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Approximate equivalence between BIMBAM and CAVIAR for binary traits

For binary traits, we use a logistic model as follows:

p(yi=1) _ o .
logp(yi=0) - a +Z;'n=1Xij/3j:l =1,-,n (A1)

where y; is the phenotype of individual i; 1 indicates a case and 0 indicates a control. X;; is the same
additively coded genotype of individual i and SNP j as for the above quantitative traits. The model
parameters are  and 8 = (S, -+, fm)T. The phenotype vector is y = (y, ..., y,)T. Again we assume

each column of X has mean 0 and variance 1, i.e., % L1 Xij = 0,%2?=1Xi2j =1,j=1,2,..,n. Denote
the number of cases and controls by n; and n,, respectively. Let X = (1,,1,X), 8 = (a, B)T, where
1,,x1means the n x 1 vector of 1s. We assume a normal prior distribution for 3, i.e., B~N(0, ¥), where ©
is a diagonal matrix with positive diagonal entries. Denote the first diagonal entry for a by 2, the rest of
the diagonal matrix by v, the variance of 8. The null model is 8 = 0,1, Which is equivalent to setting v
t0 0,5,5m, Where 0,5, isam X 1 vector of 0s, and 0, x,, IS am X m matrix of 0s. The Bayes factor
comparing the full model with the null model is

X|o2,v
o= zz(yz log, v) '
Py, X|0g, v = Omxm)

where p(y, X|a2,v) = [ p(y,X|B)p(Blo2,v)df, an integral over the prior distribution of 5. BIMBAM
approximates the integral using Laplace’s method. In the following, we approximate the integral using

sufficient statistics and normal distributions.

For canonical link functions of generalized linear models, (XTy, X) are the sufficient statistics for

(AGRESTI 2013). We also consider X as random. By the definition of sufficient statistics

p(v.X|) =p(XTy ,X|B)p(rv.XIX"y,X) = p(X"y |X, B)p(XIB)p(y, X|X Ty, X),



where p(XTy , X|B) is the likelinood of (X"y, X) given §, p(y, X|X"y, X) is the conditional probability
of the data (y, X) given (XTy, X), which does not depend on 3. Because X does not depend on g, we

have
p(v.X|B) = p(X"y |X, B)p(X)p(y, X|X"y , X).
Therefore the Bayes factor can be written as the ratio of two likelihoods

gp— p(XTy |X,B)p(B|o2,v)dp
[p(XTy |X, B)p(Blo,v = 0)df

Denote the numerator by L, and the denominator by L,. They are the marginal likelihood of XTy given X
after integrating out 8. Now we approximate this marginal likelihood using normal distributions. From
the Central Limit Theorem, X”y given X and 8 has an approximate multivariate normal distribution with

the following mean and variance
E(X"y|X,B) =XTE(y) =X"P,
Var(XTy |X,5) = XTWX

where P is a vector with each element p;(a, B) = p(y; =1) =1/ (1 + exp(—(a + Z}’;IXL-T}-BJ-))), Wisa
n X n diagonal matrix with the ith diagonal entry p; x (1 — p;). Because the effects g are usually small in

real data, we can approximate W by W,, the estimated variance under the null hypothesis. Specifically,

nin;

Wy = 5:(1 — )L, = wyl,,, where wy = . We can also linearize p;, the mean of y;, using the Taylor

n2

nq

expansion at the MLE of the null hypothesis, denoted by a, and By = 0,,x1, Where p;(ag, Bo) = ¥; = -

Specifically,



pia ) = pian, fo) + piCato, Bo) (1~ pileta, B)) | (@ — o) + ) X5
j=1

m
ny nn, nin,;
=+ (a) +—3 Z(a+xfjﬁj).
j=1

n

In the matrix form, P = t; 1% + woXB, where t; = =% + =22 (—aq), Lpxq is @ n x 1 vector of 1s. In

summary, we can write the approximate normal distribution of X7y given X and /3 as follows:
E(XTy|X,B) ~ t, X  Lnxy + woXTXB,

Var(XTy

%,B) ~ woXTX

Because 3 follows a multivariate normal distribution S~N (0, ), the marginal distribution of XTy given

X also has a multivariate normal distribution. Specifically, we have

EXTy 10 = E(EXTY 1%.8)) = ()

Omx1
Var(XTy |X) = E (Var()?Ty |)?,,8_)) + Var (E()?Ty |)?,E))

nwy + n®wéa?

