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1 Notation

This section introduces the notation used in Section 2 and 3. We will assume that there are g
genomic regions to be analyzed, that a region i is composed of Li bins, and that we are analyzing
n different histone marks. The input data for a region i consists of a count matrix C(i) with Li
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rows and n columns containing the number of reads from each mark mapping to each bin. In the
HMM framework, the i-th sequence of observations is encoded in the count matrix C(i), and the
b-th observation symbol in the i-th sequence is the b-th row in C(i), composed of n counts.

2 The Initialization Algorithm

The Baum-Welch algorithm used by EpiCSeg for fitting the Hidden Markov Model needs an initial
value for all the model parameters. Those parameters will eventually be fit to the data, but the
possible final values depend on the initial ones, which makes this choice important. The goal of
the initialization procedure is to determine a good starting point for all parameters of the Hidden
Markov Model. The initialization algorithm developed for EpiCSeg is based on the following ideas:

• Initializing the parameters for k chromatin states can be done by clustering the observation
vectors into k clusters and therefore disregarding the order of the observations.

• Many small clusters (seeds) can be merged and reduced to k clusters using hierarchical clus-
tering.

• Principal Component Analysis (PCA) can be applied on the count matrix to find good seeds.

Let k be the desired number of clusters and C the matrix with n columns and L =
∑g

i=1 Li
rows obtained by combining all matrices C(i). C and k are the input of the algorithm while the
output are k sets of bins. These sets are not exactly a clustering, because they can overlap, and
not even proper sets, as the same bin in the same set can appear more than once. However it is
easy to fit the probabilistic model starting from them (not discussed).

The algorithm performs the following steps:

1. PCA is performed on the count matrix C. This results in a coordinate matrix P with the
same dimensions as C but where the columns correspond to principal components (PCs).

2. For each PC, nlev seeds are computed. Here seed means a subset of the bins and nlev is
a parameter of the initialization algorithm. The seeds deriving from a PC p result from
partitioning the rows of matrix P into nlev groups of equal size according to the intensity
of the p-th column. So, for instance, the first group is formed by the L/nlev rows with the
lowest values in column p. This yields a total of nlev · k seeds.

3. For each seed the parameters of a negative multinomial distribution NM(µ, r, p1, p2, ...pn) are
determined. The r parameter is fitted for all seeds according to some properties of matrix
C (not discussed), while the other parameters are estimated by maximum likelihood on the
data points identified by the seed.

4. A distance matrix between seeds is computed. The distance between two seeds is defined as
the symmetrized Kullback-Leibler divergence between the two corresponding negative multi-
nomial distributions.

5. The distance matrix is used as input to the hierarchical clustering algorithm with average
linkage. The hclust function available in R is used. Hierarchical clustering produces a tree
where the leaves represent the different seeds, internal nodes represent clusters of seeds and
where the length of a branch represents the similarity between two nodes.
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6. The tree produced by the hierarchical clustering algorithm is cut at a distance from the root
such that the resulting tree has exactly k nodes. Each node is a group of seeds that will be
used to initialize a chromatin state.

3 The probabilistic model of EpiCSeg

Hidden Markov Models (HMMs) are very well known in literature and many of the equations
presented here can be found in textbooks covering the topic, such as [1]. A brief introduction,
however, is necessary to present the update equations for the negative multinomial distributions,
which represent a novel contribution of this work.

3.1 Model definition

For ease of discussion we will assume that there is only one count matrix C corresponding to one
genomic region with a total of L bins. The t-th row of the count matrix, where 1 ≤ t ≤ L, will
be denoted as ct, the count in the t-th bin corresponding to the m-th mark, where 1 ≤ m ≤ n,
will be denoted as ctm and the sum of the counts in the t-th row will be denoted as ct+, i.e.
ct+ =

∑n
m=1 ctm.

The main assumption of the model is that there are k hidden states and that the sequence of L
observations ct is explained by a hidden sequence of L states. The random variable Xt denotes the
hidden state at position t and the random variable Yt represents the observation at time t (in this
context Yt is always known and equals ct, but the random variable notation is useful to explain the
probabilistic model).

