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SI. OXDNA MODEL DETAILS

OxDNA and its interaction potentials have been de-
scribed in detail elsewhere [1–3]. The model represents
DNA as a string of nucleotides, where each nucleotide
(sugar, phosphate and base group) is a rigid body with
three interaction sites. The potential energy of the sys-
tem can be decomposed as

V =
∑
〈ij〉

(
Vb.b. + Vstack + V

′

exc

)
+

∑
i,j /∈〈ij〉

(VHB + Vcr.st. + Vexc + Vcx.st.) , (S1)

where the first sum is taken over all nucleotides that
are nearest neighbors on the same strand and the sec-
ond sum comprises all remaining pairs. The interactions
between nucleotides are schematically shown in Fig. 1
in the main article. The backbone potential Vb.b. is an
isotropic spring that imposes a finite maximum distance
between backbone sites of neighbors, mimicking the co-
valent bonds along the strand. The hydrogen bonding
(VHB), cross stacking (Vcr.st.), coaxial stacking (Vcx.st.)
and stacking interactions (Vstack) are anisotropic and ex-
plicitly depend on the relative orientations of the nu-
cleotides as well as the distance between the relevant in-
teraction sites. This orientational dependence captures
the planarity of bases, and helps drive the formation of
helical duplexes. The coaxial stacking term is designed
to capture stacking interactions between bases that are
not immediate neighbors along the backbone of a strand.
Base and backbone sites also have excluded volume in-
teractions Vexc and V

′

exc.
Hydrogen-bonding interactions are only possible be-

tween complementary (A-T and C-G) base pairs. In the
sequence-dependent parameterization that we use for all
simulations, the strengths of interactions Vstack and VHB

further depend on the identity of the bases involved [3].
Interactions were fitted to reproduce melting tempera-
tures and transition widths of oligonucleotides, as pre-
dicted by SantaLucia’s nearest-neighbor model [4]. Note
that our approach is significantly more complex than the
nearest-neighbor model. We simply treat the latter as a
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high-quality fit to experimental data. For the purpose
of parametrization, structural and mechanical properties
of both double- and single-stranded DNA are also taken
into account in the fitting procedure. In DNA the double
helical structure emerges because there is a length-scale
mismatch between the preferred inter-base distance along
the backbone, and the optimal separation of bases when
stacking. It is exactly this feature that drives the helic-
ity of oxDNA, rather than an imposed natural twist on
the backbone. Overall, the emphasis in our derivation of
oxDNA was on physics relevant to the duplex formation
transition. As discussed in the main text, oxDNA has
been extensively tested for other DNA properties and
systems to which it was not fitted. Our success in de-
scribing all these phenomena gives us confidence to use
it to study the dynamics of hybridization in the presence
of hairpins.

SII. SIMULATION METHODS

A. Thermodynamics

1. Virtual Move Monte Carlo

A standard approach for calculating thermodynamic
properties of computational models is the Metropolis al-
gorithm [5]. A drawback with this approach is that only
moving single particles at a time results in slow equili-
bration for systems with strong attractions. This is true
for DNA strands, where collective diffusion is strongly
suppressed if nucleotides are moved individually. Sim-
ulations can be made more efficient by using the Vir-
tual Move Monte Carlo (VMMC) algorithm proposed by
Whitelam and Geissler which allows for collective diffu-
sion using cluster moves of particles [6]. Specifically, we
use the variant presented in the appendix of Ref. 6. Ini-
tially a particle is selected, and a move is chosen at ran-
dom as in the Metropolis algorithm. The particle’s neigh-
bors are then added to a co-moving‘cluster’ with prob-
abilities determined by the energy changes that would
result from the move. Consequently, multiple particles
tend to move at once. To use VMMC, we must select
‘seed’ moves of a single particle. For all VMMC simula-
tions reported here, the seed moves were:

• Rotation of a nucleotide about its backbone site,
with the axis chosen uniformly on the unit sphere
and the angle drawn from a normal distribution
with a mean of zero and a standard deviation of
0.22 radians.

• Translation of a nucleotide, where the displacement
along each Cartesian axis is drawn from a normal
distribution with a mean zero and a standard de-
viation of 0.15 simulation units of length (0.1277
nm).

To improve efficiency, if the algorithm generates a cluster
move involving more than 7 particles the move is auto-
matically rejected.

2. Umbrella Sampling

An important concept is that of a reaction coordi-
nate (or order parameter) Q, which groups together mi-
crostates of a system that share some macroscopic prop-
erty (for example, all configurations of strands with a
certain number of base pairs). The free-energy profile
as a function of Q can provide useful information about
the reaction, provided an appropriate choice has been
made. Free-energy barriers can make certain regions of
configuration space hard to reach, which prevents effi-
cient sampling of all of the states of interest. The free-
energy landscape can be artificially flattened by weight-
ing states with different values of Q appropriately, a tech-
nique known as umbrella sampling [7]. Thermodynamic
properties of the system can then be extracted from sim-
ulations by unweighting the resulting distributions.

