
BIOINFORMATICS Vol. 00 no. 00 2015
Pages 1–8

Supplement to “ExaML Version 3: A Tool for
Phylogenomic Analyses on Supercomputers”
Alexey M. Kozlov 1,∗, Andre J. Aberer 1 and Alexandros Stamatakis 1,2∗

1Scientific Computing Group, Heidelberg Institute for Theoretical Studies
2Institute for Theoretical Informatics, Department of Computer Science, Karlsruhe Institute of
Technology

Associate Editor: Jonathan Wren

1 INTRODUCTION
In the following we provide a detailed technical description of
the optimizations applied to ExaML version 3 in order to improve
scalability and parallel efficiency. In Section 2 we briefly describe
the new data distribution algorithm. A detailed performance analysis
is available in (Kobert et al., 2014). Then, we outline the novel
parallelization approach for the alignment I/O during the ExaML
start-up phase (Section 3). In Section 4 we outline the substantial
re-design of the ExaML MIC version that was required to produce a
usable, production-level implementation for this hardware platform.
Finally, we investigate scaling performance of ExaML on both CPU
and MIC clusters in Section 5.

1.1 Supported Platforms
ExaML runs on x86-based clusters with low-latency interconnects
such as Infiniband. It can also be executed on Intel MIC-based
clusters as well as on hybrid x86/MIC clusters. It supports Linux
and MAC operating systems and can be compiled with icc,gcc
and clang. ExaML has been successfully tested with the following
MPI implementations: Intel MPI, IBM MPI (on the SuperMUC
system), OpenMPI, and MVAPICH2. Note however, that we expect
ExaML to run with all up-to-date MPI implementations, since it
only uses basic MPI functions such as MPI_Allreduce() and
MPI_Scatterv().

ExaML does not provide support for systems based on IBM
processors (e.g., IBM BlueGene/Q, etc.) yet, since this would
require an appropriate and labor-intensive adaptation of the current
SSE3/AVX core likelihood function vectorization. Moreover,
systems based on IBM processors account for less than 20% of
accumulated performance share in the November 2014 TOP500
list (see http://www.top500.org/). In addition, the vast
majority of smaller-scale university clusters has x86 processors.
Finally, we do not provide GPU support because of rather
disappointing (less than a factor of two in the best case) performance
with our kernel (Izquierdo-Carrasco et al., 2013). Instead, we focus
on the Intel MIC accelerator. Note that, the performance share of
the TOP500 systems using the Intel MIC accelerators has increased
from about 5% in the June 2014 list to approximately 30% in the
November 2014 list.

∗to whom correspondence should be addressed

2 NOVEL LOAD DISTRIBUTION ALGORITHM
Attaining an optimal data and/or load distribution represents a
central challenge in high performance computing. Load balance
algorithms strive to distribute computational load equally among
processes such that unproductive overheads (waiting for other
processors to finish their tasks) are minimized. In the phylogenetic
setting, data and hence, load distribution is performed by
assigning alignments patterns to processors, since we have to
calculate the likelihood for each alignment pattern to compute
the overall likelihood of a tree. Furthermore, each data partition
for which a process evaluates alignment patterns requires certain
pre-computations (e.g., eigenvector/eigenvalue decompositions and
matrix exponentiations). Thus, if the alignment is partitioned (parts
of the alignment such as genes, for instance, are assigned distinct
models of evolution), load distribution in ExaML can be formulated
as a bicriterion problem: (I) we have to distribute alignment patterns
such that every processor has the same number of patterns (the
difference between the minimum and maximum number of patterns
assigned to processes should be ≤ 1) and (II) we have to assign
partitions (partially) to processes, such that the maximum number
of partitions (partially) assigned to a process is minimal. The
latter restriction is due to the fact that each partition comes with
a constant pre-computation overhead, regardless of how many
alignment patterns it comprises.

Previous versions of ExaML offered cyclic data distribution,
that distributed the patterns of each partition equally among
processes (optimal w.r.t. criterion I). Alternatively, ExaML offered
a scheduling algorithm that assigned full partitions to processors
(Zhang and Stamatakis, 2012) (optimal w.r.t. criterion II). An
optimal load distribution algorithm that satisfies both criteria is
NP-hard (Kobert et al., 2014). Yet, there exists a linearithmic-
time approximation that is guaranteed to miss the optimal solution
w.r.t. criterion II by at most 1, while also guarantying the optimality
w.r.t. criterion I (Kobert et al., 2014). In other words, a nearly
equal distribution of both partitions and alignment patterns among
processes can be achieved.

