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SUPPLEMENTARY DATA 

S1. Derivation of the logistic function-based sub-model Spatial Heterogeneity, in ChaMRoots. 

 

(Eq. 1) gives the definition of production efficiency of the finest roots at a given point due to the surrounding 
trees: 

𝐸 = d𝑅𝑅𝑅𝑡,0−1
d𝑝

 (Eq. 1) 

(Eq. 3) gives the generic form the logistic function-based sub-model spatial heterogeneity (SH): 

𝐸 = 𝑟𝑅𝑅𝑅𝑡,𝑥−𝑦(1− 𝑅𝑅𝑅𝑡,0−1
𝐾

−  𝜃 𝑅𝑅𝑅𝑢,0−1
𝐾

) (Eq. 3) 

(Eq. 5) indicates that 𝑅𝑅𝑅𝑡,𝑥−𝑦 refers to two sources of roots: 

𝑅𝑅𝑅𝑡,𝑥−𝑦 = 𝑅𝑅𝑅𝑡,0−5 = 𝑅𝑅𝑅𝑡,0−1 + 𝑅𝑅𝑅𝑡,1−5 (Eq. 5) 

(Eq. 6) gives the linear relationship between 𝑅𝑅𝑅𝑡,1−5 and 𝑅𝑅𝑅𝑡,0−1: 

𝑅𝑅𝑅𝑡,1−5 = 𝑎𝑅𝑅𝑅𝑡,0−1 + 𝑏 (Eq. 6) 

Applying (Eq. 1), (Eq. 5) and (Eq. 6) to (Eq. 3), we obtain (Eq. S1): 

d𝑅𝑅𝑅𝑡,0−1
d𝑝

= 𝑟[(1 + 𝑎)𝑅𝑅𝑅𝑡,0−1 + 𝑏](1 − 𝑅𝑅𝑅𝑡,0−1
𝐾

−  𝜃 𝑅𝑅𝑅𝑢,0−1
𝐾

) (Eq. S1) 

To simplify the equation expression, let: 

𝐴 = 1 + 𝑎 (Eq. S2) 

𝐿 = 1/𝐾 (Eq. S3) 

𝑄 = 1 −  𝜃 𝑅𝑅𝑅𝑢,0−1
𝐾

 (Eq. S4) 

Therefore, (Eq. S1) becomes: 

d𝑅𝑅𝑅𝑡,0−1
d𝑝

= 𝑟(𝐴 ∙ 𝑅𝑅𝑅𝑡,0−1 + 𝑏)(𝑄 − 𝐿 ∙ 𝑅𝑅𝑅𝑡,0−1)  

⇒ d𝑅𝑅𝑅𝑡,0−1
(𝐴∙𝑅𝑅𝑅𝑡,0−1+𝑏)(𝑄−𝐿∙𝑅𝑅𝑅𝑡,0−1)

= 𝑟d𝑝  

To facilitate formula integration, the above formula should be first transformed into the following form: 

( 𝑀
𝐴∙𝑅𝑅𝑅𝑡,0−1+𝑏

+ 𝑁
𝑄−𝐿∙𝑅𝑅𝑅𝑡,0−1

)d𝑅𝑅𝑅𝑡,0−1 = 𝑟d𝑝 (Eq. S5a) 

where M and N are two intermediary variables that meet the following relationship: 

𝑀�𝑄 − 𝐿 ∙ 𝑅𝑅𝑅𝑡,0−1�+ 𝑁�𝐴 ∙ 𝑅𝑅𝑅𝑡,0−1 + 𝑏� = 1  

⇒ (𝐴𝑁 − 𝐿𝑀)𝑅𝑅𝑅𝑡,0−1 + (𝑏𝑁 + 𝑄𝑀) = 1 (Eq. S5b) 

It is sufficient to find one pair of solutions of M and N for (Eq. S5b). Hence, let: 
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�𝐴𝑁 −  𝐿𝑀 =  0
𝑏𝑁 +  𝑄𝑀 =  1  

Solving the above simultaneous linear equations, we obtain a pair of M and N: 

�
𝑀 = 𝐴

𝑏𝐿+𝐴𝑄
                                                                                                                                          (Eq. 6a)

𝑁 = 𝐿
𝑏𝐿+𝐴𝑄

                                                                                                                                           (Eq. 6b)
  

 (Eq. S5a) can be written as: 

𝑀
𝐴∙𝑅𝑅𝑅𝑡,0−1+𝑏

 d𝑅𝑅𝑅𝑡,0−1 + 𝑁
𝑄−𝐿∙𝑅𝑅𝑅𝑡,0−1

 d𝑅𝑅𝑅𝑡,0−1 = 𝑟d𝑝  (Eq. S7) 

Integrating the above equation (with 𝑅𝑅𝑅𝑡,0−1 ∈  [0, +∞) and 𝑝 ∈  [0, +∞)), we obtain: 

𝑀
𝐴

ln�𝐴 ∙ 𝑅𝑅𝑅𝑡,0−1 + 𝑏� − 𝑁
𝐿

ln(𝑄 − 𝐿 ∙ 𝑅𝑅𝑅𝑡,0−1) = 𝑟𝑝 + 𝐶1 (Eq. S8) 

where, 𝐶1 is a constant; the terms within ln() are > 0. Applying the solved M, i.e. (Eq. S6a), and N, i.e. (Eq. 
S6b), to (Eq. S8), we obtain: 

ln�𝐴∙𝑅𝑅𝑅𝑡,0−1+𝑏�−ln(𝑄−𝐿∙𝑅𝑅𝑅𝑡,0−1)
𝑏𝐿+𝐴𝑄

= 𝑟𝑝 + 𝐶1  

⇒ ln �𝐴∙𝑅𝑅𝑅𝑡,0−1+𝑏
𝑄−𝐿∙𝑅𝑅𝑅𝑡,0−1

� = (𝑟𝑝 + 𝐶1)(𝑏𝐿 + 𝐴𝑄)  

