	47044	8.5	3.26	0.69	1077.5636	1078.2133	94.4%	3	R.IGEFNTAGLR.F	2

Notes: ¹Contig sequences generated by our studies are marked with an asterisk. ²NSAF: Normalized Spectral abundance factor. Adjusted NSAF values are NSAF values multiplied by 1000000. ³Unique peptide sequences are highlighted using the same colour scheme as in Fig. 2.