In particular, for an unweighted simulation a particu-
lar microstate with coordinates qN and energy E(qN ) is
sampled with probability

P (qN ) ∝ e−βE(qN ). (S2)

The equilibrium average of some variable A(qN ) is then
given by the sum over all states, weighted by their Boltz-
mann factors:

〈A〉 =

∫
A(qN )e−βE(qN )dqN∫

e−βE(qN )dqN
. (S3)

By applying a weighting w = w(Q(qN )) to each value of
the order parameter, we change the sampling frequency
to

Pw(qN ) ∝ w(Q(qN ))e−βE(qN ). (S4)

where the subscript w indicates a property of the
weighted system. So we can artificially ensure that our
simulation samples all states equally by making Pw con-
stant for all microstates. Equilibrium thermodynamic
properties are then obtained by unbiasing afterwards, as
can be seen by rewriting Eq. (S3) as follows:

〈A〉 =

∫ A(qN )
w(Q(qN ))

w(Q(qN ))e−βE(qN )dqN∫
1

w(Q(qN ))
w(Q(qN ))e−βE(qN )dqN

(S5)

=
〈A/w〉w
〈1/w〉w

. (S6)

Throughout this article, it makes sense to use the number
of base pairs in our definition of Q. This is the usual
choice for studying hybridization processes.
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3. Single Histogram Reweighting

To determine melting temperatures for structures,
we implemented the temperature extrapolation method
known as single histogram reweighting, based on the
method introduced by Ferrenberg and Swensden [8]. The
method of single histogram reweighting allows extrapo-
lation of results from simulations at a particular temper-
ature T0 to other temperatures [8]. States of the system
are grouped by their value of some quantity A and their
energy E, so a histogram p(A, T0, E) can be produced.
The temperature-independent density of states Ω(A,E)
can then be inferred via

p(A, T0, E) ∝ Ω(A,E)e−β0E (S7)

where β0 = 1/RT0. The proportionality constant is un-
known because we can only ever know the relative ratios
of states in our simulations. Ω(A,E) can then be used
to calculate the average value of A at any temperature T
by integrating over all possible states:

〈A(T )〉 =

∫ ∫
AΩ(A,E)e−βEdEdA∫ ∫
Ω(A,E)e−βEdEdA

. (S8)

We can rewrite this using Eq. (S7) as

〈A(T )〉 =

∫ ∫
Ap(A, T0, E)e−(β0−β)EdEdA∫ ∫
p(A, T0, E)e−(β0−β)EdEdA

. (S9)

We point out that our potential energy function
(Eq. (S1)) depends explicitly on the temperature through
Vstack. It is straightforward to extend Eqs. (S8) and (S9)
to our case. It must be pointed out that the extrapola-
tion can only go so far from the temperature T0 because
sampled states will not be representative of the dominant
states at other temperatures. For this reason we explic-
itly calculate free energies at T = 20◦C for the main data
of the manuscript and in subsequent sections here. We
only use histogram reweighting for melting curves in the
vicinity of the Tm for a particular system, which are of
less importance.

In all VMMC simulations employing umbrella sam-
pling (for single strand and double strand systems), we
estimated the error of the computed relative free ener-
gies corresponding to different states by computing the
standard error of the mean value of multiple independent
simulations. The details of each simulation, including the
order parameters used as well as the number of indepen-
dent simulations, are discussed in Section SIII A.

B. Kinetics

1. Molecular Dynamics

Kinetic simulations were performed using an
Anderson-like thermostat, similar to the one de-
scribed in appendix A of Ref. 9. The Newtonian

equations of motion for the system are integrated by
Verlet integration [10] with a discrete time-step δt, so
that the positions, velocities, orientations, and angular
velocities of the nucleotides are recalculated at each
time-step. This alone would give the DNA strands con-
stant energy and cause ballistic motion. In reality, DNA
in a solvent is being bombarded by water particles and
thus undergoes Brownian motion. To model Brownian
motion, the velocity of each nucleotide is resampled
with a probability pv = 0.02 from a Maxwell-Boltzmann
distribution at the temperature of the solvent every
103 time steps. The algorithm also resamples angular
velocities with a different probability pω = 0.0067. The
solvent thus acts as a large heat bath at a fixed tem-
perature, ensuring that the simulated system samples
from the canonical ensemble. On time scales longer than
NNewtδt/pv, where δt is the integration time step, the
dynamics is diffusive. We choose δt = 1.52× 10−14s for
all dynamics simulations in this study. In oxDNA this
time step gives a diffusion constant Dsim for a 14-mer
duplex that is about 100 times higher than experimental
measurements [11] of Dexp = 1.19× 10−10m2 s−1.

