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Supplementary methods 

African palm data 

We assembled a comprehensive, geographical database for African palms including > 5500 palm specimens. 

The occurrence data came primarily from herbarium collections from the Royal Botanic Gardens, Kew; the 

National Botanic Garden of Belgium; the National Herbarium Nederland; the Missouri Botanical Garden; the 

National Herbarium of Namibia; and herbarium collections accessed through the GBIF data portal such as 

Botanic Garden and Botanical Museum Berlin-Dahlem, European Environment Agency, Fairchild Tropical 

Botanic Garden, Real Jardin Botanico Madrid, Vascular Plant Herbarium, International Botanical 

Collections GBIF-Sweden, Herbarium Hamburgense, Herbarium of the University of Aarhus, Museum 

National d'Histoire Naturelle, National Herbarium of New South Wales, Royal Museum of Central Africa 

and University of Hohenheim. In addition, we also obtained data through literature surveys as well as from 

private databases and observations held by field botanists (see acknowledgements). For very conspicuous 

species (Elaeis guineensis, Hyphaene petersiana, Phoenix reclinata) we used Google Earth satellite imagery 

to achieve more palm localities1,2. We have accessed the following websites to retrieve information on palm 

occurrences: www.zimbabweflora.co.zw (last accessed March 2009); www.aluka.org (last accessed 

December 2007); www.unesco.org (last accessed December 2007); www.iucnredlist.org (last accessed 

December 2007).  

A potential problematic issue for the use of primary occurrence data is taxonomy. As 

taxonomy is a dynamic field of research, nomenclature is continuously updated. For the African palm 

database it has been a primary goal to identify taxonomic issues arising from misidentifications or outdated 

taxonomy. Hence, the database has been meticulously scrutinized for any taxonomic issues by: 1) following 

the nomenclature of the most recent revisions of African palm taxa, 2) identifying misidentifications by 

comparing duplicate herbarium records from multiple herbaria, 3) plotting all records in geographical space 

and identifying geographical outliers, with attention to inconsistencies between their known distribution and 

the mapped point localities. All issues have been addressed under supervision by Dr. John Dransfield, Royal 

Botanic Gardens, Kew, a world-leading specialist on the palms of Africa (and in many other regions). 



3 
 

Additionally, the point localities were verified in geographical space to identify erroneously georeferenced 

specimens. Locality descriptions (e.g., country) of herbarium specimens were checked against an underlying 

map of political boundaries in Africa and errors such as switched latitude and longitude and in negative and 

positive decimal degree values were identified and corrected. We subsequently extracted occurrence records 

for 40 palm species (representing 82.5% of all recognised African palm species) with ≥ 10 unique 

occurrences at 10 × 10-km resolution which covered in total 2066 unique occurrence records (mean: 51.7; 

median: 39) (Supplementary Table S1). To accommodate the uncertainty in some georeferences (7-10 km), 

we chose to set the analytical unit of the study at a resolution of 10 × 10-km. The occurrence records were 

then spatially thinned retaining only one occurrence record per 10 × 10-km equal-area grid cell.  

Due to different climatic affinities between groups of African palms we divided the palms into 

two distinct groups based on ecology3, namely rainforest and open-habitat palms. The rainforest group 

consisted of strictly rainforest palms and the open-habitat group of desert, grassland and savanna palms 

tolerant of more exposed habitats and never found in forests4. Two species are not restricted to rainforest or 

open habitats (Elaeis guineensis and Phoenix reclinata) and where not included in any category, but counted 

towards the total palm species richness estimates.   

 

Climate data.  

Climatic data was obtained for the baseline period (1960−1990) from the Worldclim database5. Future 

climate data was obtained for 2010−2039 (referred to as 2020), 2040−2069 (2050) and 2070−2099 (2080) 

from the International Centre for Tropical Agriculture (CIAT) dataset of the Fourth Intergovernmental Panel 

on Climate Change (IPCC) report using the spatial downscaling data of the Delta Method6. To make sure the 

models covered a wide range of future climatic scenarios, future climatic data layers were derived from three 

different coupled Atmosphere-Ocean global circulation models (GCMs) and three future greenhouse gas 

emission scenarios (SRES)7. The SRES scenarios represent a range of underlying driving forces 

