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Approximate equivalence between BIMBAM and CAVIAR for binary traits 

For binary traits, we use a logistic model as follows: 

𝑙𝑜𝑔
𝑝(𝑦𝑖=1)

𝑝(𝑦𝑖=0) 
= 𝛼 + ∑ 𝑋𝑖𝑗

𝑇 𝛽𝑗
𝑚
𝑗=1 , 𝑖 = 1, ⋯ , 𝑛                                                            (A1) 

where 𝑦𝑖 is the phenotype of individual i; 1 indicates a case and 0 indicates a control. 𝑋𝑖𝑗 is the same 

additively coded genotype of individual i and SNP j as for the above quantitative traits. The model 

parameters are 𝛼 and 𝛽 = (𝛽1, ⋯ , 𝛽𝑚)𝑇. The phenotype vector is 𝑦 = (𝑦1, … , 𝑦𝑛)𝑇 . Again we assume 

each column of X has mean 0 and variance 1, i.e., 
1

𝑛
∑ 𝑋𝑖𝑗

𝑛
𝑖=1 = 0,

1

𝑛
∑ 𝑋𝑖𝑗

2𝑛
𝑖=1 = 1, 𝑗 = 1, 2, … , 𝑛. Denote 

the number of cases and controls by 𝑛1 and 𝑛2, respectively. Let 𝑋̅ = (1𝑛×1, 𝑋), 𝛽̅ = (𝛼, 𝛽)𝑇 , where 

1𝑛×1means the 𝑛 × 1 vector of 1s. We assume a normal prior distribution for 𝛽̅, i.e., 𝛽̅~𝑁(0, 𝑣̅), where 𝑣̅ 

is a diagonal matrix with positive diagonal entries. Denote the first diagonal entry for 𝛼 by 𝜎𝛼
2, the rest of 

the diagonal matrix by 𝑣, the variance of 𝛽. The null model is 𝛽 = 0𝑚×1, which is equivalent to setting 𝑣 

to 0𝑚×𝑚, where 0𝑚×1 is a 𝑚 × 1 vector of 0s, and 0𝑚×𝑚 is a 𝑚 × 𝑚 matrix of 0s. The Bayes factor 

comparing the full model with the null model is  

𝐵𝐹 =
𝑝(𝑦, 𝑋̅|𝜎𝛼

2, 𝑣)

𝑝(𝑦, 𝑋̅|𝜎𝛼
2, 𝑣 = 0𝑚×𝑚)

, 

where 𝑝(𝑦, 𝑋̅|𝜎𝛼
2, 𝑣) = ∫ 𝑝(𝑦, 𝑋̅|𝛽̅)𝑝(𝛽̅|𝜎𝛼

2, 𝑣)𝑑𝛽̅, an integral over the prior distribution of 𝛽̅. BIMBAM 

approximates the integral using Laplace’s method. In the following, we approximate the integral using 

sufficient statistics and normal distributions. 

For canonical link functions of generalized linear models, (𝑋̅𝑇𝑦, 𝑋̅) are the sufficient statistics for 𝛽̅ 

(AGRESTI 2013). We also consider 𝑋̅ as random. By the definition of sufficient statistics 

𝑝(𝑦, 𝑋̅|𝛽̅) = 𝑝(𝑋̅𝑇𝑦 , 𝑋̅|𝛽̅)𝑝(𝑦, 𝑋̅|𝑋̅𝑇𝑦 , 𝑋̅) = 𝑝(𝑋̅𝑇𝑦 |𝑋̅, 𝛽̅)𝑝(𝑋̅|𝛽̅)𝑝(𝑦, 𝑋̅|𝑋̅𝑇𝑦 , 𝑋̅), 



where 𝑝(𝑋̅𝑇𝑦 , 𝑋̅|𝛽̅) is the likelihood of (𝑋̅𝑇𝑦 , 𝑋̅) given 𝛽̅, 𝑝(𝑦, 𝑋̅|𝑋̅𝑇𝑦 , 𝑋̅) is the conditional probability 

of the data (𝑦, 𝑋̅) given (𝑋̅𝑇𝑦 , 𝑋̅), which does not depend on 𝛽̅. Because 𝑋̅ does not depend on 𝛽̅, we 

have  

𝑝(𝑦, 𝑋̅|𝛽̅) = 𝑝(𝑋̅𝑇𝑦 |𝑋̅, 𝛽̅)𝑝(𝑋̅)𝑝(𝑦, 𝑋̅|𝑋̅𝑇𝑦 , 𝑋̅). 