This artifical increase in Dsim is a common procedure
for coarse-grained models where higher diffusion con-
stants can be used to accelerate diffusion. Accelerated
diffusion can also speed up certain processes by smooth-
ing out, on a microscopic scale, energy profiles [12]. This
can be advantageous because it means simulations uti-
lizing coarse-grained models can be used to study more
complicated systems. In a previous study using oxDNA,
the hybridization kinetics of a non-repetitive sequence
was considered [13]. In that study it was shown that
using higher friction constants (smaller diffusion coef-
ficients) in simulations utilizing Langevin dynamics at
300K slowed down hybridization, but did not otherwise
qualitatively affect the results. In particular, the ten-
dency for initial base pairs to melt away rather than lead
to a full duplex was found to be preserved. Our systems
are similar to those studied in Ref. 13, possessing sim-
ilar numbers of total base pairing between the strands,
and using a similar simulation temperature. Addition-
ally, many approximations of real DNA have already been
made in the construction of the oxDNA model, and we
expect that running simulations with a diffusion coef-
ficient that is larger than the experimentally measured
value should preserve the effects that hairpins in single
strands have on the relative hybridization and dissocia-
tion rates.

2. Forward Flux Sampling

‘Brute force’ dynamics simulations using an Anderson-
like thermostat are not efficient enough to generate a
representative ensemble of trajectories that start in the
single-stranded state and end in the duplex state. Thus,
we resorted to using Forward Flux Sampling (FFS) to
more efficiently calculate fluxes between local free-energy
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FIG. S1. (Color online) (a) Schematic illustration of the interfaces
involved in flux generation. The flux is initially measured across
the interface λ0−1. The orange dots indicate that a crossing by a
trajectory contributes to the flux. These are also the states that
are used to launch successive stages of the simulation. (b) In di-
rect FFS, large numbers of configurations are randomly selected
from the set that successfully crossed the interface λ0−1, and the

probability of subsequently crossing the λ10 interface (rather than
returning to Q = −2) is measured. The process is then iterated
over successively chosen interfaces until reaching Qmax. Figure
adapted from Ref. 13.

minima as well as sample the transition pathways. The
term ‘flux’ from (meta)stable state A to state B has the
following definition:

Given an infinitely long simulation in which many
transitions are observed, the flux of trajectories from A
to B is ΦAB = NAB/(τfA), where NAB is the number of
times the simulation leaves A and then reaches B, τ is the
total time simulated, and fA is the fraction of the total
time simulated for which state A has been more recently
visited than state B.

FFS requires use of an order parameter, Q, which pro-
vides a descriptive measure of the extent of the reaction
between states A and B. Additionally, the order parame-
ter must be chosen such that non-intersecting interfaces

λQQ−1 can be drawn between consecutive values of Q. At
the beginning of an FFS implementation, a brute force
simulation is run starting from states described by Q =
-2, and the flux of trajectories crossing the surface λ0−1
is measured. The total flux of trajectory from Q = -2 to
another free-energy minimum Q = Qmax can be calcu-
lated as the flux of trajectories crossing λ0−1 multiplied
by the probability that trajectories subsequently reach
Q = Qmax, all before returning to Q = -2. The probabil-
ity can be factorized as

P
(
λQmax

Qmax−1|λ
0
−1

)
=

Qmax∏
Q=1

P
(
λQQ−1|λ

Q−1
Q−2

)
. (S10)

The first term in the product on the right-hand size of
Eq. S10 is calculated by loading random configurations
that have just crossed λ0−1, which are used to estimate
P (λ10|λ0−1). The process is then iterated for successive
interfaces, and the flux as well as the trajectories that

successfully reach Qmax from the distribution of path-
ways can be measured.

We estimated the random error in the FFS simulations
in the following way. In Table 1 in the main text we re-
port the mean value for the hybridization rates from 5
identical and independent implementations of FFS for
each system. The error reported for each system is the
standard error of the mean value. In Tables SIII, SIV,
and SV, we report the mean and the standard error of
the mean for each individual interface. Each calculation
of the flux in the three systems was repeated 240 times in
total (48 simulations were used to obtain the flux in each
independent calculation of the rate), while the probabil-

ity of crossing interface λQQ−1 was computed from the 5
independent calculations of the rate.

SIII. SIMULATION PROTOCOLS

In this section we discuss the implementation of the
algorithms of Section SII for both single-stranded and
duplex systems. As mentioned in Section SII B 1, we sim-
ulated the three duplex systems using molecular dynam-
ics and VMMC simulations. Unless otherwise stated, the
temperature in a simulation was taken to be T = 20◦C,
which is the same temperature used by Gao et al. in
the experiments. Additionally, for simulations of the du-
plex systems, we used a simulation box with a volume
of 3.96× 10−23m3 which corresponds to a concentration
of 42 µm, and is 21 times larger than the experimental
concentrations of 2 µm used for each system. We also
used two types of order parameter in the simulations
that we combined into multi-dimensional order param-
eters, which are discussed individually for each simula-
tion in the sections to follow. Specifically, a ‘distance or-
der parameter’ measures the minimum distance between
hydrogen-bonding sites over correct pairs of bases in the
two strands. A ‘bonds’ order parameter measures the
total number of base pairs, which can be specified to
be intra- or inter-strand base pairs. The definition of a
bonded base pair in our simulations is two bases with a
hydrogen bonding energy below 0.596 kcal mol−1. This
value for the selected cutoff corresponds to about 15% of
typical hydrogen-bond energy.