(demographic, economic and technological) of greenhouse gas and sulphur emissions. They are developed 

based on a wide range of assumptions regarding these driving forces to represent the uncertainty of the 

future. We selected the scenarios B2a, A2a and A1b as they represent a variety of assumptions regarding the 
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driving forces and thus encompass a range of potential future demographic, social, economic, technological 

and environmental developments. The A1b scenario is one group within the A1 family, which characterizes a 

future world where the human population continues to grow until it peaks in ca. 2050 and afterwards 

declines. Economic growth is rapid and technological development is fast and innovative. The A1b group 

differs from other A1 groups in the direction of change in the energy system which for A1b is assumed to be 

a balanced reliance on all sources of energy (non-fossil energy to fossil intensive). The A2a represents the 

A2 family which describes a future heterogeneous world where the human population continues to grow to 

towards 2100. The economy develops regionally and technological change is slow compared to other 

scenarios. Finally B2a of the B2 family of scenarios is one of the less severe scenarios, where the human 

population continues to grow, but at a lower rate than the A2a scenario. Focus is more on local solutions to 

secure environmental sustainability and social equity7. 

At the time of data download (January 2012), climate layers for the combination of the three 

SRES and three time periods were not available for all GCMs. Hence, out of the available GCMs, we 

selected data derived from three GCMs, namely CCCMA-CGCM2 (referred to as CCCMA), CSIRO-MK2 

(CSIRO) and HACCPR-HADCM3 (HADCM), with different original resolutions of 1.9º x 1.9º, 0.8º x 1.9º 

and 1.25º x 1.25º with climate sensitivities ranging between 3.1º C-3.4º C6. We further mapped the 

distribution of absolute differences in annual mean temperature and water balance between pairs of GCMs to 

make sure they all had marked spatial variation in the climatic values which would transcend into spatial 

variation in predicted suitability. The three chosen GCMs showed clear spatial variation across Africa with 

absolute differences ranging between 0ºC-3.5ºC for annual mean temperature and between 0 mm-6620 mm   

for annual water balance across Africa for the 2080 scenarios (Supplementary Fig. S8-S9). For A1B the 

above GCMs were not available at the time of download and we therefore used CCCMA-CGCM3 for 

CCCMA, CSIRO-MK3.1 for CSIRO and UKMO-HADCM3 for HADCM, respectively.  

For the baseline and each of the combinations of GCMs and SRES for all three future time 

intervals we obtained three temperature variables (annual mean temperature, minimum temperature of the 

coldest month and temperature seasonality), as well as monthly data on precipitation and temperature. All 
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datasets were originally in 5’ resolution, but were reprojected to the Lambert Azimuthal Equal Area (LAEA) 

projection using bilinear interpolation at 10 × 10-km resolution in ArcGIS.  

 

Computation of potential evapotranspiration (PET) and water balance (WATBAL).  

One of the challenges to correctly simulate future distributions of plants in species distribution modelling 

(SDM) is to account for the effect of CO2 fertilization under future increased CO2 concentrations8. This 

fertilization potentially changes plant water use efficiency by decreasing plant transpiration and 

evapotranspiration9. Failing to account for the CO2 effect in SDM could potentially make modelling outputs 

unreliable. A solution to account for such effects is to rescale climate predictors to better represent how they 

are functionally perceived by plants under given CO2 concentrations8. For the present study we refrain from 

using purely precipitation-derived variables. Instead, we constructed water balance-derived variables as these 

are based on the monthly differences between precipitation and PET, because it has recently become possible 

to rescale PET to take into account the potential CO2 effect on plants9.  

 Kruijt et al.9 has generated rescaling factors (c-factors) for PET across four different 

vegetation and plant functional types under two different CO2 concentration rises relative to the present-day 

level. We used the mean c-factors of Kruijt et al.9 of all four categories (Table S4) and fitted a linear 

regression for each category between c-factors and the CO2 concentration rises making the assumption that if 

the CO2 concentration is unchanged (0) the resulting c-factor would be 1 meaning that PET is unchanged 

(Fig. S7). The resulting regression equations were subsequently used to extrapolate the c-factors to different 

future CO2 concentration rises. Future CO2 concentration rises were computed as the difference between 

future and baseline CO2 concentrations. Baseline CO2 was averaged over the years 1970−1990 (only 

available from 1970) to be more consistent with present-day climate from the Worldclim dataset. The 

projected future concentrations were obtained for three time periods 2020 (average of the years 2010−2040); 

2050 (average of the years 2040−2070) and 2080 (average of years 2070−2100) to be consistent with the 

future climate data. The future CO2 concentrations were derived for the individual SRES (A1B, A2A, B2A) 

from the Bern and ISAM models of the Intergovernmental Panel on Climate Change10. We averaged the 

resulting c-factors for the four habitat types (C1−C4) for each CO2 concentration rise and subsequently also 
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averaged that resulting c-factors for the Bern and ISAM models per SRES per year interval (Table S5). 