We briefly outline the version of this algorithm that we
implemented in ExaML version 3. Before starting the distribution
algorithm, we calculate the desired (equal) load l per process (i.e.,
number of characters to be assigned to a process). If the number
of processes is not a multiple of the number of characters, then
some processes will acquire an additional character. However, we
disregard this border case in the following description. Initially,

c© Oxford University Press 2015. 1



Kozlov et al

we sort partitions by their number of patterns in descending order.
Then, we assign entire partitions to processes in a round-robin
manner until for the first time we can not assign more partitions
to a process, since the overall load of a process would exceed l.
Having completed this phase, we are guaranteed that the number
of partitions assigned to processes does not differ by more than
1 among processes. We now divide processes into a queue Qless
of processes with the minimum number of partitions and a queue
Qmore of processes that already have one partition more (than the
minimum) assigned to them. In the final phase, the algorithm
partially assigns partitions to processes in a manner that satisfies
both criteria. We continue the assignment (in descending order) with
the partition that could not be fully assigned previously. In each
iteration, we first try to dequeue a process from Qmore and check
whether we can fill up its load via a partial assignment using the
current partition. If this is not possible, we dequeue a process p
from Qless and try to fill up its load using as many characters of the
current partition as we still have available. If p still has less than
l characters, we requeue p into Qmore and finalize it in subsequent
iterations. For a proof of correctness (w.r.t. satisfying criteria I and
II) and a performance comparison to the data distribution strategies
previously employed in ExaML, see (Kobert et al., 2014).

3 STARTUP TIME OPTIMIZATION
Description. Because of Amdahl’s law, sequential program phases
can have a severe impact on the efficiency of parallel codes. For
ExaML, the startup phase represents a performance bottleneck,
since a high number of processes (potentially several thousands)
have to read the input alignment file (potentially several GB) in the
shortest amount of time possible.
ExaML provides a parser component that creates a pre-processed

binary file. At the beginning of the startup phase (for an illustration
see Fig. 1), processes first extract global information (e.g., taxon
names, alignment lengths) and partition borders from this binary
file. This information is needed to compute a partition to processor
assignment (see Sect. 2). Given the partition assignment, each
processor can allocate and extract alignment site patterns and
associated site pattern weights (using fseek/fread operations).
The ExaML parser writes the data of each partition in a taxon by
taxon order to the binary file. Thus, if an entire partition is assigned
to a single process, we only require a single fread operation to
read this partition’s data.

In previous versions of ExaML, each alignment row (each
sequence) was read entirely by each process. Then, the base-
pairs of the sequence the process would perform calculations upon
were permanently stored in RAM. Alternatively, the alignment
could also be read via a compressed stream using the gzip
library. Thus, in previous versions, the per-processor memory
requirements during the startup phase depended on the size of the
alignment row. In contrast to this, in the novel implementation,
each processor only requires memory proportional to the part of
the alignment that is assigned to this processor. Note that for very
large whole-genome alignments being analyzed with thousands of
processors, the previous implementation that required reading-in
and temporarily storing an entire sequence at each core led to
per-core memory shortages.

Evaluation. We evaluated the new startup and I/O implementation
using a simulated DNA alignment comprising 200 taxa and
100,000,000 bp (for information on availability, see Aberer et al.
2014). The binary alignment representation requires 19 GB of
disk space, compressed versions of the alignment require between
3.4 and 3.8 GB depending on the partitioning scheme of the
alignment. We measured the runtimes of the startup phase for an
unpartitioned dataset and partitioned datasets with 500 and 1,000
partitions, respectively. Furthermore, runtimes were measured for
all three discussed options (previous implementation, compressed
implementation, new implementation) using 4, 8, 16, 24, 48, or
96 processes. We performed runtime measurements on 48-core
compute nodes equipped with 4 AMD Opteron processors (each
12 cores). Thus, two compute nodes are required for the run with
96 processes. We averaged times over 4 measurements for each data
point.

For our test dataset, we observe that, the novel fseek+fread
implementation is at least one order of magnitude faster (see Fig. 2)
than the previous variants. In the best case (500 partitions), the novel
implementation invoked with 96 processes is 57× faster than the
compressed variant of the previous implementation.