A. Thermodynamics

1. Single-strand Thermodynamics

Melting properties for “monomers” (secondary struc-
ture of isolated strands) can be calculated from Φ, the ra-
tio of bound to unbound states in a simulation of a single
strand. For self-interacting strands, the fraction of folded
states in a hypothetical bulk system is concentration-
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independent and can be inferred from

fmon
bulk = fsim =

Φ

1 + Φ
. (S11)

The melting temperature is taken to be the point where
fmon
bulk = 1/2.
We determined the approximate location of the melt-

ing temperatures of the hairpins to ensure that they were
stable at T = 20◦C. OxDNA has been shown to repro-
duce the dependence of hairpin melting temperature on
stem-length and loop-length [1]. We ran 10 independent
VMMC simulations for 6.3× 1010 steps at temperatures
of T = 20◦C for both the P0 and T0 strands, 1.1× 1011

and 8.8× 1010 steps at T = 45◦C for the P3 and T3

strands respectively, and 1.1× 1011 steps at T = 60◦C
for the P4 and T4 strands. Defining melting temper-
atures of hairpins is complicated because strands may
exist in multiple stable structures. We were interested
in the point where the strands did not have significantly
stable intra-strand base pairs, so we counted all states
with at least one intra-strand base pair as ‘bound’ and
states with no intra-strand base pairs as ‘unbound’, then
calculated the yields from Eq. S11. The yield curves for P
and T strands are obtained by single histogram reweight-
ing and are shown in Fig. S3, and in Fig. 2 in the main
text for just the P strands.

In addition to the melting curves, we also determined
free-energy landscapes at T = 20◦C from VMMC simula-
tions with umbrella sampling for the P0, P3, and P4. For
P0 strands we used an order parameter that kept track
of any intra-strand base pair. For the P3 and P4 strands,
we used a two-dimensional order parameter where the
two coordinates describe (1) the intended base pairs ac-
cording to Gao et al. [14] (‘correct’ base pairs) of the
structures, and (2) all possible other intra-strand base
pairs (total base pairs minus correct base pairs). For
a typical strand there was ∼80 possible different intra-
strand base pairs. The free energies for the strands were
calculated from cumulative distributions from 10 parallel
runs with 5× 1010, 5.5× 1010, and 2.5× 1010 steps for
P0, P3 and P4, respectively. The results for the free en-
ergies and yields of the single strands are shown in Fig. 3
in the main article and in Fig. S3, respectively, and are
discussed in Section SIV A 1.

2. Duplex Thermodynamics

We first computed the melting temperatures of the
three duplex systems. For structures consisting of two
molecules care must be taken in extrapolating from a sim-
ulation of two strands to a bulk solution with many more
strands, because fluctuations in local concentrations play
an important role. If Φ is the ratio of bound to unbound
states in a simulation of two molecules, the yield of a
non-self-complementary duplex in a bulk solution (with
the same average concentration of reactants) is given in

Ref. 15 as

fdimbulk =

(
1 +

1

2Φ

)
−

√(
1 +

1

2Φ

)2

− 1. (S12)

The melting temperature occurs when fdimbulk = 1/2, which
corresponds to a simulation yield of φ = 2. To compare
simulations of single duplexes with experimental data, as
in Table SII for the melting temperatures of the 3 sys-
tems, Φ was measured in simulations and then scaled to
the experimental concentration (Φ is proportional to the
concentration, so scales from a concentration c1 to an-
other concentration c2 by the factor c2/c1). The bulk
yield was then calculated by using Eq. S12. Note that
this approximation only works if the systems are essen-
tially ideal – the accuracy of this approximation has been
previously established for oxDNA under similar condi-
tions [15, 16]. We ran 10 VMMC simulations with um-
brella sampling for each system using an order parameter
that measured the number of inter-strand bonds between
the two strands. The simulations for the three systems
were carried out at T = 77.5◦C, which is near the melting
temperature of each system. For P0T0, P3T3, and P4T4,
each of 10 simulations ran for 1.6× 1010 steps, 2.9× 1010

steps, and 1.8× 1010 steps, respectively. The results for
the duplex yields are shown in Fig. S4 and discussed in
Section SIV A 2.

Next, the computations of the relative free energies
of the P0T0, P3T3, and P4T4 systems at T = 20◦C
were carried out using VMMC moves along with umbrella
sampling with a multi-dimensional order parameter that
measures (1) the number of intra-strand base pairs in
the P strand, (2) the number of intra-strand base pairs
in the T strand, and (3) the number of inter-strand base
pairs between P and T strands. In the order parameter,
any complementary bond is taken into account. This
means we include all secondary structural base pairs in
the single strands. We ran 10 simulations for 2.3× 1011

steps for the P0T0 system and for 1.1× 1011 steps for
the P3T3 system. The results are shown in Fig. 5 in the
main article for P0T0, P3T3, and P4T4, and discussed in
Section SIV A 2.