⇒ 𝐴∙𝑅𝑅𝑅𝑡,0−1+𝑏
𝑄−𝐿∙𝑅𝑅𝑅𝑡,0−1

= 𝑒(𝑟𝑝+𝐶1)(𝑏𝐿+𝐴𝑄)  

= 𝑒𝑟𝑝(𝑏𝐿+𝐴𝑄)+𝐶1(𝑏𝐿+𝐴𝑄)  

=𝑒𝑟𝑝(𝑏𝐿+𝐴𝑄) ∙ 𝑒𝐶1(𝑏𝐿+𝐴𝑄) 

=𝐶2 ∙ 𝑒𝑟𝑝(𝑏𝐿+𝐴𝑄)  (Eq. S9) 

where, 𝐶2 is a constant and 𝐶2 = 𝐶1 (𝑏𝐿 + 𝐴𝑄). 

Let: 

𝑈 = 𝑒𝑟𝑝(𝑏𝐿+𝐴𝑄)  (Eq. S10) 

Applying (Eq. S10) to (Eq. S9), 𝑅𝑅𝑅𝑡,0−1 can be solved: 

𝑅𝑅𝑅𝑡,0−1 = 𝐶2𝑈𝑄−𝑏
𝐴+𝐶2𝐿𝑈

 (Eq. S11) 

In the present study, when potential of tree root provision (p) is equal to 0 (no tree), 𝑅𝑅𝑅𝑡,0−1= 0 (no tree 
roots). Therefore, by linking (Eq. S10) and (Eq. S11) we obtain: 

𝐶2 = 𝑏
𝑄

 (Eq. S12) 

Applying (Eq. S12) to (Eq. S11), we obtain: 

𝑅𝑅𝑅𝑡,0−1 = 𝑏(𝑈−1)
𝐴+𝑏𝐿𝑈/𝑄

  (Eq. S13) 
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Finally, applying (Eq. S2), (Eq. S3) and (Eq. S4) to (Eq. S13) and (Eq. S10), 

we obtain the following generic equations to calculate 𝑅𝑅𝑅𝑡,0−1: 

𝑅𝑅𝑅𝑡,0−1 = 𝑏(𝑈−1)
1+𝑎+𝑏𝑈/(𝐾−𝜃𝑅𝑅𝑅𝑢,0−1)

  (Eq. S14a) 

𝑈 = 𝑒𝑟𝑝[𝑏/𝐾+(1+𝑎)(1−𝜃
𝑅𝑅𝑅𝑢,0−1

𝐾 )]  (Eq. S14b) 

If θ is equal to zero (i.e. ignoring the effect of competition between understorey roots and tree roots), (Eq. 
S14a) and (Eq. S14b) turn into 

𝑅𝑅𝑅𝑡,0−1 = 𝑏(𝑈−1)
1+𝑎+𝑏𝑈/𝐾

  (Eq. S15a) 

𝑈 = 𝑒(1+𝑎+𝑏/𝐾)𝑟𝑝 (Eq. S15b) 

Replacing K by 𝐾𝑡, (Eq. S15a) and (Eq. S15b) becomes identical with (Eq. 7a) and (Eq. 7b) in the 
manuscript. 

 

The global tree root potential (p) at a given point is defined by the following general form: (Eq. 2): 

𝑝 = ∑ ∑ 𝑝𝑒,𝑠
𝑁𝑒
𝑒=1 = ∑ �∑

𝑔𝑒,𝑠
λ𝑠

𝛽+(𝑅𝑒,𝑠
𝛼 )𝜑𝑠

𝑁𝑒
𝑒=1 𝑂𝑒,𝑠�

𝑁𝑠
𝑠=1

𝑁𝑠
𝑠=1  (Eq. 2) 

Where, Ns is the number of tree species around the target point (Ns ≥0, s ∈ [0, Ns]). Ne is the number 
of tree individuals of a given species s around the target point (Ne ≥0, e ∈ [0, Ne]). pe,s is the 
potential of tree root provision contributed by the tree (e, s). ge,s is basal area at a height of 1.3 m of 
an individual tree e of species s (m²). De,s is horizontal distance from the centre of the tree (e, s) to 
the target point (m) and De,s ≥ 0. Oe,s is the absence of emerged obstacles on the ground between the 
target point and the tree e of species s. 

By setting Ns = Ne= 1 and associating (Eq. 2) with (Eq. S15a) and (Eq. S15b), we can perform 
sensitivity analyses on the contribution of a single tree to provide roots at a given distance from the 
trunk (See the figures below as examples). 
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Figure S1 An example of sensitivity analyses on the effect of tree size (represented by diameter at breast 
height) and distance on the root density based on (Eq. S15a) and (Eq. S15b). In this case, the following 
coefficient values were used: α= 1.5; β = 1; λs=φs =1; r = 25; Kt = 1400; a = 1.2 and b = 200. 

 

 

Figure S2 An example of sensitivity analysis on the effect of the factors controlling tree species (λs and φs) 
on the root density provision based on (Eq. S15a) and (Eq. S15b). In this case, following coefficient values 
were used: α= 1.5; β = 0; r = 25; Kt = 1400; a = 1.2; b = 200. The diameter at breast height of the tree is 30 
cm. 