For previous implementations the total amount of data to be read
increases with the number of processes and thus we observe a
parallel slow-down. In contrast to this, the novel implementation
scales well for partitioned alignments when the number of compute
nodes is increased from 1 to 2. For instance, when using 48
processes on the dataset with 1,000 partitions the startup requires
33.6 seconds, while the startup takes only 18.7 seconds for 96
processes. Scaling properties are worse for the unpartitioned case,
since partitions can not be read using only one fread operation.
Unpartitioned datasets require a fseek+fread for each taxon.

Finally, we observe that reads of compressed streams generally
improve start-up times. However, combining compressed streams
with the fseek / fread approach introduced here is not straight-
forward.

4 OPTIMIZATIONS FOR THE INTEL MIC
Previously, we presented an initial, experimental version of the
ExaML code with basic support for the Intel Xeon Phi coprocessors
(Kozlov et al., 2014). As of ExaML 3.0, this functionality has been
extended and integrated into the production level version of the
software. The current section provides details about implementation
and performance of ExaML on the Intel MIC (called ExaML-MIC
henceforth).

4.1 Implementation details
4.1.1 Supported functionality Currently, most of the core
ExaML functionality is available on the Intel MIC, in particular:

• support for nucleotide (DNA) and protein (AA) data

• Γ model of rate heterogeneity

• partitioned (multi-gene) datasets

• all AA substitution matrices supported by the CPU version,
including the LG4M and LG4X models

At the same time, the following features are not yet supported:

2



Supplement to ExaML 3

Processes

Alignment

Weights

Global + Partition Info

Partition Assignment

2. compute

1. read

3. read

process (id,offset,length)

Binary File

Fig. 1: ExaML startup phase (using 4 processes) illustrated for an alignment comprising 5 partitions. First, all processes read global
information and partition definitions. Next, each process computes an assignment of partitions (or parts thereof) to processes. Subsequently,
each process uses this information to read only data (i.e., alignment patterns and weights) assigned to it.

• support for binary characters (presence/absence data)

• PSR (per-site rate) model of rate heterogeneity (Stamatakis,
2006)

• memory saving by omitting calculations on missing data (-S
option)

4.1.2 Likelihood kernel optimizations The evaluation of the
Phylogenetic Likelihood Function (PLF) represents the main
computational bottleneck for ExaML as well as for other likelihood-
based (ML or Bayesian) tree inference codes. Therefore, optimizing
the corresponding functions (called PLF kernels henceforth) is the
primary goal for any efficient implementation and adaptation to a
new hardware platform. In our previous work, we applied several
MIC-specific optimization techniques to speedup the PLF kernels
for DNA data (for a detailed discussion, see Kozlov et al., 2014).
In ExaML 3.0, we now also optimized the PLF kernels for protein
data, using the same underlying principles.

4.1.3 New hybrid parallelization approach Originally, ExaML
provided MPI-based parallelization only. So in order to exploit intra-
node parallelism, multiple MPI processes had to be started (e.g.,
1 process per CPU core). However, as our tests have shown, this
approach does not fit the Xeon Phi well, since hundreds of MPI

processes per card would need to be started. To circumvent this
problem, we initially implemented an ad hoc OpenMP solution,
where the main loop over alignment site patterns was parallelized in
each kernel individually (Kozlov et al., 2014). Despite being better
than the pure MPI approach, the parallel efficiency of this initial
solution deteriorates with an increasing number of partitions. Note
that analyses with hundreds or thousands of partitions represent the
standard ExaML use case. The are several reasons for the above
inefficiency:

1. Excessive amount of synchronization: For practical reasons,
each partition is processed via a separate kernel call.
Consequently, for p partitions there will be p distinct for-
loops over site patterns. Moreover, since every thread on
the MIC is calculating per-site likelihoods for every partition,
synchronization after each loop/partition is required.

2. Sequential overhead: As mentioned before, each partition
requires some constant amount of computations (see Section 2).
For instance, the P matrix exponentiation and the pre-
computation of conditional likelihoods at the tips fall into this
category. Since these computations are conducted outside the
parallelized for-loops, they are executed sequentially and
deteriorate performance according to Amdahl’s law.