The same order parameter used for P0T0 and P3T3

was initially used for P4T4. Ten simulations utilizing
umbrella sampling each ran for 1.1× 1011 VMMC steps.
These results are shown in Fig. 2(c) in the main text.
During the course of the simulations, we noticed a diffi-
culty in sampling the ‘pseudoknotted’ intermediate states
(in which the strands were bound by both tails and loops
of the hairpins, illustrated in Fig. S6) that were observed
in kinetic simulations; the order parameter was not ef-
ficient in driving their formation. We sampled these
intermediate states in separate simulations with a dis-
tinct multi-dimensional order-parameter depending on
(1) only the intended 4-stem hairpins in the P strand and
(2) in the T strand, (3) the number of base pairs between
the loops of the hairpins, (4) the number of base pairs
between the two strands not including the loop-loop base
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Q Description

-2 d > 5.1 nm

-1 1.7 nm < d ≤ 5.1 nm

0 1.02 nm < d ≤ 1.7 nm

1 0.57 nm < d ≤ 1.02 nm

2 d ≤ 0.57 nm & x = 0

3 x ≥ 1

4 y ≥ 2

5 y ≥ 6

6 y ≥ 15

7 y = 25

TABLE SI. The order parameter used in FFS simulations
of duplex hybridization in all three systems studied. The
parameter d is the minimum distance between any intended
base pair on the two strands, x is the number of inter-strand
base pairs between the two strands which includes mis-aligned
and intended duplex base pairs, while y is only the number of
intended duplex base pairs between the two strands. For both
x and y, a base pair is taken to be present if the hydrogen-
bonding energy is less than −0.596 kcal mol−1.

pairs, and (5) the correctly aligned duplex base pairs be-
tween the strands. We sampled only those states in which
at least one intended hairpin base pair was present in
each strand, and also only states where coordinate (4)
had at least one base pair formed. These simulations al-
low an estimate of the free energy of the pseudoknotted
state compared to the tail-bound state. We ran a set
of 10 simulations using this order parameter for 2× 1011

VMMC steps each. These results are shown in Fig. S5
and are discussed in Section SIV A 2.

B. Kinetics

1. FFS Simulation Details

In this section we discuss the implementation of the
FFS algorithm, discussed in Section SII. As mentioned
in Section SII B 1, we simulated the three duplex sys-
tems using molecular dynamics at the experimental tem-
perature of T = 20◦C. Additionally, in all kinetics sim-
ulations we used a simulation box with a volume of
3.96× 10−23m3 which corresponds to a concentration of
42 µm that is 21 times larger than the experimental con-
centration, as was noted in Section SIII. We also use the
same definition of a bonded base pair that was discussed
in Section SIII.

2. Order Parameter Used in FFS Simulations

The order parameter used in simulations is detailed in
Table SI. Specifically, we use a combination of distance
and bond criteria as outlined in Section SIII. Distance cri-
teria are used to define states Q = −2→ 2, and bonding
criteria for states Q = 2→ 7. For the Q = 2, 3 states, we
allowed the bond criteria to track any inter-strand bond
between the two strands, which allowed us to monitor
the number of non-intended inter-strand base pairs (i.e.
mis-aligned base pairs) and also the number of correctly
aligned inter-strand base pairs that have formed during
the initial association events. The bond criteria for states
Q = 4 − 7 track only correctly aligned inter-strand base
pairs.

3. Initial Equilibration of Single-strand States

Before implementing FFS, we performed lengthy equi-
libration simulations to ensure that the single strands
were initialized in thermodynamically representative
states. Here we describe the procedure used to select
these states. In Section SIV A 1 the relative free energies
for each single strand were computed using VMMC with
umbrella sampling. We performed similar simulations
except that both P and T strands were simulated in the
same box corresponding to a concentration of 42 µm. A 3-
dimensional order parameter was used that measures (1)
the minimum distance between any pairs of nucleotides
that are intended to be base pairs in the final duplex, (2)
the number of intra-strand base pairs in the P strand, and
(3) the number of intra-strand base pairs in the T strand.
The strands were prevented from coming within 5.1 nm
of each other, as measured by coordinate (1). We ran 10
simulations for 5× 109 VMMC steps and saved configu-
rations every 5× 106 VMMC steps, which ensured that
any two saved configurations were energetically decorre-
lated from each other. In total we collected a set con-
taining 10000 configurations. For each state described
by the 3-dimensional order parameter there is an um-
brella bias w(Q). We randomly selected a configuration
from the set and saved it to be used in FFS simulations
if w(min)/w(Q) ≤ R, where R is a random number se-
lected within the range 0 < R ≤ 1 and w(min) was the
smallest biasing weight applied in the simulation. This
step was repeated until 200 configurations were obtained
for each of 5 independent FFS simulations. At the start
of each flux generation simulation an initial configuration
from the saved set of 200 was selected at random and set
to be the starting configuration.