The complete set of model parameters, denoted as θ, consists of the parameters π, A,M1,M2, ...Mk,
where:

• π, the initial probabilities, are a vector of k probabilities summing up to one where πs specifies
Prob{X1 = s|θ}.

• A, the transition probabilities, are a square matrix of size k, where the element in row u and
column v, denoted as auv, specifies Prob{Xt+1 = v|Xt = u, θ}, independently of the position
t in the sequence. In A each row u sums up to one, i.e.

∑k
v=1 auv = 1.

• Ms is the parameter set that determines the emission probabilities relative to state s, which
follows a Negative Multinomial distribution with parameters µs, rs, ps1, ps2, ...psn. The Neg-
ative Multinomial distribution can be seen as a combination between the Negative Binomial
distribution, specified by parameters µs and rs, and the Multinomial distribution, specified
by the parameters ps1, ps2, ...psn. In formulas

Prob{Yt = ct|Xt = s, θ} = fNM (ct;Ms) = fNB(ct+;µs, rs) · fMultinom(ct; ps1, ps2, ...psn), (1)

where

fNB(ct+;µs, rs) =
Γ(rs + ct+)

Γ(rs)(ct+)!

(
µs

µs + rs

)ct+ ( rs
µs + rs

)rs
,

and

fMultinom(ct; ps1, ps2, ...psn) = (ct+)!

n∏
m=1

pctmsm
ctm!

.
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In an important variant of the EpiCSeg model all rs variables are constrained to have the same
value. This strategy has proved effective in avoiding overfitting and excluding some unrealistic
models where different states s have wildly different values of the parameter rs. This variant of the
model is called the dependent mode, while the variant where the rs parameters are independent is
called the independent mode. Unless otherwise specified this discussion focuses on the independent
mode.

Given this model, the probability that the sequence of observations Y = Y1, Y2, ...YL equals
the count matrix (i.e., that Yt = ct for 1 ≤ t ≤ L), and that the sequence of hidden states
X = X1, X2, ...XL equals a certain sequence s = s1, s2, ..sL, with s ∈ {1, 2, ...k}L, is given by

Prob{X = s,Y = C|θ} = πs1fNM (c1;Ms1)
L∏
t=2

ast−1stfNM (ct;Mst),

and the overall probability of the observed data can be obtained by summing the contributions of
all possible paths:

Prob{Y = C|θ} =
∑

s∈{1,2,...k}L
Prob{X = s,Y = C|θ}.

3.2 Parameter estimation through Expectation Maximization

To estimate the parameters of the model we follow a Maximum Likelihood approach, i.e. we seek
to estimate the set of parameters θ(opt) that maximizes the overall probability of the observed data

θ(opt) = arg max
θ

Prob{Y = C|θ}.

Unfortunately this is a very difficult problem which typically needs to be dealt with with some
iterative procedure, such as Expectation Maximization (EM). With Expectation Maximization,
starting from a parameter set θ(1), a sequence of parameter sets θ(2), θ(3), θ(4)... is computed using
the following update rule:

θ(i+1) = arg max
θ

∑
s∈{1,2,...k}L

Prob{X = s|Y = C, θ(i)} log {Prob{X = s,Y = C|θ}} (2)

It can be shown that using this strategy Prob{Y = C|θi} is always less or equal to Prob{Y =
C|θ(i+1)} (see, for instance, [3]). The sequence typically stops when there is no further increase in
the objective function and the algorithm is said to converge. The major drawbacks of this approach
are that the final parameters of the sequence are not guaranteed to be a global optimum and different
initial parameters can lead to different final parameters. The Expectation Maximization strategy
applied to Hidden Markov Models is known as the Baum-Welch algorithm.