3



Kozlov et al

#procesess

ru
nt

im
e 

[s
ec

]

16

64

256

1024

4 8 16 32 64

●
●

●
●

●

●

● ● ● ●

● ●

●
●

●
●

●

●

unpartitioned

4 8 16 32 64

● ● ●
● ●

●

● ● ● ●

●
●

●
●

●

●

●

●

500 partitions

4 8 16 32 64

●
● ● ● ●

●

● ● ● ●

● ●

●
●

●

●

●
●

 1000 partitions

fseek+fread compressed readall readall 

Fig. 2: Startup time evaluation on a DNA alignment comprising 200 taxa and 100,000,000 bp that is either (i) unpartitioned, (ii) divided into
500 partitions or (iii) divided into 1,000 partitions. Runtimes are depicted for a number of processes ∈ [4, 96], where the instance with 96
processes is the only case, where processes reside on two distinct compute nodes connected by Infiniband. The red line represents the novel
fseek+fread implementation in ExaML 3.0, the black line represents the previous approach of reading an entire alignment row at once
and the blue line indicates the a variation of the previous implementation where ExaML reads a compressed alignment file.

3. Reduced data locality: Due to the OpenMP loop-based
parallelization employed, there is no fixed assignment of
alignment sites patterns to specific threads, so cache efficiency
decreases because of lack of data locality.

Because of these shortcomings, we designed a novel OpenMP
parallelization approach from scratch for ExaML 3.0 (see Fig. 3).
In particular, we use the algorithm described in Sect. 2 again to
distribute partitions and alignment site patterns not only among MPI
processes, but also (in a second step) among OpenMP threads. In
other words, we now perform two-level load balancing. Initially,
partitions (or regions thereof) are assigned to MPI processes. Then,
the partitions (or parts thereof) of a MPI process are assigned to
individual threads within this process using the same algorithm
once more. Thereby, we attain a fixed thread-to-alignment pattern
assignment and improve data locality.

To deal with the remaining two issues, we introduce a two-phase
PLF calculation:

• In phase 1, we parallelize over partitions: all partitions are
distributed evenly among threads, and each thread performs the
constant part of computational work (mentioned above and in
Section 2) for the partition(s) assigned to it.

• In phase 2, we parallelize over sites: each thread performs PLF
computations on its individual part of the alignment.

With this approach, we only require two synchronization barriers
(one after Phase 1 and one after Phase 2) to perform the PLF
computation. Thus, the amount of barriers required is independent
of the number of partitions. In addition, work is now evenly
distributed among the MIC threads in both phases which eliminates
the sequential bottleneck.

4



Supplement to ExaML 3

barrier #1

phase 1

T0

1

T1

3

T2

4

0 1 2 3 4

P0 P1

T0 T1 T2 T0 T1 T2

P0 P1

A B

T0 T1 T2

phase 2

(exponentiateP + precomputeTips)

barrier #2

(main across-sites loop)

partitioned alignment: P1

Fig. 3: Hybrid MPI/OpenMP parallelization scheme: A. Partitions are distributed among MPI processes, and then among OpenMP threads.
B. The two-phase PLF evaluation procedure allows for better load balance and less synchronization overhead.

4.2 Performance evaluation
4.2.1 Experimental setup We used Indelible v1.03 (Fletcher and
Yang, 2009) to simulate 10 alignments (5 DNA, 5 AA) with
representative dimensions as observed for empirical datasets (see
Table 1 for details):

• short: single-gene alignment (e.g., classical 16S rRNA
analysis),

• medium: multi-gene alignment with a moderate number of
genes,

• large: whole-genome alignment or concatenation of
hundreds of genes.

Due to the memory constraints on the MIC coprocessors, large
alignments comprise only 20 taxa, whereas medium and short
alignments consist of 200 and 2000 taxa, respectively.

For the medium and large alignments, we tested 2 partitioning
schemes:

• unpartitioned (AA) or partitioned by codon positions (DNA),

• fine-grained partitioning schemes analogous to schemes
generated by automatic partitioning tools (e.g., PartitionFinder,
Lanfear et al., 2012).