~WoXTX + W2XTXvXTX =
0 0 woXTX + w2XTXvXTX

Therefore likelihood L, can be approximated as
- _m+1 1 1
Ly =@z (|nwe + n?wEa|IweXT X, + wovXTX|) Zexp (_EDl)'

where
D; = (17,qy —nt)T (nwy + n*wio2) (1, y — nty) +

XTT(WoXTX + wiXTXvXTX)"1(XTy).



By setting v to 0,;,xm, We get the approximated L, as
- _m+1 1 1
Lo =2m)7 2 (|nw + n?w20?|lweXTX]) Zexp (_EDO)'

where Dy = (17 .,y — nt)T(nwy + n?wéo2) 1 (11,.,y — nty) + XTY)T W XTX)"1(XTy). From
Woodbury matrix identity,

WoXTX + weXTXvXTX)™ = (WoXTX)™ — (071 + woXTX)7 1.

Therefore the approximate Bayes factor is
_ _1 1
BF = |I, + wovXTX| Zexp (EyTX(v_l + WOXTX)—ley).

By plugging in the Armitage trend test statistic z = /#XTy (see the derivation from the following
172

]

. . xTx
section about non-centrality parameters), X, = — and wy = e

— 1
BF = |, + nwyvZ,| exp (EZT((nWOU)_l + Zx)_lz).

This is the same as equation (3) except the coefficient wy, therefore completing the proof.

We also note that here v is the variance of 8, while in the proof for quantitative traits, the variance of g is
v%. Let v = 621,,. The input for BIMBAM, denoted by o,(BIMBAM), is o,, while the input for

CAVIARBF, denoted by o,(CAVIARBF), is \/wy0,. To get results similar to BIMBAM with the “-cc”

option, in addition to setting the weights to the variances of SNPs as in quantitative traits, we also need to

make sure that

nn
0,(CAVIARBF) = \Jwyo,(BIMBAM) = / 71122 o, (BIMBAM).

Non-centrality parameters of the marginal test statistics under multiple causal SNPs



For quantitative traits, without loss of generality, we can assume the same model as in equation (1). We

rewrite it here and use o2 instead of %:
y=XB+ &¢e~N(0,0%1L,).

Each column of X has mean 0 and variance 1, i.e., % e Xij = O,%Z?ﬂxizj =1,j=1,2,..,n. Denote

the column j of X by Xj, so that the marginal test statistic is

1
_ (XJTXJ)_lijy _ (XJ'TXJ')_EXJTy _ n_%XjTy

Zj 1 &: G
~(¥Ty )\ 2 j j

UJ(XJ' X;)

Assume §; is a good approximation of o when the sample size is large enough. This assumption is

acceptable because the proportion of variation explained by X is usually small. Therefore the test statistic

L.
2X]-y

. N n N N N A .
can be approximated by Z; = .Let 2 =[2,2,,,2,]". In matrix form, we have

1
n 2XTy
P

5=
Therefore,

1 1
n2XTXB nzx
B =2 A
o o

1 XTx
XTvar(y))X = —=13,,

Var(2) = —
no n

T
where X, = % This also shows the approximate multivariate normal distribution for the marginal test

statistics. The marginal non-centrality parameter for each SNP is the square of each element in E(2).

With the marginal non-centrality parameters, we can calculate the power for the causal SNPs.



For binary traits, we use the model specified in equation Al. For simplicity, we first assume data are
generated in a prospective logistic model. Following (SCHAID et al. 2002; SEAMAN and MULLER-

MYHSOK 2005), the score statistic vector for each SNP is

n
T ~ .
U,B = (Uﬁﬂ""Uﬁm) ’U.Bj = Z(yl _yi)Xijr] =1,.-,m,

i=1

where ¥; is the fitted value for individual i, which is obtained under the null hypothesis, i.e., setting all
Bj,j =1,---,m to 0, to obtain the maximum likelihood estimate @ of « and then calculate the fitted ¥;.

