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File S1 Proofs and further recursive formulas

Expectation and variance of the Tyrca
For n,m € Ny, let t,,m := Epm [Turca] and vy, := Vo, 0 [Turcal-

Proposition S1.1. Let n,m € Ng. Then we have the following recursive representations

—1
IEn,m[jﬁ’MRCA] = tn,m = )\mm + an,mtnfl,m + ﬂn,mtnfl,erl + ’yn,mthrl,mflu (Sl)
-2
me[TMRCA] = Unm = An,m + ApmUn—1,m + Bnﬁnvn—l,m—i-l + Tn,mUn+1,m—1
2 2 2
+anmly_1m + 5n,mtn—1,m+1 + Ynmlnt1m—1

2
- (an,mtn—l,m + 5n,mtn—1,m+1 + Vn,mtn—&-l,m—l) ) (82)

with initial conditions 19 =to1 = V10 = vo1 = 0.

Proof of Proposition S1.1. Let 7, denote the time of the first jump of the process (Ny, M;)¢>o.
If started at (n,m), this is an exponential random variable with parameter A, ,,. Applying

the strong Markov property we obtain

tn,m :En,m [7_1] + En,m [EN ]er [TMRCAH

T

-1
:)\n,m + an,mtn—l,m + /Bn,mtn—l,m—i-l + FYn,mtn—f—l,m—l-

Similarly, the strong Markov property (telling us that 71 is independent of the time to

the most recent common ancestor of the (random) sample (N, M,,)) and the law of total
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variance yields

Unm =Vam[T1] + B [V, s, [Turca] ] + Vi [En,, ar,, [Tarcal

=20+ Enn [V, or,, [Tarcal] + Vi [Ex,, o, [Tureal] -
We have

En,m [V’N.rl,MT1 [TMRCAH =0p mUn—1,m + Bn,mvn—l,m—i-l + Tn,mUn+1,m—1

and

2
Vo [En,, a1, [Tuarcal] = Enm [En,, s, [Turcal?] — Enm [Ex,, oz, [Tarcal
= Oén,mtifl,m + 6n,mti—1,m+1 + ’Yn,mtiﬂ,mq

2
- (an,mtn—l,m + 5n7mtn—1,m+1 + Vn,mtn—i-l,m—l) .

Combining the observations proves the result.

Expectation and variance of the total tree length

Let lﬁfzn = E,,[L®] and lq(f,i%z = E,,»[LY] denote the expectations, and wy(fzn = Vom[ L]

and w', = Vom[LY] the variances of the total tree lengths, and define the mixed second
moment, wis := By [ L® L],

Proposition S1.2 (Recursion: Total tree length). For n,m € N we have
ln?zn - n>‘r_L,1n + Oén,mlflaf)l,m + Bn,mlgl—)l,erl + ’yn,mlflail,mfl

ln(,im - m>‘r_L,1n + Oén,mlfldf)l,m + Bn,mlfzd—)l,erl + %,mliﬁl,mqa
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and

a) _ . 2y-2 (a) (a) (a)
wn,m =n /\n,m + O'/mmwn—l,m + anmwn—l,m—l—l + ’yn,mwn—l-l,m—l

+ (102 4 B (i) + Y (1)

a a a 2
- (an,mlfw—)l,m + 6n,ml£z—)1,m+l + ’Yn,mlﬁz—i)-l,m—l) ; (S5)

d) _ ., 2y-2 (d) (d) (d)
wn,m =m )\n,m + C"/7"0777"011}7’L—1,m + Bn,mwn—l,m—i—l + ’yn7mwn+1,m—1

d d d
+ (102 4 B (i) A+ A (1 )2

d d d 2
- (an,mlng)l,m + ﬂn,mlfzzl,m+1 + ryn,mlfzjl,mfl) ; (S6)
wsﬁb) = 2nm)\;,2m + Oén,mwia—’?,m + Bn,mwy(i(i),m-s—l + ”Yn,mwg-?,m—l' (S7)

Proof of Proposition S1.2. The result can easily be obtained observing that each stretch of
time of length 7 in which we have a constant number of n active blocks and m dormant
blocks contributes with n7 to the total active tree length, and with m7 to the total dormant
tree length. Thus we have

l(am = nEn,m[Tl} + Emm |:]EN7—1,M-,—1 [L(a)u )

n,

and we proceed as in the proof of Proposition S1.1. From these quantities we easily obtain

the expected total tree length as léazn + l%%. Moreover,

Covpm(L®, L) = @D _ @) 4@

n,m n,m>nm:*
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Expectation of total length of external branches

To derive recursions for the total length of external branches in either of the two states is a
little more involved, since obviously a coalescence can happen between either two external
active branches, two internal active branches, or an external and an internal active branch.
We use indices (n,n/,m,m’) to denote the number of external active branches, internal

active branches, external dormant branches, and internal dormant branches, respectively.