We performed all test runs on the SuperMIC cluster, which is
part of the SuperMUC supercomputer (Leibniz Rechenzentrum,
Garching, Germany). On SuperMIC, each compute node is
equipped with 2 Ivy-Bridge host processors (Xeon E5-2650 v2, 2
× 8 cores @ 2.6 GHz) and 2 Intel MIC coprocessors (Xeon Phi
5110P, 2 × 60 cores @ 1.1 GHz). The nodes are connected via
Mellanox Infiniband FDR14 using Mellanox OFED 2.2. At the time
of performance testing, the software stack included:

• MPSS 3.4

• MLNX OFED LINUX-2.2-1.0.1.1 (OFED-2.2-1.0.0)

• Intel MPI 5.0.1.035

• Intel Composer XE 2015.0.090

• Intel MKL 11.2

• Intel Amplifier XE 2015

4.2.2 Single-node performance To assess the performance on the
Intel MIC, we measured ExaML runtimes under the following 4
configurations:

• host: 16 MPI ranks are placed on the host CPUs only
(reference for speedup calculation),

5



Kozlov et al

Table 1. ExaML 3.0 execution times and speedups on the host CPUs (Host), on the single (1×MIC) and dual (2×MIC) Xeon Phi coprocessor(s), and in
hybrid mode where CPUs and MICs are used simultaneously (Hybrid). Results for several nucleotide (DNA) and protein (AA) alignments with different
dimensions and partitioning schemes are shown. The execution times are medians of 3 independent runs.

Dataset properties Execution time, s Speedup to host, ×

Data type Code # taxa # sites # patterns # part. Host 1×MIC 2×MIC Hybrid 1xMIC 2xMIC Hybrid

DNA

dna short 1p 2000 6k 5322 1 6776 29010 NA NA 0.23 NA NA

dna medium 3p 200 300k 293780 3 9579 6643 4073 3251 1.44 2.35 2.95

dna medium 50p 200 300k 293158 50 9505 7092 4264 3444 1.34 2.23 2.76

dna long 3p 20 4000k 1940554 3 1591 908 482 389 1.75 3.30 4.09

dna long 500p 20 4000k 3084131 500 2542 1528 825 680 1.66 3.08 3.74

AA

aa short 1p 2000 2k 2044 1 41741 132019 NA NA 0.32 NA NA

aa medium 1p 200 60k 56655 1 18911 16304 9070 7423 1.16 2.08 2.55

aa medium 50p 200 60k 56966 50 22098 21169 12165 9534 1.04 1.82 2.32

aa long 1p 20 600k 442153 1 3402 2477 1265 1019 1.37 2.69 3.34

aa long 500p 20 600k 544580 500 4334 3711 1912 1497 1.17 2.27 2.90

dna_medium_p3 dna_medium_p50 dna_long_p3 dna_long_p500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Nucleotide data

host only 1xMIC 2xMIC hybrid

S
pe

ed
up

, x

(a)

aa_medium_p1 aa_medium_p50 aa_long_p1 aa_long_p500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Aminoacid data

host only 1xMIC 2xMIC hybrid

S
pe

ed
up

, x

(b)

Fig. 4: ExaML speedups on the Intel MIC for DNA (a) and AA (b) alignments.

• 1xMIC: 1 MPI rank on a single MIC card, 118 OpenMP
threads (on short datasets, a smaller number of threads was
used; see discussion below),

• 2xMIC: 1 MPI rank with 118 OpenMP threads on each of the
two MIC cards,

• hybrid: 16 MPI ranks on the host CPUs and 30 MPI ranks
(× 4 threads) on each of the two MIC cards.

Please note that, we did not use the Hyper-Threading feature
of the CPUs, since, according to our tests, running ExaML with
two MPI ranks per physical core does not lead to any performance
improvements.

The experimental results are summarized in Table 1, relative
speedups are shown in Fig. 4.

As expected, the MICs perform better on longer alignments,
where synchronization and sequential overhead are better amortized.
On the other hand, dividing several thousand kilobases among
>100 threads proved to be inefficient. This is in line with our
empirical observations for the ExaML CPU version, where one
process per 100–500 alignment site patterns should be used for
good efficiency. Hence, we only used 30 and 40 threads for
the dna short 1p and aa short 1p datasets, respectively.
Analyzing such extremely short alignments on the MIC only makes
sense when a ’multiplexing’ strategy is applied. If multiple ML
searches are executed (e.g., with different starting trees), one can
start several (independent) ExaML instances in parallel, so that all
MIC cores are being used (e.g., 4 independent instances with 30
threads each). In such a ’multiplexing’ configuration, a single MIC
card is on par with the performance of the host CPUs. Thus, more

6



Supplement to ExaML 3

than two-fold speedups are expected if both MIC cards and the host
CPUs are used.

