
1	

Protocol capture
 The files associated with this protocol capture can be obtained from www.rosettacommons.org.
They are located in the demos directory of the Rosetta distribution in
demos/protocol_capture/2015/rosettaligand_transform.

Protocol

Conformer Generation

Conformers can be generated with a number of tools, including MOE and OMEGA. In

this case, the Conformer Generation tool included as part of the BCL suite was used. The

following command was used to generate conformers:

bcl.exe molecule:ConformerGeneration ‐conformers \
pdb_refinedsupplemented_lib.sdf.bz2 ‐ensemble \
rosetta_inputs/ligands/all_ligands.sdf \
‐conformation_comparer DihedralBins \
‐temperature 1.0 ‐max_iterations 1000 \
‐top_models 100 ‐bin_size 30.0
‐scheduler PThread 8 \
‐add_h ‐conformers_single_file conformers

You can use any conformer generation tool you have available to you for this step. Your

generated conformers should be output to a single Structure Data File (SDF) file. Every

conformer must have 3D coordinates and hydrogens added. Conformers of the same ligand

should have the same name in the SDF file. For convenience, an example conformer file is

provided at rosetta_inputs/ligands/all_ligands.sdf.

Params file generation

Params files contain the parameterization information for a ligand. Every ligand or Residue

in a protein structure input into Rosetta must have a corresponding params file. Rosetta is

distributed with a script called molfile_to_params.py which generates these files.

However, this script is generally cumbersome for the generation of more than a small

handful of ligands. The protocol below is designed for the preparation of large

2	

numbers of ligands.

All the scripts needed for this process are in the tools directory in the Rosetta

distribution. Each of the scripts below would normally be preceded by

Rosetta/tools/hts_tools, but this directory prefix has been omitted for brevity.

1. Split ligand files

The conformers for all ligands are initially stored in a single SDF file, but

molfile_to_params.py expects one SDF file per ligand.

sdf_split_organize.py accomplishes this task. It takes as input a single SDF

file, and will split that file into multiple files, each file containing all the conformers

for one ligand. Different ligands must have different names in the SDF records, and

all conformers for one ligand must have the same name. Output filenames are based

on the SHA1 hash of the input filename, and are placed in a directory hashed struc-

ture. Thus, a ligand with the name “Written by BCL::WriteToMDL,CHEMBL29197”

will be placed in the path /41/412d1d751ff3d83acf0734a2c870faaa77c28c6c.mol. The

script will also output a list file in the following format:

ligand_id,filename
string,string
ligand_1,path/to/ligand1
ligand_2,path/to/ligand2

The list file is a mapping of protein names to SDF file paths.

Many filesystems perform poorly if large numbers of files are stored in the same di-

rectory. The hashed directory structure is a method for splitting the generated ligand

files across 256 roughly evenly sized subdirectories, improving filesystem perfor-

mance.

The script is run as follows:

sdf_split_organize.py \ rosetta_inputs/ligands/conformers.sdf
\ split_conformers/ ligand_names.csv

Be sure the split_conformers/ directory exists before running the script. Examples of

3	

the output of this script are in example_outputs/ligand_prep/

2. Create Project Database

The ligand preparation pipeline uses an SQLite3 database for organization during

the pipeline. The database keeps track of ligand metadata and the locations of ligand

files. The project database is created using the following command:

setup_screening_project.py ligand_names.csv ligand_db.db3

An example of the project database is in example_outputs/ligand_prep

3. Append binding information to project database

The next step is to create a binding data file. The binding data file should be in the

following format:

ligand_id,tag,value
string,string,float
ligand_1,foo,1.5
ligand_2,bar,‐3.7

The columns are defined as follows:

• ligand_id — ligand_id is the name of the ligand, which must match the

ligand_id in the file_list.csv file created by sdf_split_organize.py.

• tag — The name of the protein the ligand should be docked into. If a

ligand should be docked into multiple proteins, it should have multiple

entries in the binding data file. Note that this protocol makes a distinction

between protein name, and file name. If you have 4 protein files:

foo_0001.pdb, foo_0002.pdb, bar_0001.pdb, and bar_0002.pdb, then you

have two proteins with the names foo and bar. The scripts expect that the

protein Protein DataBank (PDB) files begin with the protein name.

• value — The activity of the ligand. If you are doing a benchmarking study and

know the activity of your ligand, you should enter it here. If you are not doing

4	

a benchmarking study, or if ligand activity is not relevant to your study, value

can be set to 1.0 (or anything else). This field is currently only used in a

few specific Rosetta protocols that are in the experimental stages, and is

typically ignored, so it is safe to set arbitrarily in almost every case.

An example input file is provided. you can insert it into the project database with the

following command:

add_activity_tags_to_database.py ligand_db.db3\
rosetta_inputs/ligand_activities.csv

4. Generate Params Files

The next step is to generate params files. make_params.py is a script which wraps

around molfile_to_params.py and generates params files in an automated

fashion. Params files will be given random names that do not conflict with

existing Rosetta residue names (no ligands will be named ALA, for example). This

script routinely results in warnings from molfile_to_params.py, these

warnings are

not cause for concern. Occasionally, molfile_to_params.py is unable to

properly process an SDF file, if this happens, the ligand will be skipped. In order

to run make_params.py you need to specify the path to a copy of

molfile_to_params.py, as well as the path to the Rosetta database.

make_params.py should be run like this:

make_params.py ‐j 2 ‐‐database Rosetta/main/database \
‐‐path_to_params \ Rosetta/main/source/src/python\
/apps/public/molfile_to_params.py \ ligand_db.db3 params/

In the command line above, the -j option indicates the number of CPU cores which

should be used when generating params files. If you are using a multiple core ma-

chine, setting -j equal to the number of available CPU cores. Be sure that the

5	

params/ directory exists before running the script.