4. Second-order Kinetics Approximation

An important question is whether or not the approxi-
mation of instantaneous reactions (i.e. second-order ki-
netics) is valid for oxDNA. Such an approximation is
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reasonable if the time taken from first interaction to full
duplex formation or separation of strands is small com-
pared to the diffusional time scale governing the first
contact between strands. We did observe simulations
spending significant computational times in states where
the partially hybridized strands had formed kissing-
hairpins. Theoretically, FFS should account for interme-
diates states with long lifetimes during flux generation.
However, as the formation of such states is rare during
flux generation, the sampling is poor. As an alternative
to the brute-force approach, we assumed second-order ki-
netics, reducing the sampling challenge during flux gen-
eration, and then checked the accuracy of the assumption
from the resultant data.

During flux generation, we therefore restarted (from
Q = −2) trajectories that reached Q = 3, the first
state in which a bond is present between strands. Con-
sequently, any time spent in configurations with bonds
between strands was not measured in our simulations.
Technically our overall FFS protocol measured the flux
from Q = −2 to Q = 2, and the subsequent probability of
reaching Q = Qmax before returning to Q = −2. This ap-
proximates the flux from Q = −2 to Q = Qmax provided
that the time spent in the intermediate states is small.
In this limit, the measured flux is also proportional to
the second-order rate constant.

To justify this assumption, we measured the time taken
for shooting trajectories launched from intermediate val-
ues of Q = Q′ to reach Q = Q′ + 1 or Q = −2. We
could therefore determine the typical time taken for a
configuration starting in the state Q′ to either rearrange
and proceed to a full duplex (Q = Qmax), or to dis-
sociate (taken to be when the system reaches the state
Q = −2), for comparison with the diffusional time scale
of first contact. These results are shown and discussed
in Section SIV B 1. We find that the second-order ap-
proximation is reasonable at the concentration used in
the simulations (and would be even better at the exper-
imental concentration, 21 times lower) and therefore the
relative fluxes estimated by our approach are decent pre-
dictions for the relative rate constants in oxDNA.

SIV. RESULTS

A. Thermodynamics

1. Single-strand Thermodynamics

Gao et al. used the mFold software [17] to design the
strands listed in Table 1 in the main article, and assumed
the predicted lowest energy structures to be the only
important structures in their investigation. mFold uses
the nearest-neighbor thermodynamic model developed by
Santa Lucia [4] to analyze secondary structure. How-
ever, this model cannot yet incorporate more complex
structures like pseudoknots or multiple internal loops. It
cannot take into account forces that may result from the

FIG. S2. Schematic representations of the significant hairpin
states of the P3 and T3 strands. The (0, 3) state is the hairpin
predicted by Nupack to be the most stable, the (2, 3) state
is the predicted hairpin with the shorter tail folded in, and
the (3, 0) state is a hairpin which appears to be slightly more
stable than the predicted hairpin in oxDNA simulations, with
the stem at the other end of the strand.
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FIG. S3. Yields of all secondary structure of strands as a
function of temperature. Error bars on all points are smaller
than the symbol size.

three-dimensional structure, which can be important in
some cases [18].

mFold predicts that at T = 20◦C the P0 T0 strands,
while designed to minimize their secondary structure,
had multiple possible structures with free energies close
to zero relative to the hairpin-free case, showing the
difficulty of eliminating hairpins completely from long
strands. From the simulations, we also found that the
P0 and T0 strands were not dominated by any particular
hairpin, but did frequently have some limited secondary
structure. These transient base pairs should have a lim-
ited effect on hybridizationas they can melt easily.

To determine the prevalence of stable secondary struc-
ture at room temperature, we calculated the yields of the
three P strands, which were plotted in Fig. 2 in the main
article. Comparable results for the T strands are shown
in Fig. S3, which show almost no difference between P
and T strands.

OxDNA and mFold disagree slightly about the rela-
tive stabilities of similar hairpins within the P3T3 system.
However, these subtleties are likely to be relatively unim-
portant, as both predict that hairpins are much more
stable in P3T3 than P0T0, and also much more stable in
P4T4 than in P3T3. Further, the main hairpin stem is
always predicted to be of 3 and 4 base pairs in P3T3 and
P4T4 respectively.
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FIG. S4. Yields of all inter-strand structure of the three sys-
tems as a function of temperature. Error bars on all points
are smaller than the symbol size used.

Duplex Gao et. al [14] Santa Lucia [4] oxDNA
P0T0 76.2 76.9 74.1
P3T3 77.4 77.4 74.6
P4T4 78.0 77.6 75.1

TABLE SII. Melting temperatures of P/T duplexes in Celsius
at [ssDNA] = 2 µm, as measured experimentally in Ref. 14,
calculated with the SantaLucia model [4], and simulated with
oxDNA.