On the medium and long datasets, speedups on DNA data are
better than on AA data (1.34×–1.66× vs. 1.04×–1.37×). Also,
despite our dedicated optimizations for partitioned alignments, the
MIC version shows a 5–20% performance decrease compared to the
CPU version if the number of partitions is large.

In hybrid mode, up to four-fold speedups have been achieved
on large DNA alignments. Since in this configuration the CPU and
MIC cores work together, load balancing becomes essential. Given
that ExaML distributes alignment patterns and partitions evenly
among MPI ranks, one can fine-tune the ratio between MPI ranks
on CPUs and MICs to improve load balance. For example, in our
experiments we used 30 MIC ranks and 16 CPU ranks, which
yields a ratio of 1.875. Intuitively, this ratio should be close to the
MIC/CPU speedup. Thus, lower values might yield better results on
smaller alignments (e.g., 24/16 = 1.5).

5 SCALABILITY ANALYSIS
In scalability analyses, one usually distinguishes between strong
and weak scaling. Both metrics assess the runtime improvement
that can be achieved by using more CPUs for solving the problem
in parallel. However, strong scaling is calculated based on a fixed
problem (dataset) size, whereas for weak scaling the problem size
is increased with the number of CPUs (i.e., the working set size is
fixed per CPU).

More formally, strong and weak scaling efficiency are calculated
as follows:

Sstrong =
t1,1

N ∗ t1,N
∗ 100% (1)

Sweak =
tN,1

tN,N
∗ 100% (2)

where N is the number of CPUs and t1,1, t1,N , tN,1, tN,N are
the runtimes for the respective dataset size (1 or N working units,
first index) and the number of CPUs (second index).

5.1 Scalability of CPU version
We assessed the scalability of ExaML using three datasets
from a recent phylogenomic study (Jarvis et al., 2014). Their
characteristics are summarized in Table 2. We performed our tests
on SuperMUC compute nodes, that are equipped with two 8-core
Xeon E5-2680 CPUs and 32GB of RAM each, and interconnected
via Infiniband FDR10. We started 16 MPI processes per node, which
corresponds to one process per physical core.

Due to the high memory requirements of the test datasets
and limited per-node RAM capacity, it was impossible to obtain
reference runtimes on just a single node. Therefore, we used the
running time on the smallest possible number of nodes (4 nodes for
aa 4M and dna 20M, and 64 nodes for dna 320M) as reference
runtime for scaling efficiency calculations. Starting from this initial
configuration, we increased the number of nodes step-by-step up
to the point where no further runtime reduction was observed. We
assessed scalability using the Γ model of rate heterogeneity, since

Table 2. Characteristics of the datasets used for scalability tests.

Designator Data # taxa # alignment # unique # parti-

type sites patterns tions

aa 4M AA 48 4,432,759 2,341,493 8000

dna 20M DNA 48 19,258,311 15,424,402 500

dna 320M DNA 51 322,150,876 161,845,822 1

4 8 16 32 64 128 256 512 1024
0

20

40

60

80

100

120

140

ExaML-CPU, strong scaling

AA, 4M DNA, 20M DNA, 320M

Number of nodes (x 16 processes)

P
ar

al
le

l e
ffi

ci
en

cy
,,%

Fig. 5: Strong scaling of ExaML on the CPU-only nodes of the
SuperMUC.

it requires 4 times more computations than the PSR model. We also
focus on the Γ model here, since it is widely used and broadly
accepted.

Strong scaling performance of ExaML is shown in Fig. 5. On the
aminoacid dataset, parallel efficiency gradually decreases, and the
maximum speedup of 16.36 can be achieved on 256 nodes (4096
cores). On the smaller DNA dataset (dna 20M), we measured a
superlinear speedup (132%–111%) for 16 up to 64 nodes (256–
1024 cores). This effect is in line with previous observations
(Stamatakis et al., 2012; Aberer et al., 2014). It can be explained
by better cache efficiency and/or increased memory bandwidth.
The maximum speedup on dna 20M dataset is 30.6 and it was
achieved on 256 nodes (4096 cores). The parallel efficiency is 48%
in this configuration. Please note, that analyzing dna 20M on 4096
cores means that each core computes likelihood on less than 4,000
alignment patterns. Hence the high communication overhead cannot
be sufficiently amortized. Finally, on the largest DNA dataset with
more than 300 million alignment sites, ExaML scales up to 256
nodes with 78% efficiency, achieving a speedup of 3.12 compared
to 64 nodes. Although the runtime can be further reduced by using
512 nodes, reaching a speedup of 3.94, the parallel efficiency drops
to 49% in this case.