Under the null hypothesis that f = 0, the variance of U is
Vg =51 = XX — nxpxy),

where ¥ = (§1,+++, )7, x,,, is a column vector where each element is the mean of each column in matrix
X. Under the null hypothesis, Ug is asymptotically distributed multivariate normal, i.e., UB~N(O, VB) or

UE VB‘lUB has a chi-square distribution. Because there are no other covariates except the intercept and X

xTx
L2 XTX =2y where 3, = —. The
n n n

n

is centered and scaled, we have ¥; = % Us=X"y,and Vg =

marginal score test statistic for SNP j can be obtained by only keeping the jth column in X in the model.

Specifically, the marginal score test statistic vector is

1
U ’ n i
Z = B = XTy = — y’
nin, nin; g
\’ n

where 6 = / n:zlz = /¥;(1 — 3;), the estimated standard deviation of y. The test statistics have a similar

form as that for quantitative traits. These are also Armitage’s trend tests (SASIENI 1997).



To calculate the power, we need to know the distribution under the alternative hypothesis. When the
sample size is large, based on the Central Limit Theorem, z has a multivariate normal distribution. We

have

n

E(z) = XTE(y) = XTp,
12 nin,
n n
Var(z) = XTvar(y)X = XTwx,
nin, nin,

where P is a vector with each element p;(a, 8) = p(y; =1) =1/ (1 + exp(—(a + Z}'leiTij))), Wis a
n X n diagonal matrix with the ith diagonal entry p; X (1 — p;). With known a and g3, the power of
Armitage’s trend test can be calculated. For retrospective case control studies, we should change a to a*
to reflect the different sampling probabilities for cases and controls (AGRESTI 2013). Because the effects
B are usually small in real data, we can approximate W by W, the estimated variance under the null

hypothesis. Specifically, W, = 7;(1 — 7;)I,,. Therefore we have
T
Var(z) = % =3X,.

We can also linearize p;, the mean of y;, using the Taylor expansion at the MLE of the null hypothesis,

denoted by a, and By = 0,,x1, Where p; (ag, Bo) = J; = % Therefore,

n

ng
pi(alﬁ) = ; +

m
112 nin; T
2@ a) 550D X
j=1

nqin;

In the matrix form, P = t,1,,; + 62XB, where t, = % + (@ — ay). Therefore

n2

n n

n, nin, 1
E(2) ~ xXT12xp = / Y. B = nz63, p.
(Z) n1n2 nz ﬂ n xﬁ nzo xﬁ




The marginal non-centrality parameter for each SNP is the square of each element in E (z). In this
approximation the non-centrality parameters do not require the specification of the intercept. This also
proves the approximate multivariate normal distribution of the marginal test statistics under the logistic
model. We can see that the approximate distributions of the marginal test statistics have a similar form as

guantitative traits.
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Table S1. Average number of SNPs needed to include 50% and 90% causal SNPs among 100
simulated data sets under different number of causal SNPs for binary trait.

1° 2 3 4 5
50% 90% 50% 90% 50% 90% 50% 90% 50% 90%
CAVIARBF 153 12.00 4.00 17.00 483 19.33 750  23.67 9.11  24.00
BIMBAM 150 12.00 3.68 16.75 492  20.00 7.63  24.00 9.16  25.00
PAINTOR 150 10.67 5.83 2333 7.11  26.50 991 2611 11.92  28.80
ENET 1.80 NA 6.20 NA 7.50  29.43 10.88 NA 13.50 NA
LASSO 1.63 NA 5.50 NA 8.29 NA 13.67 NA 15.00 NA
CAVIARBF(ref) 170  13.50 429 17.00 6.17  22.83 9.08 24.64 10.56  26.25