The script will create a directory params/ containing all params files, PDB files

and conformer files.

An example of the output params/ directory is found in
example_outputs/ligand_prep

5. Create job files

Because of the memory usage limitations of Rosetta, it is necessary to split the screen

up into multiple jobs. The optimal size of each job will depend on the following

factors:

• The amount of memory available per CPU

• The number of CPUs being used
• The number of atoms in each ligand

• The number of conformers of each ligand

• The number of protein residues involved in the binding site.

Because of the number of factors that affect RosettaLigand memory usage, it is usu-

ally necessary to determine the optimal job size manually. Jobs should be small

enough to fit into available memory.

To make this process easier, the make_evenly_grouped_jobs.py script will

attempt to group your protein-ligand docking problem into a set of jobs that are sized

as evenly possible. The script is run like this:

make_evenly_grouped_jobs.py ‐‐create_native_commands \
rosetta_inputs/proteins ‐‐n_chunks 1 \
‐‐max_per_job 1000 \
params rosetta_inputs/proteins job

If the script was run as written above, it would use param files from the directory

param_dir/, and structure files from the directory structure_dir/. It would attempt to

6	

split the available protein-ligand docking jobs into 10 evenly grouped job files (-

n_chunks). The script will attempt to keep all the docking jobs involving one

protein system in one job file. However, if the number of jobs in a group ex-

ceeds 1000, the jobs involving that protein system will be split across multiple files

(-max_per_job). The script will output the 10 job files with the given prefix, so in the

command above, you would get files with names like “output_prefix_01.js”. The

script will output to the screen the total number of jobs in each file. All the numbers

should be relatively similar. If a job file at the beginning of the list is much larger than

the others, it is a sign that you should reduce the value passed to -max_per_job. If

the sizes of all jobs are larger than you want, increase -n_chunks.

Additionally, the script will take the default ligand positions from the ligand PDB

files, and the protein files from the rosetta_inputs/proteins directory, and

designate these as the “native” pose of the protein-ligand complex. This feature

will allow Rosetta to compute ligand RMSDs automatically, and was used in the

benchmarking studies described in the manuscript.

Docking

After following the procedure above to prepare your ligands, you are ready to dock the

ligands. The screening job file produced in the previous step contains the paths to the input

proteins and ligands and the paths to the necessary params files. In this example, the ligand

pdbs are already positioned in the ligand binding site.

RosettaLigand protocols are built in the RosettaScripts framework, a modular

architecture for creating RosettaLigand protocols. The rosetta_inputs/xml directory

contains all of the rosetta protocols were tested in the manuscript, and any of these XML

files can be used with the docking commands described below. See the comments in the

XML files for details on the usage and operation of the scripts.

The Rosetta ligand docking command should be run as follows:

7	

rosetta_scripts.default.linuxgccrelease \
@rosetta_inputs/flags.txt \
‐in:file:screening_job_file rosetta_inputs/job_01.js \
‐parser:protocol rosetta_inputs/tr_repack.xml

rosetta_inputs/flags.txt contains flags that are always the same regardless of the

input file.

This command will dock every protein-ligand binding pair and place the output in the

specified silent file. In the benchmarking case described in chapter I, 2000 models were

made for each protein-ligand binding pair. However, in a practical application 200 models

would be appropriate.

Analysis

Practical analysis

If this protocol is being used for an application project in which the correct ligand binding

position is not known, the lowest scoring model for each protein-ligand binding pair should

be selected. From that point, we recommend filtering by protein-ligand interface score

(interface_delta_X), as well as the packstat score[1] which can be computed through the

InterfaceAnalyzer mover. The cutoffs for these filtering steps should depend on the range

of scores present, and the number of compounds it is possible to test. After filtering, the

selected compounds should be visually inspected. If a crystal structure exists with a

known binding pose, the predicted binding poses of the unknown com- pounds should

be compared. Additionally, the overall binding poses of the filtered com- pounds should

be inspected to assess whether or not they make chemical sense. While this is a

qualitative process, human intuition has proven a valuable aid in the drug design

process[2].

Benchmarking analysis

Statistical analysis of the benchmarking study provided in this paper was performed using

8	

Python. analysis.ipynb is an iPython Notebook (http://ipython.org/notebook.html) contain-

ing the code necessary to reproduce these figures, as well as comments and description of

that code. See the iPython documentation for installation and usage instructions.

9	

	
	
1.	 Sheffler	W,	Baker	D	(2009)	RosettaHoles:	rapid	assessment	of	protein	core	packing	for	

structure	prediction,	refinement,	design,	and	validation.	Protein	Sci	18:	229–239.	
doi:10.1002/pro.8.	

2.	 Voet	ARD,	Kumar	A,	Berenger	F,	Zhang	KYJ	(2014)	Combining	in	silico	and	in	cerebro	
approaches	for	virtual	screening	and	pose	prediction	in	SAMPL4.	J	Comput	Aided	Mol	
Des:	1–11.	doi:10.1007/s10822‐013‐9702‐2.	

	