5.2 Scaling of the MIC version
On the Intel MIC accelerators, strong scaling of ExaML is limited
by two factors:

7



Kozlov et al

1 2 4 8 16 32
0

20

40

60

80

100

120

ExaML-MIC, weak scaling

DNA AA

Number of MIC cards (x 118 processes)

P
ar

al
le

l e
ffi

ci
en

cy
, %

Fig. 6: Weak scaling of ExaML-MIC. Each MIC card has been
assigned a part of an alignment comprising 50 taxa and 1000k DNA
sites or 200k AA sites, divided into 100 partitions.

1. The maximum size of an alignment which can be analyzed on
a single card is constrained by the amount of on-board memory
(8GB for the Xeon Phi 5110).

2. As we distribute an alignment of fixed size over multiple co-
processors, the number of site patterns per card and per core
decreases, and so does efficiency.

In most practical cases, it will therefore be suboptimal to run an
analysis on multiple cards, if one card can handle the data in terms
of memory requirements. On the other hand, one might have to use
multiple MICs if the dataset does not fit into the memory of a single
card. To account for this scenario, we evaluated the weak scaling
behavior of ExaML-MIC on large datasets.

As Fig. 6 shows, our implementation scales reasonably well: it
attains a parallel efficiency of about 80% on 16 MIC cards and
about 70% on 32 MIC cards. The difference in scalability between
DNA and AA alignments amounts to only 1–3% and is therefore
negligible.

REFERENCES
Aberer, A. J., Kobert, K., and Stamatakis, A. (2014). Exabayes: Massively parallel

bayesian tree inference for the whole-genome era. Molecular biology and evolution,
31(10), 2553–2556.

Fletcher, W. and Yang, Z. (2009). INDELible: a flexible simulator of biological
sequence evolution. Molecular biology and evolution, 26(8), 1879–1888.

Izquierdo-Carrasco, F., Alachiotis, N., Berger, S., Flouri, T., Pissis, S., and Stamatakis,
A. (2013). A generic vectorization scheme and a gpu kernel for the phylogenetic
likelihood library. In Parallel and Distributed Processing Symposium Workshops
PhD Forum (IPDPSW), 2013 IEEE 27th International, pages 530–538.

Jarvis, E. D., Mirarab, S., Aberer, A. J., Li, B., Houde, P., Li, C., Ho, S. Y., Faircloth,
B. C., Nabholz, B., Howard, J. T., et al. (2014). Whole-genome analyses resolve
early branches in the tree of life of modern birds. Science, 346(6215), 1320–1331.

Kobert, K., Flouri, T., Aberer, A. J., and Stamatakis, A. (2014). The divisible load
balance problem and its application to phylogenetic inference. In Algorithms in
Bioinformatics, pages 204–216. Springer Berlin Heidelberg.

Kozlov, A. M., Goll, C., and Stamatakis, A. (2014). Efficient Computation of the
Phylogenetic Likelihood Function on the Intel MIC Architecture. In Parallel and
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2014
IEEE 28th International, pages 518–527. IEEE.

Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). Partitionfinder:
Combined selection of partitioning schemes and substitution models for
phylogenetic analyses. Molecular Biology and Evolution, 29(6), 1695–1701.

Stamatakis, A. (2006). Phylogenetic Models of Rate Heterogeneity: A High
Performance Computing Perspective. In Proc. of IPDPS2006, HICOMB Workshop,
Proceedings on CD, Rhodos, Greece.

Stamatakis, A., Aberer, A. J., Goll, C., Smith, S. A., Berger, S. A., and Izquierdo-
Carrasco, F. (2012). Raxml-light: a tool for computing terabyte phylogenies.
Bioinformatics, 28(15), 2064–2066.

Zhang, J. and Stamatakis, A. (2012). The multi-processor scheduling problem in
phylogenetics. In Parallel and Distributed Processing Symposium Workshops &
PhD Forum (IPDPSW), 2012 IEEE 26th International, pages 691–698. IEEE.

8