3.3 The Baum-Welch algorithm

The Baum-Welch algorithm uses the posterior probabilities γs(t) and the quantities ξuv(t). They
depend on the last set of parameters θ(i) and they are defined in the following way:

• γs(t) = Prob{Xt = s|Y = C, θ(i)}

• ξuv(t) = Prob{Xt−1 = u,Xt = v|Y = C, θ(i)}
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Those quantities, which are computed using the Forward-Backward strategy (see [1]), allow to
separate the maximization problem in Equation 2 into three independent and simpler maximization
problems:

θ(i+1) = arg max
θ

{
k∑
s=1

γs(1) log πs +

L∑
t=2

k∑
u=1

k∑
v=1

ξuv(t) log auv +

L∑
t=1

k∑
s=1

γs(t) log fNM (ct;Ms)

}
(3)

Solving the maximization problem in Equation 3 separately for each parameter yields the following
well known update rules for the initial and transition probabilities:

• π(i+1)
s = γs(1)

• a(i+1)
us =

∑L
t=2 ξus(t)∑k

v=1

∑L
t=2 ξuv(t)

3.4 Update rules for the Negative Multinomial distribution

The factorization shown in Equation 1 allows to further split the maximization problem into

• p
(i+1)
s = arg maxps

∑L
t=1 γs(t) log fMultinom(ct;ps),

• µ(i+1)
s , r

(i+1)
s = arg maxµs,rs

∑L
t=1 γs(t) log fNB(ct+;µs, rs).

This yields:

• p(i+1)
sm =

∑L
t=1 γs(t)ctm∑L
t=1 γs(t)ct+

,

• µ(i+1)
s =

∑L
t=1 γs(t)ct+∑L

t=1 γs(t)
,

and for the rs parameters:

r(i+1)
s = arg max

rs

L∑
t=1

γs(t) log fNB(ct+;µ(i+1)
s , rs). (4)

Unfortunately there is no closed formula for the last maximization problem, which needs to be
solved numerically as a one dimensional optimization problem. It is known, however, that there
exist only one local maximum, which is also a global maximum [2]. In EpiCSeg a variant of the
Brent algorithm is used for this task.

In the dependent mode of the EpiCSeg model, i.e. when all parameters rs are constrained
to have the same value r, all the above update equations remain valid except Equation 4, which
becomes

r(i+1) = arg max
r

k∑
s=1

L∑
t=1

γs(t) log fNB(ct+;µ(i+1)
s , r), (5)

and can be solved numerically as in the previous case.
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3.5 Computational considerations

The update formulas 4 and 5 can be very costly to compute. The optimization function consists of
a summation over all the L bins of a quantity that depends on the fNB function, which is a very
costly function. Numerical methods need to evaluate the optimization function, or its derivative,
a number Nr of times before returning the updated value for rs, where typical values for Nr range
from 10 to 30 iterations, and where these evaluations need to be done serially, i.e. they cannot be
executed in parallel. Assuming that L ∼ 1.5 · 107 (as for a whole human genome and with a bin
size of 200 bps) and Nt ∼ 20, the Expectation Maximization algorithm would need to evaluate the
fNB function about 3 · 108 times at each iteration.

This problem can be alleviated by grouping together evaluations of the fNB(ct+;µ
(i+1)
s , rs)

function with the same ct+ value. Let

• D = {ct+ : 1 ≤ t ≤ L}, and

• δs(d) =
∑L

t=1 γs(t)[ct+ = d],

where the expression delimited by square brackets evaluates to one when the expression inside it is
true and to zero otherwise. Then the update formulas 4 and 5 can be rewritten respectively as

r(i+1)
s = arg max

rs

∑
d∈D

δs(t) log fNB(d;µ(i+1)
s , rs),

and

r(i+1) = arg max
r

∑
d∈D

L∑
t=1

δs(t) log fNB(d;µ(i+1)
s , r),

respectively. Considering that D, even in genome-wide datasets, rarely contains more than 104

elements, the fNB function now needs to be evaluated 1.5 · 103 times less frequently.

4 Supervised annotation

The aim of the supervised annotation is to provide a benchmark dataset to evaluate the efficiency of
a segmentation algorithm. This section describes the procedure used to derive such an annotation.

The input to the procedure is a RNA-seq and a DNase-I hypersensitivity experiment from the
same cell type as the histone mark experiments used for the segmentation. Additionally the proce-
dure uses the annotated transcripts available from the GENCODE database, version 19 (Ensembl
74). More precisely, all annotations of type “transcript” and of level 1 and 2 where considered.
The binning scheme used for this procedure is the same as the one used for segmentation, i.e. the
bin have size 200 base pairs, with the difference that all bins overlapping a non-assembled region
of the genome were discarded.