 Therefore the Bayes factor can be written as the ratio of two likelihoods 

𝐵𝐹 =
∫ 𝑝(𝑋̅𝑇𝑦 |𝑋̅, 𝛽̅)𝑝(𝛽̅|𝜎𝛼

2, 𝑣)𝑑𝛽̅

∫ 𝑝(𝑋̅𝑇𝑦 |𝑋̅, 𝛽̅)𝑝(𝛽̅|𝜎𝛼
2, 𝑣 = 0)𝑑𝛽̅

. 

Denote the numerator by 𝐿1 and the denominator by 𝐿0. They are the marginal likelihood of 𝑋̅𝑇𝑦 given 𝑋̅ 

after integrating out 𝛽̅. Now we approximate this marginal likelihood using normal distributions. From 

the Central Limit Theorem, 𝑋̅𝑇𝑦 given  𝑋̅ and 𝛽̅ has an approximate multivariate normal distribution with 

the following mean and variance 

𝐸(𝑋̅𝑇𝑦 |𝑋̅, 𝛽̅) = 𝑋̅𝑇𝐸(𝑦) = 𝑋̅𝑇𝑃, 

𝑉𝑎𝑟(𝑋̅𝑇𝑦 |𝑋̅, 𝛽̅) = 𝑋̅𝑇𝑊𝑋̅ 

where P is a vector with each element 𝑝𝑖(𝛼, 𝛽) = 𝑝(𝑦𝑖 = 1) = 1/ (1 + exp (−(𝛼 + ∑ 𝑋𝑖𝑗
𝑇 𝛽𝑗

𝑚
𝑗=1 ))), 𝑊 is a 

𝑛 × 𝑛 diagonal matrix with the ith diagonal entry 𝑝𝑖 × (1 − 𝑝𝑖). Because the effects 𝛽 are usually small in 

real data, we can approximate 𝑊 by 𝑊0, the estimated variance under the null hypothesis. Specifically, 

𝑊0 = 𝑦̃𝑖(1 − 𝑦̃𝑖)𝐼𝑛 = 𝑤0𝐼𝑛 , where 𝑤0 =
𝑛1𝑛2

𝑛2 . We can also linearize 𝑝𝑖, the mean of 𝑦𝑖, using the Taylor 

expansion at the MLE of the null hypothesis,  denoted by 𝛼0 and 𝛽0 = 0𝑚×1, where 𝑝𝑖(𝛼0, 𝛽0) = 𝑦̃𝑖 =
𝑛1

𝑛
. 

Specifically,  



𝑝𝑖(𝛼, 𝛽) ≈ 𝑝𝑖(𝛼0, 𝛽0) + 𝑝𝑖(𝛼0, 𝛽0)(1 − 𝑝𝑖(𝛼0, 𝛽0)) ((𝛼 − 𝛼0) + ∑ 𝑋𝑖𝑗
𝑇 𝛽𝑗

𝑚

𝑗=1

)

=
𝑛1

𝑛
+

𝑛1𝑛2

𝑛2
(−𝛼0) +

𝑛1𝑛2

𝑛2
∑(𝛼 + 𝑋𝑖𝑗

𝑇 𝛽𝑗)

𝑚

𝑗=1

. 

In the matrix form, 𝑃 = 𝑡11𝑛×1 + 𝑤0𝑋̅𝛽̅, where 𝑡1 =
𝑛1

𝑛
+

𝑛1𝑛2

𝑛2
(−𝛼0), 1𝑛×1 is a 𝑛 × 1 vector of 1s. In 

summary, we can write the approximate normal distribution of 𝑋̅𝑇𝑦 given  𝑋̅ and 𝛽̅ as follows: 

𝐸(𝑋̅𝑇𝑦 |𝑋̅, 𝛽̅) ≈ 𝑡1𝑋̅𝑇1𝑛×1 + 𝑤0𝑋̅𝑇𝑋̅𝛽̅, 

𝑉𝑎𝑟(𝑋̅𝑇𝑦 |𝑋̅, 𝛽̅) ≈ 𝑤0𝑋̅𝑇𝑋̅ 

Because 𝛽̅ follows a multivariate normal distribution 𝛽̅~𝑁(0, 𝑣̅), the marginal distribution of 𝑋̅𝑇𝑦 given 

𝑋̅ also has a multivariate normal distribution. Specifically, we have  

𝐸(𝑋̅𝑇𝑦 |𝑋̅) = 𝐸 (𝐸(𝑋̅𝑇𝑦 |𝑋̅, 𝛽̅)) ≈ (
𝑛𝑡1

0𝑚×1
), 

𝑉𝑎𝑟(𝑋̅𝑇𝑦 |𝑋̅) = 𝐸 (𝑉𝑎𝑟(𝑋̅𝑇𝑦 |𝑋̅, 𝛽̅)) + 𝑉𝑎𝑟 (𝐸(𝑋̅𝑇𝑦 |𝑋̅, 𝛽̅)) 