*The number of causal SNPs in the data. The smallest number for each column is in bold. NA: data not

available for the calculation. CAVIARBF(ref): CAVIARBF with the correlation among SNPs estimated from the
CEU population of the 1000 Genomes Project.
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Figure S1. Comparison of different fine mapping methods on binary traits. The y-axis is the
proportion of causal SNPs included and x-axis is the number of selected SNPs. There are 35
SNPs in total. The proportions are calculated over 100 data sets. The proportion (y-value) is not
calculated if more than 5 data sets do not reach the specified number of SNPs (x-value). This is
why some proportions are not available for LASSO and ENET as the number of selected
candidate SNPs becomes large. Each plot corresponds to a different number of causal SNPs.
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Figure S2. Comparison of different prior values o, on binary traits. CAVIARBF is used to
calculate the Bayes factors. The meaning of the x-axis and y-axis is the same as in Figure S1.
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Figure S3. Comparison of different criteria to prioritize variants on binary traits. CAVIARBF is
used to calculate the Bayes factors. The green dash line represents prioritizing SNPs using
marginal posterior inclusion probabilities (PIPs). The red sold line represents prioritizing SNPs
using p-level confidence set. The meaning of the x-axis and y-axis is the same as in Figure S1.
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Figure S4. Estimated probabilities of p-level confidence set and boxplots of the number of
selected SNPs. The phenotypes are binary traits. The bar graph is plotted above the
corresponding boxplot. The red dash line shows the nominal level of the confidence set. The bars
show the estimated proportion where the selected SNPs include all causal SNPs among 100 data
sets. For ENET and LASSO, the best model selected by cross validation is used for each data set.
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Figure S5. Estimated probabilities of p-level confidence set and boxplots of the number of
selected SNPs for independent SNPs. The phenotypes are quantitative traits. The rest of the
description is the same as Figure S4.



Pairwise LD, P values and marginal posterior inclusion probabilities (PIPs)
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Figure S6. P-values and posterior inclusion probabilities (PIPs) for independent SNPs. Circles
represent the p-values on the left y-axis and lines represent the PIPs on the right y-axis. The
gold color indicates the true causal SNPs. The color coded LD pattern is shown below.
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Figure S7. Calibration of the posterior inclusion probabilities (PIPs) on binary traits.
CAVIARBEF is used to calculate the Bayes factors. SNPs were put into 10 bins of width 0.1
according to their PIPs. In each bin, the proportion of causal SNPs was then calculated. The x-
axis shows the center of each bin. The y-axis is the proportion of causal SNPs. The blue points
show the proportion of causal SNPs in each bin. The red bars show the 95% Wilson score
confidence interval of the proportion assuming a binomial distribution in each bin. 100 data sets
were used in each plot. Except those points with very large confidence intervals due to small
total counts in the bins, usually less than 10, in general the points lie near the line y = x. This
indicates that the PIPs are reasonably calibrated.



Pairwise LD, P values and marginal posterior inclusion probabilities (PIPs)
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Figure S8. P-values and posterior inclusion probabilities (PIPs) from BIMBAM on U.S. cohort.
Circles represent the individual-SNP-based p-values on the left y-axis and lines represent the
PIPs on the right y-axis. The color coded LD pattern is shown below.
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Figure S9. P-values and posterior inclusion probabilities (PIPs) from PAINTOR on U.S. cohort.

The rest of the description is the same as Figure S8.
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Figure S10. P-values and posterior inclusion probabilities (PIPs) from CAVIARBF on San Diego
cohort. The rest of the description is the same as Figure S8.
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Figure S11. P-values and posterior inclusion probabilities (PIPs) from BIMBAM on San Diego
cohort. The rest of the description is the same as Figure S8.
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Figure S12. P-values and posterior inclusion probabilities (PIPs) from PAINTOR on San Diego
cohort. The rest of the description is the same as Figure S8.
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Figure S13. P-values and posterior inclusion probabilities (PIPs) from CAVIARBF on U.S. cohort
using estimated correlation matrix from EUR population in the 1000 Genomes Project. The rest of
the description is the same as Figure S8.