4.1 RNA-seq processing

In the RNA-seq tracks, which are paired-end sequencing experiments, regions ranging from the
leftmost to the rightmost coordinate of a mapped read pair were treated as unstranded transcribed
regions. The coverage per base pair was computed as the number of such transcribed regions that
overlap the base pair, and the transcription signal per bin was defined as the average coverage in
the bin. The top 15% bins were considered transcribed.
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4.2 DNase-I HS processing

In the DNase-I hypersensitivity tracks, which are single-end sequencing experiments, the accessi-
bility signal per bin was defined as the number of reads with a 5’ end mapping within the bin. The
top 2% bins were considered accessible and the top 0.8% were considered strongly accessible.

4.3 Annotation criteria

The following criteria were used to define each chromatin environment:

• A RNA bin was defined as a transcribed and non-accessible bin and such that all the 10 bins
to the right and to the left are also transcribed and non-accessible.

• A DNase bin was defined as a strongly accessible bin. If the bin is closer than 500 base pairs
to an annotated TSS it was considered a DNase+TSS bin, otherwise a DNase-TSS bin.

• A bin was annotated as intergenic if that bin, as well as the 100 bins to the left and to the
right, are neither a DNase nor a RNA bin.

Figure 1 shows the average distribution of the chromatin environments with respect to the annotated
genes.
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Figure 1: Distribution of the chromatin environments with respect to annotated genes. From top to bottom the
figure shows data for the IMR90, H1 and K562 datasets. Each plot shows the fraction of annotated transcripts having
a bin of a certain type at a certain position of the transcript. Positions from the TSS and the TES have been rescaled
to fit a common length. 8



5 Segmentation statistics and plots

5.1 Additional performance scores

We measured the association between the supervised annotation and a segmentation in two different
ways. All of them are based on a contingency table where the rows represent chromatin environ-
ments, the columns chromatin states, and each cell contains the number of bins annotated with a
certain chromatin environment and state. Let the index E denote the set of possible chromatin
environments and S the possible chromatin states. Moreover, let N+ denote the total number of
bins and N(e, s) the number of bins that have the environment label e and state label s. From
these counts we can derive the following proportions:

PES(e, s) = N(e, s)/N+;PE(e) =
∑
s∈S

PES(e, s);PS(s) =
∑
e∈E

PES(e, s).

The mutual information measures the association between the two annotations:

MI =
∑

e∈E,s∈S
PES(e, s) logPES(e, s)/(PE(e)PS(s)).

However, we needed to correct for the fact that the distribution of the chromatin environments is
highly imbalanced. Some environments, such as the intergenic environment, occur much more often
and influence the performance score much more that others, such as the DNase+TSS environment.
This leads to large oscillations of the score with small perturbations of the input data and to the
paradox that the most biologically interesting states, such as those related to the DNase+TSS
environment, play a lesser role in the performance score. To correct for that we use proportions
P̃ normalized for the chromatin environment frequency: P̃ES(e, s) = PES(e, s)/{PE(s)|E|}, and
P̃E , P̃S are defined starting from P̃ES as above. The (corrected) mutual information (see Figure 2)
is defined as above, but using the corrected frequencies:

MI(corrected) =
∑

e∈E,s∈S
P̃ES(e, s) log P̃ES(e, s)/(P̃E(e)P̃S(s)).

Note that if (XE , XS) are two random variables with joint probability distribution given by P̃ES ,
the above formula can be related to the conditional entropy of XE given XS :

MI(corrected) = |E| log |E| −H(XE |XS).

Lastly, we measured how similar each pair of chromatin environments is in terms of chromatin
states frequency (see Figure 3) using the following measure, that we called mutual similarity:

MS =
∑
e1∈E

∑
e2∈E\{e1}

∑
s∈S

P̃ES(e1, s)P̃ES(e2, s).