Abbreviate
n n’ /
(1) _ (5) (2) o (3) (3) . nn
Qpn/ mum! *— A\ v Ot mam T Y » Yt mam T A )
n+n’,m+m’ n+n’ m+m’ n+n’ m+m’
W . cn @) __
6n,n’m,m’ T A ’ ﬁn,n’m,m’ - Y )
n+n’ m+m’ n+n’ m+m’
(1) cKm 2) cKm/
’Yn,n’m,m’ T Y ’ ’Yn,n’,m,m’ T A .
n+n’ m+m’ n+n’ m+m’

Let E® denote the total length of external branches in the plant state, and E@ the total

length of external branches in the seed state. Then we have

Proposition S1.3 (Recursion: Total length of external branches). For n,m € N, we have

the representation

(@] — @ @y _ (@)
]En,m [E ] - en,O,m,O’ En,m[E ] - en,07m707
where e and ¥ n,n’,m,m’ € Ny satisfy the recursions
n,n’,m,m’ n,n/mm’? 'Y ’ 0 Y
() —p )\ 1
en,n’ ;m,m/ _n/\n+n’,m+m’
1 (a) ) (a) 3) (a)
+ an,n’,m,m’€n72,n/+1,m,m’ + an,n’,m,m’en,n/fl,m,m’ + an,n’,m,m’enfl,n/,m,m’
(1) (a) @) (a)
+ ﬁn,n/,m,m’ en—l,n’7m+1,m/ + Bn,n’,m,m’emn’—l,m,m’—&-l
1) (a) 2 (a)
+ ’Yn,n’,m,m’en—f—l,n’,m—l,m’ + f)/n,n’,m,m’ en,n’+l,m,m’—1
and
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(d) - -1
en,n’ ;m,m/ _m)\nJrn’,erm’

(1 (d)

n,n’ m,m’ €n72,n’+1 ;m,m

+ ﬁél,zl/7m7m/e(d) ; T+ 6(2) €(d)

n—1,n" m+1m n,n’ mm’ “nn'—1lmm’+1

L a® @ e a® @

n,n’,m,m’en,n/fl,m,m n,n’,m,m’enfl,n’,m,m’

+ «

+ 7(1) D + 7(2) (d)

n,n’,m,m’“n+1,n’ m—1,m’ n,n’,m,m’ en,n’+1,m,m’—1

Observing that e(()i)l,’oym, = 6(()(,17)1',0,771/ = 0 for all n’,m’, and 6%&010 = e%‘&w = 0, and that

the total number n+n'+m-+m’ is non-increasing, these recursions can be solved iteratively.

Proof of Proposition S1.3. This follows by a similar first-step analysis as in Proposition S1.2,
taking into account the transitions for internal and external branches, and observing that at
each coalescence event between two external branches, the number of external plant branches
is reduced by two and the number of internal branches is increased by one, in a coalescence
of an external and an internal branch, the number of external plant branches is reduced by
one and the number of internal plant branches stays the same, and in a coalescence of two

internal branches, their number is reduced by one. O]

)

Obviously, the expected total length of external branches is then given by ego,mp—i—e(d)

n,0,m,0°

Note that proceeding as in Proposition S1.2, we could also give recursions for the variances

of these quantities.

Expectation and variance of the number of segregating sites

Proposition S1.4. For n,m € Ny we have

0 02
IIE;jnm S| ==l l(d)
’ [ ] 2 n,m + 2 n,m?’
and
VnmS :_l(a _ld z1 a Y2 . (d a,d _ l(d
» [ ] 2 n,m + 9 n,m + 4 wn,m + 4 wnym + 2_(wn7m nm n7m>7
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(D @) () a.d)

where lﬁf}gn, nms Wh,my Wm and wnm are given by Proposition S1.2.

