SUPPLEMENTARY DATA

[Al ³⁺]	$\{Al^{3+}\}_b$	${Al^{3+}}_0^o$	Root dry weight	Root length	Shoot dry weight	Shoot height
(µM)	(µM)	(µM)	$(mg plant^{-1})$	(cm plant ⁻¹)	(mg plant ⁻¹)	(cm plant ⁻¹)
0	0	0	17.99±1.02 a	18.25±0.90 a	80.00±2.50 a	34.63±1.07 a
200	41.8	18.6	17.31±0.60 a	16.98±1.02 a	76.67±1.44 ab	34.50±1.51 a
500	129.5	19.2	17.13±0.79 a	14.92±0.84 b	75.00±3.82 bc	33.17±1.70 a
1000	273.1	19.1	16.58±0.61 a	14.75±0.25 b	68.33±2.89 c	31.08±1.56 b

Table S1. Effects of aluminum at different concentrations on rice growth in the 3-week (long-term) experiment.

Rice seedlings (11 days old) were grown in nutrient solution with 0, 200, 500, or 1,000 μ M Al for 3 weeks. {Al³⁺}_b, Al activity in bulk solution; {Al³⁺}₀^o, Al activity at cell membrane surface. These were calculated by G-C-S model.

The values of root length, shoot height and dry weight are mean \pm s.d. (*n*=12). Different letters indicate significant differences among treatments (*P* < 0.05, Tukey's test).