2. Duplex Thermodynamics

Yield curves for bulk solutions in the region of the melt-
ing temperature are plotted in Fig. S4 for the three du-
plex systems, and the melting temperatures are listed in
Table SII alongside the experimental values as measured
by UV absorbance spectroscopy by Gao et al. [14], and
the predicted values that were calculated by the Santa
Lucia model [4]. All three methods are in agreement as to
the order of the melting temperatures, although oxDNA
appears to underestimate the true value by around 3◦C,
corresponding to an error of <1%. This is unlikely to
be of significance. What is important for this investiga-
tion is that all duplexes melt at temperatures well above
room temperature, the order of stability is reproduced,
and the differences between the curves is small.

We also computed separately the free energies of the in-
termediate states in the P4T4 system relative to the state
(5,8), which is shown in Fig. S5, using an order parame-
ter designed to allow the sampling of the pseudoknotted
intermediate with inter-strand base pairs between stem
and loop. An example of a pseudoknotted intermediate
containing 15 inter-strand base pairs and 8 intra-strand
base pairs is shown in Fig. S6. The plot in the main text
clearly shows a metastable intermediate at (5,8), corre-
sponding to two hairpins bound by their tails. This is
also visible in Fig. S5, as is a second local minimum at
(13,8) corresponding to the pseudoknotted state. This
plot indicates that the pseudoknotted state is less stable
than the tail-only state. Kinetic results in Section SIV B

0 5 10 15 20 25
inter-strand bonds

0

2

4

6

8

10

12

14

in
tr

a-
st

ra
nd

bo
nd

s

0 5 10 15 20

∆G / kBT

FIG. S5. Free-energy profile of the metastable states in the
P4T4 system. The free energy in both figures is plotted as
a function inter- and intra-strand base pairs, where each free
energy was measured relative to the state (5,8).

FIG. S6. Example configuration of a metastable kissing com-
plex, found from the FFS simulations of P4T4. The black
nucleotides indicate the 3′ end of the strand, while the gray
nucleotides denote intact 4-stem hairpins. In total there are
15 correctly aligned base pairs, 5 connect the tails of the hair-
pins while 10 base pairs connect the loops of the hairpins.

show that interchange between the two minima is rea-
sonably fast.

B. Kinetics

The hybridization rate constants, k+, the melting rate
constants, k−, and the equilibrium constants Keq, for
each system are listed in Table 2 in the main article. The
melting rates, k−, were not computed using FFS, but
rather by using Eq. 1 in the main article combined with
our calculations of k+ and exp(∆G0/kBT ) from the free-
energy calculations in Section SIV A 2. The cumulative
statistics of the FFS simulations for P0T0, P3T3, and
P4T4 systems are presented in Tables SIII, SIV and SV,
respectively.
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P0T0

λ Crossings Total time Flux

λ0
−1 50212 1.09× 10−3s 4.33× 107 ± 2.26× 105s−1

λ Success Attempts Fractional success

λ1
0 25000 78436 0.319 ± 0.002

λ2
1 24900 116474 0.214 ± 0.004

λ3
2 25000 489155 0.051 ± 0.002

λ4
3 5000 36617 0.139 ± 0.010

λ5
4 5000 7856 0.644 ± 0.036

λ6
5 5000 5001 0.999 ± 0.0001

λ7
6 500 500 1.000 ± 0.000

TABLE SIII. Results of FFS for the hybridization of P0 and T0 strands. The flux was measured for the crossing of λ0
−1 and

probabilities of reaching λQ
Q−1 from λQ−1

Q−2.

P3T3

λ Crossings Total time Flux

λ0
−1 50227 1.35× 10−3s 3.68× 107 ± 2.07× 105s−1

λ Success Attempts Fractional success

λ1
0 25000 88757 0.282 ± 0.001

λ2
1 25000 125327 0.200 ± 0.003

λ3
2 25000 638923 0.039 ± 0.002

λ4
3 5000 26560 0.199 ± 0.020

λ5
4 5000 12454 0.410 ± 0.031

λ6
5 4980 5152 0.967 ± 0.006

λ7
6 500 500 1.000 ± 0.000

TABLE SIV. Results of FFS for the hybridization of P3 and T3 strands. The flux was measured for the crossing of λ0
−1 and

probabilities of reaching λQ
Q−1 from λQ−1

Q−2.

1. Considerations of the Kinetic Intermediate States

The formation of the P4T4 duplex is suggested by Gao
et al. to have two different kinetic regimes which can-
not be fitted to a simple two-state model. They propose
a ‘fast’ regime where the tails of the hairpins bond (or
perhaps their loops kiss); and a ‘slow’ regime where the
hairpin stems are displaced by inter-strand base pairs as
the strands zip up. The fast regime has a rate constant
smaller by a factor of 6, and the slow regime has a rate
constant smaller by a factor of 25, than the P0T0 duplex.
In order to see non-second-order behavior, the intermedi-
ate state needs to be long-lived so that both dissociation
and completion of the reaction are slow relative to the
association rate.