≈ 𝑤0𝑋̅𝑇𝑋̅ + 𝑤0
2𝑋̅𝑇𝑋̅𝑣̅𝑋̅𝑇𝑋̅ = (

𝑛𝑤0 + 𝑛2𝑤0
2𝜎𝛼

2

𝑤0𝑋𝑇𝑋 + 𝑤0
2𝑋𝑇𝑋𝑣𝑋𝑇𝑋

) 

Therefore likelihood 𝐿1 can be approximated as  

𝐿̂1 = (2𝜋)−
𝑚+1

2 (|𝑛𝑤0 + 𝑛2𝑤0
2𝜎𝛼

2||𝑤0𝑋𝑇𝑋||𝐼𝑚 + 𝑤0𝑣𝑋𝑇𝑋|)
−

1
2 exp (−

1

2
𝐷1), 

where  

𝐷1 = (1𝑛𝑥1
𝑇 𝑦 − 𝑛𝑡1)𝑇(𝑛𝑤0 + 𝑛2𝑤0

2𝜎𝛼
2)−1(1𝑛𝑥1

𝑇 𝑦 − 𝑛𝑡1) + 

(𝑋𝑇𝑦)𝑇(𝑤0𝑋𝑇𝑋 + 𝑤0
2𝑋𝑇𝑋𝑣𝑋𝑇𝑋)−1(𝑋𝑇𝑦). 



By setting 𝑣 to 0𝑚×𝑚, we get the approximated 𝐿0 as  

𝐿̂0 = (2𝜋)−
𝑚+1

2 (|𝑛𝑤0 + 𝑛2𝑤0
2𝜎𝛼

2||𝑤0𝑋𝑇𝑋|)
−

1
2 exp (−

1

2
𝐷0), 

where 𝐷0 = (1𝑛𝑥1
𝑇 𝑦 − 𝑛𝑡1)𝑇(𝑛𝑤0 + 𝑛2𝑤0

2𝜎𝛼
2)−1(1𝑛𝑥1

𝑇 𝑦 − 𝑛𝑡1) + (𝑋𝑇𝑦)𝑇(𝑤0𝑋𝑇𝑋)−1(𝑋𝑇𝑦). From 

Woodbury matrix identity,  

(𝑤0𝑋𝑇𝑋 + 𝑤0
2𝑋𝑇𝑋𝑣𝑋𝑇𝑋)−1 = (𝑤0𝑋𝑇𝑋)−1 − (𝑣−1 + 𝑤0𝑋𝑇𝑋)−1. 

Therefore the approximate Bayes factor is  

𝐵𝐹̂ = |𝐼𝑚 + 𝑤0𝑣𝑋𝑇𝑋|−
1
2 exp (

1

2
𝑦𝑇𝑋(𝑣−1 + 𝑤0𝑋𝑇𝑋)−1𝑋𝑇𝑦). 

By plugging in the Armitage trend test statistic 𝑧 = √
𝑛

𝑛1𝑛2
𝑋𝑇𝑦 (see the derivation from the following 

section about non-centrality parameters), Σ𝑥 =
𝑋𝑇𝑋

𝑛
 and 𝑤0 =

𝑛1𝑛2

𝑛2 ,  

𝐵𝐹̂ = |𝐼𝑚 + 𝑛𝑤0𝑣Σ𝑥| exp (
1

2
𝑧𝑇((𝑛𝑤0𝑣)−1 + Σ𝑥)−1𝑧). 

This is the same as equation (3) except the coefficient 𝑤0, therefore completing the proof.  

We also note that here 𝑣 is the variance of 𝛽, while in the proof for quantitative traits, the variance of 𝛽 is 

𝑣
1

𝜏
. Let 𝑣 = 𝜎𝑎

2𝐼𝑚. The input for BIMBAM, denoted by 𝜎𝑎(𝐵𝐼𝑀𝐵𝐴𝑀), is 𝜎𝑎, while the input for 

CAVIARBF, denoted by 𝜎𝑎(𝐶𝐴𝑉𝐼𝐴𝑅𝐵𝐹), is √𝑤0𝜎𝑎. To get results similar to BIMBAM with the “-cc” 

option, in addition to setting the weights to the variances of SNPs as in quantitative traits, we also need to 

make sure that  

𝜎𝑎(𝐶𝐴𝑉𝐼𝐴𝑅𝐵𝐹) = √𝑤0𝜎𝑎(𝐵𝐼𝑀𝐵𝐴𝑀) = √
𝑛1𝑛2

𝑛2
 𝜎𝑎(𝐵𝐼𝑀𝐵𝐴𝑀). 

