THE LANCET Infectious Diseases

Supplementary webappendix

This webappendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Miller WC, Powers KA, Smith MK, Cohen MS. Community viral load as a measure for assessment of HIV treatment as prevention. *Lancet Infect Dis* 2013; published online March 25. http://dx.doi.org/10.1016/S1473-3099(12)70314-6.

Web Extra Material for Community Viral Load as a Metric for HIV Treatment as Prevention: A Cautionary Note

Miller WC, Powers KA, Smith MK, Cohen MS

Table 1 provides the values for the proportions of HIV-infected persons and the viral loads in each sub-group assumed in the calculations for Figure 3 in the main text.

Table 1. Values used in calculations for Figure 3 of main te
--

	"Typical" US setting	"Best case"*	Explanation / Sources	
% HIV-infected population in each sub-group:				
Infection-unaware with AHI	1.0	1.0	Best case: 19% of HIV-infected are unaware of infection	
Infection-unaware with EHI			(midpoint of estimates from 2005 and 2008 in ¹)	
			Typical US setting: 21% of HIV infected are unaware of infection ²	
			Both settings: 4.65% of infection-unaware cases have AHI (midpoint of estimated proportions of newly diagnosed cases who have acute HIV in ³ and ⁴)	
	20.0	18.0		
Infection-aware, not in care			Typical US setting: Fig 2 of ²	
	39.5	30.0	Best case: Table 1 of ¹	
Infection-aware, in care			Typical US setting: Fig 2 of ²	
	39.5	51.0	Best case: Table 1 of ¹	
Mean viral loads in each sub-group (copies/ml):				
Infection-unaware with AHI	177,828	177,828	Midpoint of mean in 5 and median in 3	
Infection-unaware with EHI	36,992	36,992	Assumed to be same as in infection-aware, not in care	
Infection-aware, not in care	36,992	36,992	Table 1 of ¹	
Infection-aware, in care	15,314	15,314	Table 1 of ¹	

* Based on data availability in San Francisco

The general approach to calculating each value shown in Figure 3, using the values from Table 1 above, was as follows:

Estimated viral load measure in given setting =
$$\sum_{i=1}^{4} \delta_i p_i v_i$$
,

where

i=1 for those who are infection-unaware with acute HIV infection (AHI), *i*=2 for those who are infection-unaware with established (post-acute) HIV infection (EHI), *i*=3 for those who are infection-aware but not in care, *i*=4 for those who are infection-aware and in care;

 $\delta_i = 0$ if subgroup *i* does not contribute to a given measure and $\delta_i = 1$ if subgroup *i* does contribute to a given measure;

 $p_i = 0$ if $\delta_i = 0$ and $p_i =$ the proportion of all those contributing to a measure who are in subgroup *i* if $\delta_i = 1$;

 v_i = the mean viral load in subgroup *i*.

Thus, the estimated "true" population viral load in a typical US setting (white bar in Figure 3) was calculated as:

 $(1 \times 0.01 \times 177,828) + (1 \times 0.2 \times 36,992) + (1 \times 0.395 \times 36,992) + (1 \times 0.395 \times 15,314) = 29,838$ copies/ml

The estimated "true" population viral load in an "ideal" setting (white bar in Figure 3, based on San Francisco data¹) was calculated as:

 $(1 \times 0.01 \times 177,828) + (1 \times 0.18 \times 36,992) + (1 \times 0.30 \times 36,992) + (1 \times 0.51 \times 15,314) = 27,345$ copies/ml

The estimated mean viral load for settings with viral load data available only for persons in care (gray bar in Figure 3) was calculated as:

The estimated mean viral load for persons in and out of care, excluding undiagnosed, as measured in an ideal setting (black bar in Figure 3) was calculated as:

References

- 1. Das M, Chu PL, Santos GM, et al. Decreases in community viral load are accompanied by reductions in new HIV infections in San Francisco. *PLoS ONE.* 2010;5(6):e11068.
- Gardner EM, McLees MP, Steiner JF, Del Rio C, Burman WJ. The spectrum of engagement in HIV care and its relevance to test-and-treat strategies for prevention of HIV infection. *Clin Infect Dis.* Mar 15 2011;52(6):793-800.
- 3. Pilcher CD, Fiscus SA, Nguyen TQ, et al. Detection of acute infections during HIV testing in North Carolina. *The New England journal of medicine*. May 5 2005;352(18):1873-1883.
- 4. Priddy FH, Pilcher CD, Moore RH, et al. Detection of acute HIV infections in an urban HIV counseling and testing population in the United States. *J Acquir Immune Defic Syndr*. Feb 1 2007;44(2):196-202
- 5. Kelley CF, Barbour JD, Hecht FM. The relation between symptoms, viral load, and viral load set point in primary HIV infection. *J Acquir Immune Defic Syndr.* Aug 1 2007;45(4):445-448