The runtime of the two algorithms was measured by running a whole-genome segmentation
with 10 states on each dataset. Each genome-wide dataset consists of a matrix with 15181508 bins
(rows) and with 27, 26, 12 and 12 marks (columns) for the IMR90, H1, K562_1 and K562_2 datasets
respectively. We used the default parameters for each algorithm except the number of cores, which
was set to 10. The computer used for the comparison is a 64x AMD Opteron 6282 SE with 517

9



GB or RAM (even though each algorithm needed at most 2 GB). The result of the measurements
can be seen in Figure 4, and it suggests that both ChromHMM and EpiCSeg are fast enough for
our needs.
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Figure 2: Mutual information between the supervised annotation and the unsupervised segmentations. The higher
the balanced mutual information, the better the score.
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Figure 3: Mutual similarity between states. The lower the similarity, the better the score.
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Figure 4: Number of seconds required for a whole genome segmentation.

5.2 Scores dependence on the number of states

We measured the scores reported in the main document varying the number of states from 2 to 40.
See the main document for a description of each score. For practical reasons we limited the input
data to the first chromosome only (chr1). The low R2 with the IMR90 dataset is most likely due to
a much smaller sequencing coverage of the RNA-seq experiment (roughly 10 times less reads than
in the other datasets).
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Figure 5: Performance scores described in the main document as a function of the number of states.

5.3 Comparison with Segway

The comparison with Segway poses a challenge both because of its larger runtime and because it
works at a single base pair resolution. While also EpiCSeg and ChromHMM can run at a single base
pair resolution, aggregating counts from adjacent base pairs has important smoothing properties,
both for the segmentation algorithms and for our validation procedure. These smoothing properties
play an indispensable role in our view of chromatin states. To mention one of these properties,
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binning reduces the oscillations in read counts due to nucleosome positioning. Even though in
other contexts it might be desirable to discern between linker and nucleosomal DNA, we consider a
promoter region, typically characterized by an array of positioned nucleosomes, as a single entity,
which should be annotated by a single segment.

In the computation of our performance scores, for Segway, we converted the state assignments
to each base into state assignments to each bin. This was done by picking the most abundant state
in each bin (draws, which occurred for less than 1% of the bins, were resolved by picking randomly
one of the most abundant states). EpiCSeg and ChromHMM, by contrast, were run using the
binning scheme. All other settings are as reported in the main document.

We dealt with the runtime problem by running all segmentation algorithms only on chromosome
21. ChromHMM and EpiCSeg perform training and prediction as a single task, while with Segway
we first used the ‘TRAIN’ task, and then the ‘IDENTIFY’ task. However, Segway runtime was still
too large to allow for training on the whole chromosome. We restricted the training task on the
region chr21:37313025-38619844 (zero-based, left-inclusive, right-exclusive coordinates), which is
about 1.3 megabases large (2.7% of the whole chromosome) and gene-rich (but also with some gene-
empty subregions). Even using these settings Segway was about 400 times slower than EpiCSeg
and ChromHMM (see Figure 6).

In Figure 7 we report the results of the comparison using the performance scores described in
the main document. The results show that Segway’s performance is, in general, considerably lower
compared to ChromHMM and EpiCSeg. As an exception, Segway achieves a high precision in TSS
prediction task, however this is also accompanied by a low sensitivity. From Figure 8 it can be
seen how Segway tends to assign most of the base pairs to a few states. It can also be seen that
the promoter-associated state in Segway seems to be affected by the nucleosome pattern expected
at promoters, which consists of a nucleosome-depleted region right before the TSS and positioned
nuclesomes after and before. According to a view of chromatin states others than the one implicitly
adopted in this paper, this might be a desirable behaviour.
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Figure 6: Runtime of the algorithms including Segway (only chromosome 21). Each algorithm was granted 10 cores
(even though none of the algorithms made full use of them).
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Figure 7: Performance scores described in the main document including Segway (only chromosome 21).
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Figure 8: State distribution around transcripts in the K562_1 datasets using Segway (only chromosome 21). For
Segway, the states have been identified at a single base pair resolution, but because the resulting state distribution
around transcripts was very noisy, the curves shown above have been smoothed using a running average with a
window size of 17 base pairs.