We find the rearranging time for metastable states
to proceed to a full duplex for the majority of simu-

lations to be typically less than ∼1× 10−7 seconds for
P0T0 (Fig. S7(a)), and ∼1× 10−5 seconds for P3T3 and
P4T4 (Figs. S7(b) and (c)), while the longest rearrange-
ment times that lead to dissociation events took less than
∼1× 10−5 for P3T3 (Fig. S8(b)) and ∼4× 10−4 seconds
for P4T4 (Fig. S8(b)). Comparing the longest rearrange-
ment and disassociation times with the diffusion time, we
find for all duplex systems studied that the most long-
lived metastable states (in P3T3 and P4T4 systems) have
a lifetime slightly smaller than the rate at which they
are produced. Thus reactions are second order to a rea-
sonable approximation in oxDNA at concentrations of
42 µm (justifying our simulation procedure). Further, our
model, consistent with Nupack, suggests that regardless
of completion rate, the 6-base pair toeholds (i.e. the tails
of the intended 4-stem hairpins) are not stable enough
to give rise to two kinetic regimes at the experimental
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P4T4

λ Crossings Total time Flux

λ0
−1 50227 1.46× 10−3s 3.49× 107 ± 7.27× 105s−1

λ Success Attempts Fractional success

λ1
0 25000 77246 0.324 ± 0.003

λ2
1 25000 113764 0.220 ± 0.002

λ3
2 25000 856983 0.030 ± 0.002

λ4
3 5000 23011 0.242 ± 0.037

λ5
4 5000 16251 0.336 ± 0.050

λ6
5 4720 21786 0.232 ± 0.025

λ7
6 5066 5869 0.864 ± 0.014

TABLE SV. Results of FFS for the hybridization of P4 and T4 strands. The flux was measured for the crossing of λ0
−1 and

probabilities of reaching λQ
Q−1 from λQ−1

Q−2.

concentration used. The strands just fall off too quickly,
which is unsurprising given the known physics of DNA.
We find that the kissing hairpin loops are even less sta-
ble, as is the pseudoknotted configuration formed when
both the loops and tails bind.

Our simulations do not support the claim of two dif-
ferent kinetic regimes for the formation of the P4T4 du-
plex. Therefore, non-second-order behavior in Gao’s ex-
periment, if real, must be due to some unknown aspect of
DNA thermodynamics that is not incorporated into the
oxDNA model.

2. Additional Results for Hybridization Pathways

In the top panel of Figs. S9 and S10 we plot the fre-
quency that a given base in the P strand is involved in
base pairing for configurations that have crossed inter-

faces λQQ−1, for Q = 3, . . . , 6, respectively. In the bottom
panel of Figs. S9 and S10 we plot the probability that
the base pairs between the strands led to a fully-bound

duplex state, given that a configuration crossed the λQQ−1
interface, for Q = 3, . . . , 6, respectively.
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FIG. S7. Histograms of the computed rearrangement times for configurations have started from λQ−1
Q−2 and crossing λQ

Q−1 are
plotted for (a) P0T0, (b) P3T3, and (c) P4T4. In the legend in each figure, the labels indicate the crossing of a particular

interface λQ
Q−1. For example, 2→ 3 refers to the configuration having crossed interface λ3

2 that started from λ2
1. The quantity

plotted on the y-axis is actually a probability density. Note that the times for configurations that crossed λ7
6 coming from λ6

5

are not plotted as they were found to be neglible.
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FIG. S9. The frequencies of attachment locations for configurations that crossed λ4
3 (labeled state Q = 4 in the plots) as a

function of base pair index on the P strand are plotted in the top panel in (a) for P0T0, in (b) for P3T3, and in (c) for P4T4.
The probability that said base pairs lead to a duplex are plotted in the bottom panels in (a) for P0T0, in (b) for P3T3, and
in (c) for P4T4. Similar to Fig. 7, the yellow region indicates a the location of a non-intended 3-base pair hairpin, which pairs
with bases at locations 10-12. The grayed out regions for P3 indicate the intended 3-base pair hairpin stem, while the grayed
out regions for P4 indicate the 4-base pair hairpin stem. Sites 5-14 are within the loop of the hairpin, and sites 19-24 are a
dangling tail.
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FIG. S10. For P4T4, the frequencies of attachment locations
for configurations that crossed λ6

5 (labeled state Q = 6 in
the plots), as a function of base pair index on the P strand,
are plotted in the top panel, and the probability that said
base pairs lead to a duplex are plotted in the bottom panel.
The grayed out regions for P4 indicate the 4-base pair hairpin
stem. Sites 5-14 are within the loop of the hairpin, and sites
19-24 are a dangling tail.
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