Non-centrality parameters of the marginal test statistics under multiple causal SNPs 



For quantitative traits, without loss of generality, we can assume the same model as in equation (1). We 

rewrite it here and use 𝜎2 instead of 
1

𝜏
: 

𝑦 = 𝑋𝛽 +  𝜀, 𝜀~𝑁(0, 𝜎2𝐼𝑛). 

Each column of X has mean 0 and variance 1, i.e., 
1

𝑛
∑ 𝑋𝑖𝑗

𝑛
𝑖=1 = 0,

1

𝑛
∑ 𝑋𝑖𝑗

2𝑛
𝑖=1 = 1, 𝑗 = 1, 2, … , 𝑛. Denote 

the column j of X by 𝑋𝑗, so that the marginal test statistic is 

𝑧𝑗 =
(𝑋𝑗

𝑇𝑋𝑗)
−1

𝑋𝑗
𝑇𝑦

𝜎̂𝑗(𝑋𝑗
𝑇𝑋𝑗)

−
1
2

=
(𝑋𝑗

𝑇𝑋𝑗)
−

1
2𝑋𝑗

𝑇𝑦

𝜎̂𝑗
=

𝑛−
1
2𝑋𝑗

𝑇𝑦

𝜎̂𝑗
. 

Assume 𝜎̂𝑗 is a good approximation of 𝜎 when the sample size is large enough. This assumption is 

acceptable because the proportion of variation explained by X is usually small. Therefore the test statistic 

can be approximated by 𝑧̂𝑗 =
𝑛

−
1
2𝑋𝑗

𝑇𝑦

𝜎
. Let 𝑧̂ = [𝑧̂1, 𝑧̂2, ⋯ , 𝑧̂𝑚]𝑇. In matrix form, we have 

𝑧̂ =
𝑛−

1
2𝑋𝑇𝑦

𝜎
. 

Therefore, 

𝐸(𝑧̂) =
𝑛−

1
2𝑋𝑇𝑋𝛽

𝜎
=

𝑛
1
2Σ𝑥𝛽

𝜎
,  

𝑉𝑎𝑟(𝑧̂) =
1

𝑛𝜎2
𝑋𝑇𝑣𝑎𝑟(𝑦)𝑋 =

𝑋𝑇𝑋

𝑛
= Σ𝑥 , 

where Σ𝑥 =
𝑋𝑇𝑋

𝑛
. This also shows the approximate multivariate normal distribution for the marginal test 

statistics. The marginal non-centrality parameter for each SNP is the square of each element in 𝐸(𝑧̂). 

With the marginal non-centrality parameters, we can calculate the power for the causal SNPs. 



For binary traits, we use the model specified in equation A1. For simplicity, we first assume data are 

generated in a prospective logistic model. Following (SCHAID et al. 2002; SEAMAN and MULLER-

MYHSOK 2005), the score statistic vector for each SNP is 

𝑈𝛽 = (𝑈𝛽1
, ⋯ , 𝑈𝛽𝑚

)
𝑇

, 𝑈𝛽𝑗
= ∑(𝑦𝑖 − 𝑦̃𝑖)𝑋𝑖𝑗

𝑛

𝑖=1

, 𝑗 = 1, ⋯ , 𝑚, 

where 𝑦̃𝑖 is the fitted value for individual i, which is obtained under the null hypothesis, i.e., setting all 

𝛽𝑗, 𝑗 = 1, ⋯ , 𝑚 to 0, to obtain the maximum likelihood estimate 𝛼̂ of 𝛼 and then calculate the fitted 𝑦̃𝑖. 

Under the null hypothesis that 𝛽 = 0, the variance of 𝑈𝛽 is  

𝑉𝛽 = 𝑦̃(1 − 𝑦̃)(𝑋𝑇𝑋 − 𝑛𝑥𝑚𝑥𝑚
𝑇 ), 

where 𝑦̃ = (𝑦̃1, ⋯ , 𝑦̃𝑛)𝑇, 𝑥𝑚 is a column vector where each element is the mean of each column in matrix 

X. Under the null hypothesis, 𝑈𝛽 is asymptotically distributed multivariate normal, i.e., 𝑈𝛽~𝑁(0, 𝑉𝛽) or 

𝑈𝛽
𝑇𝑉𝛽

−1𝑈𝛽 has a chi-square distribution. Because there are no other covariates except the intercept and X 

is centered and scaled, we have 𝑦̃𝑖 =
𝑛1

𝑛
, 𝑈𝛽 = 𝑋𝑇𝑦, and 𝑉𝛽 =

𝑛1𝑛2

𝑛2 𝑋𝑇𝑋 =
𝑛1𝑛2

𝑛
Σ𝑥, where Σ𝑥 =

𝑋𝑇𝑋

𝑛
. The 

marginal score test statistic for SNP j can be obtained by only keeping the jth column in X in the model. 