5.4 Replicate similarity

We computed how similar the datasets K562_1 and K562_2 are by measuring the Pearson correlation
coefficient and the total number of reads (Figure 9) per replicate pair. Note that these statistics
rely on the same binning scheme used for the segmentation, i.e. each sample is considered as a
vector containing the read counts per genomic bin. The first plot shows that the experiments are
indeed strongly correlated, suggesting that they are a reflection of the same biological processes.
However, there are considerable differences in sequencing coverage.

16



H
2A

.Z

H
3K

27
ac

H
3K

27
m

e3

H
3K

4m
e1

H
3K

4m
e2

H
3K

4m
e3

H
3K

36
m

e3

H
4K

20
m

e1

H
3K

9a
c

H
3K

79
m

e2

H
3K

9m
e3

Pearson correlation coefficient between replicate pairs
co

rr
el

at
io

n 
co

ef
fic

ie
nt

0.0

0.2

0.4

0.6

0.8

●

●

●
●

●

●

●

●

●

●

●

1.0e+07 1.5e+07 2.0e+07

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

2.
0e

+
07

2.
5e

+
07

3.
0e

+
07

number of reads per replicate pair

K562_1

K
56

2_
2

H2A.Z

H3K27ac

H3K27me3

H3K4me1
H3K4me2

H3K4me3

H3K36me3

H4K20me1 H3K9ac H3K79me2

H3K9me3

Figure 9: Similarity of each replicate pair. On the left, the Pearson correlation coefficient between replicate pairs.
On the right, the total read count for each replicate pair. In both plots each replicate is transformed to a vector
containing the read counts per bin.

5.5 Error rates vs read coverage

We studied how the disagreement between segmentations from replicate datasets depends on the
total read count per bin. As a result of the robustness analysis presented in the main document, for
each algorithm and for each genomic bin in a certain chromosome we have a match or a mismatch
depending on whether for that chromosome the segmentations from the K562_1 and K562_1 datasets
differ in that bin. Next, bins are grouped according to the total read count across marks (computed
from the K562_1 dataset), so that each group consists of at least 500 bins. The mismatch ratio, or
error rate, is the ratio of bins in a group where a mismatch occurs. Figure 10 shows how the error
rates depend on the read counts.
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Figure 10: Error rates vs read coverage. The left and right sides relate to EpiCSeg and ChromHMM, respectively.
The plots at the top show how the error rates depend on the read counts. Mismatches between bins result from the
robustness analysis described in the main document. Mismatch ratios, or error rates, are the ratios of bins in a group
where a mismatch occurs. Groups are defined by the total read count across marks in each bin, so that each group
consists of at least 500 bins. At the bottom, two identical histograms showing how many bins belong to each group.

5.6 EpiCSeg’s model robustness to shifts of the binning offset

The average Jaccard index is an algorithm-independent quantitative measurement of the similarity
between two segmentations which is based on finding a correspondence between states. Here,
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instead of looking at the segmentations, we look at the model parameters learnt by EpiCSeg and
see how different they are. This is shown in figure 11 for all datasets. The figure suggests that
corresponding states are, most of the times, indistinguishable, or, when the model converges to a
different local minimum, considerably different.
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Figure 11: Agreement between models after a shift of the binning scheme. Two models with the same number of
states have been trained from the same experiments but counting the reads using a different binnign scheme. In the
first binning scheme, labeled as ‘no shift’, the first bin of each chromosome starts at the first base pair, in the second,
labeled as ‘shift’, all bins have been shifted by 100 base pair. Next, the two sets of states have been matched so as
to maximize the overall agreement of the segmentations, measured with the average Jaccard index. The heatmaps
show for each dataset the parameters of the two different model by putting corresponding states next to each other.
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5.7 Genomic distribution of the chromatin states

In the Figures 12, 13, 14 and 15 we report the summary statistics described in the main document
for all datasets.
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Figure 12: Genomic distribution of chromatin states in the IMR90 dataset. The choice of the colors is arbitrary.
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Figure 13: Genomic distribution of chromatin states in the H1 dataset. The choice of the colors is arbitrary.
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Figure 14: Genomic distribution of chromatin states in the K562_1 dataset. The choice of the colors is arbitrary.
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Figure 15: Genomic distribution of chromatin states in the K562_2 dataset. The choice of the colors is arbitrary.
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