Proof of Proposition S1.4. Observe that conditional on the total lengths L® L@ the num-
ber of segregating sites is the sum of two independent Poisson random variables with param-
eters 01 L™ /2 and 0, LY /2, respectively. Hence, if an ancestral line is in the plant state for a
period of time of length L > 0, the expected number of mutations that occur in this period
is L0 /2. Similarly, in a period of length L when the ancestral line is a seed, the expected
number of mutations is L6, /2. Thus the first result follows directly from Proposition S1.2.

For the second result, we apply the law of total variance and obtain similarly that

Vi (S) = B [V(S | L@, L) +V,,,.(E[S | L®, L))

2 2 2
01 92 012 92 192
= @ 2@ @) 2@ 9= 22 Covy (L@, L@
5 lom + Sl T Wi + 7 Wi + 255 Covam )

It is possible to directly derive a recursion for the number of segregating sites without
explicitly passing through calculating the tree lengths. Since it may be of use we state it
here. Let

Spom = Enm[S],  and 2z, =V, 5 (95).

)

Proposition S1.5 (Alternative recursion). Let n,m € No. Then

0 0
Sn,m: (21”4_5 >)\ ! +anm5n 1m+5nm8n 1m+1+7nm5n+1m 1 (Sg)

(0 by . 0 6 \ .,
zn,m—(2n+2 ))\n7m+(2n+2m> )\mm

+ an,mzn—l,m + 5n,mzn—l,m+1 + Vn,mzn-l—l,m—l
2 2 2
+ O{namsn—l,m + 5n,msn—l,m+1 + 7n7m5n+1,m—1

2
- (an,msn—l,m + Bn,msn—l,m—l-l + 7n,m3n+1,m—1> . (89)
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Proof of Proposition S1.5. Let o, denote the number of mutations that occur until time 7,
which was defined in the proof of Proposition S1.1. Given 71 = ¢, we know that o7 is the sum
of two independent Poisson random variables with parameters 6,nt and fymt, respectively.

As in the previous proof we obtain

Snom = En m[Ul] + Enm [ENTl My [SH

0 0
- ( 2177' + 22 m) En,m[Tl] + On mSn—1,m + ﬂn,msn—l,m—l-l + Tn,mSn+1,m—1

and

Znm = Vn,m(al) + En,m [VNTl Mz, (S)} + Vn,m (I[“Z"N.,-l,MT1 [S]) .

Once more using the law of total variance we obtain

)

2
(%n N @m) B, /] + (921” 200 v

2
0 ) 0 0, \._,
— — . 1
(2n ))\ (2n+2 >)\n7m (S10)

The same calculations as in the proof of Proposition S1.1 lead to

Vn,m[al Enm nm(al | 7—1)] +Vn,m( nm[o-l | 7—1])

]En,m |:§}'N7—1,M-r1 (S)} = Opmin—1,m + Bn,mznfl,m+1 + Tn,mZn+1,m—1,

and

2 2 2
Vn,m (Eer JMry [SD = CYn,msn—l,m + ﬁn,msn—l,m—i—l + ’yn,msn—s—l,m—l

2
- (an,msn—l,m + Bn,msn—l,m—i—l + ’Yn,msn-l—l,m—l) .
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Expected value of average pairwise differences ()

Recall the definition (19) of average pairwise difference m = (NOJ;MO)_l D gy i<i Kige

Proposition S1.6. For n,m € Ny we have

1 n\ (01, | 02,0 01,2) , 02,0 m\ (@ , 02,
Epm [7] = W{ (2) (512,0 + 512,0 +nm 511,1 + 551,1 + 9 550,1 + 510,1 }

2

Proof of Proposition S1.6. By definition

Epm (7] = (n+m> Z B m [Kij)-

1<i<j<n+m
When compairing two individuals their pairwise differences in the infinite sites model coincide
with the number of mutations that occured along the branches of their corresponding sub-tree
and are thus given the product of the mutation rate and length of the branches. Therefore,

E, . [K; ;] actually only depends on whether 4, j are dormant or active individuals. We obtain

(

%l% + %l%, if 4, j are active
Enm [Kij] = %lﬁ + %ng(}l), if 7 is active and j dormant
\ %ll((f% + %lé‘g, if 4, j are dormant.
Substituting this into the above equation, the result follows. O
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