Specifically, the marginal score test statistic vector is 

𝑧 =
𝑈𝛽

√
𝑛1𝑛2

𝑛

= √
𝑛

𝑛1𝑛2
𝑋𝑇𝑦 =

𝑛−
1
2𝑋𝑇𝑦

𝜎̂
, 

where  𝜎̂ = √
𝑛1𝑛2

𝑛2 = √𝑦̃𝑖(1 − 𝑦̃𝑖), the estimated standard deviation of 𝑦. The test statistics have a similar 

form as that for quantitative traits. These are also Armitage’s trend tests (SASIENI 1997).  



To calculate the power, we need to know the distribution under the alternative hypothesis. When the 

sample size is large, based on the Central Limit Theorem, 𝑧 has a multivariate normal distribution. We 

have  

𝐸(𝑧) = √
𝑛

𝑛1𝑛2
𝑋𝑇𝐸(𝑦) = √

𝑛

𝑛1𝑛2
𝑋𝑇𝑃, 

𝑉𝑎𝑟(𝑧) =
𝑛

𝑛1𝑛2
𝑋𝑇𝑣𝑎𝑟(𝑦)𝑋 =

𝑛

𝑛1𝑛2
𝑋𝑇𝑊𝑋, 

where P is a vector with each element 𝑝𝑖(𝛼, 𝛽) = 𝑝(𝑦𝑖 = 1) = 1/ (1 + exp (−(𝛼 + ∑ 𝑋𝑖𝑗
𝑇 𝛽𝑗

𝑚
𝑗=1 ))), 𝑊 is a 

𝑛 × 𝑛 diagonal matrix with the ith diagonal entry 𝑝𝑖 × (1 − 𝑝𝑖). With known 𝛼 and 𝛽, the power of 

Armitage’s trend test can be calculated. For retrospective case control studies, we should change 𝛼 to 𝛼∗ 

to reflect the different sampling probabilities for cases and controls (AGRESTI 2013). Because the effects 

𝛽 are usually small in real data, we can approximate 𝑊 by 𝑊0, the estimated variance under the null 

hypothesis. Specifically, 𝑊0 = 𝑦̃𝑖(1 − 𝑦̃𝑖)𝐼𝑛. Therefore we have 

𝑉𝑎𝑟(𝑧) ≈
𝑋𝑇𝑋

𝑛
= Σ𝑥 . 

We can also linearize 𝑝𝑖, the mean of 𝑦𝑖, using the Taylor expansion at the MLE of the null hypothesis,  

denoted by 𝛼0 and 𝛽0 = 0𝑚×1, where 𝑝𝑖(𝛼0, 𝛽0) = 𝑦̃𝑖 =
𝑛1

𝑛
. Therefore,  

𝑝𝑖(𝛼, 𝛽) ≈
𝑛1

𝑛
+

𝑛1𝑛2

𝑛2
(𝛼 − 𝛼0) +

𝑛1𝑛2

𝑛2
∑ 𝑋𝑖𝑗

𝑇 𝛽𝑗

𝑚

𝑗=1

. 

In the matrix form, 𝑃 = 𝑡21𝑛×1 + 𝜎̂2𝑋𝛽, where 𝑡2 =
𝑛1

𝑛
+

𝑛1𝑛2

𝑛2
(𝛼 − 𝛼0). Therefore 

𝐸(𝑧) ≈ √
𝑛

𝑛1𝑛2
𝑋𝑇

𝑛1𝑛2

𝑛2
𝑋𝛽 = √

𝑛1𝑛2

𝑛
Σ𝑥𝛽 = 𝑛

1
2𝜎̂Σ𝑥𝛽. 



The marginal non-centrality parameter for each SNP is the square of each element in 𝐸(𝑧). In this 

approximation the non-centrality parameters do not require the specification of the intercept. This also 

proves the approximate multivariate normal distribution of the marginal test statistics under the logistic 

model. We can see that the approximate distributions of the marginal test statistics have a similar form as 

quantitative traits. 
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