These nine final c-factors were subsequently used to rescale PET. 

 We used the monthly temperature data for the baseline and the future time periods to compute 

PET of each month using the method of Thornthwaite11. The Thornthwaite-type PET is purely temperature 

based and given by: PET = 1.6 *(10 * T / I)a , where T is the mean monthly temperature, I is the heat index 

for a given area computed as the sum of values i calculated for the 12 months of the year given by:  i = 

(T/5)1.514 and a = 0.000000675 * I3 – 0.0000771* I2 + 0.01792 * I + 0.49239. The above formula computes 

PET based on a standard month of 30 days and on days with 12 hours sunlight. Since this varies with month 

and latitude the monthly PET values were adjusted for day and month length using the correction factors 

given by Thornthwaite11 across latitudes spanning Africa.  

We constructed three water balance variables namely annual water balance (WATBAL; 

mm/year) computed as the annual sum of the monthly differences between precipitation and PET, water 

balance seasonality computed as the standard deviation of monthly water balance, and water balance of the 

driest quarter computed as the minimum sum of water balance across three consecutive months. To account 

for the potential effect of CO2 fertilization under increased CO2 concentrations, we created a second set of the 

water balance-derived variables using the rescaled PET based on the CO2 concentrations of the different gas 

emission scenarios (A1B, A2A, B2A) as explained above (Fig S7, Table S4-S5).  

 

Species distribution modelling 

We used two advanced machine-learning modelling techniques to fit species distribution models for the 40 

palm species, namely Maximum Entropy (Maxent) species distribution modelling, run in Maxent v. 3.3.3k12 

and Generalised Boosting Model (GBM)13 modelling, run in R14 using BIOMOD v. 1.1.715. Maxent and 

GBM are commonly used SDM algorithms16,17 and in comparative studies they have been found to be among 

the best performing SDM techniques18,19. We have previously evaluated different methods (Maxent, GBM, 

GLM, and GAM) for their ability to predict the current ranges of the African palms based on evaluation 

statistics and by expert knowledge. We found GBM and Maxent to provide the overall best results3, and 

therefore they were chosen for the current study.   
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We created two distribution models per species. First, we used the baseline climatic data 

(temperature and water balance-derived variables) combined with six spatial filters to predict present-day 

distributions (SPATIAL model). We used spatial filters to take into account any potential spatial constraints 

on the species’ actual distributions20. We selected six spatial filters to equal the number of climate variables 

as this has previously been found useful for predicting African palm distributions21. Spatial filters are 

orthogonal variables (eigenvectors) representing the spatial relationship amongst spatial units derived from a 

Principal Coordinate Analysis based on a truncated pairwise distance matrix of the geographic position of 

each spatial unit at various scales from broad to fine-scale spatial patterns22. Spatial filters were computed in 

SAM 3.023 using default settings, further geoprocessed as described in Blach-Overgaard et al.21, and 

resampled to 10 × 10 km resolution, for the current study. Secondly, we constructed an additional model 

using just the six climatic variables only (CLIMATE model) to produce a potential climatic model for the 

baseline. The CLIMATE model was subsequently projected onto two different sets of future climate data for 

all combinations of GCMs and SRES for the three time periods. The first dataset consisted of three 

temperature and three un-scaled water balance variables (−CO2), while the second set was the same set of 

temperature variables combined with three CO2-modified water balance variables (+CO2).  

 For the GBM, we chose default settings of BIOMOD running maximum 3000 trees and five 

cross validations to select the optimal number of trees. Finally, for Maxent we also chose default settings as 

they have been shown to provide overall robust results24. For all models, we used 10,000 randomly selected 

pseudo-absences as a random selection of pseudo-absences has been shown to outperform other selection 

techniques25. Model evaluation of both models was done by calibrating the baseline models on 80% of a 

random sample of the initial data and evaluated against the remaining 20% using the areas under the receiver 

operating curve (AUC)26 and the true skill statistic (TSS)27. Model evaluation was performed 10 times, each 

time selecting a different 80% random sample and evaluating model accuracy against the remaining 20%. 

We averaged the AUC and TSS for each model-run of the SPATIAL and CLIMATE models using the GBM 

and Maxent algorithms. Models with AUC values ≥ 0.75 are considered to produce good reliable 

predictions28. TSS ranges from -1 to +1, where +1 indicates a perfect model fit and values ≤ 0 indicates 

models which are no better than random27. More specifically, we interpreted the following ranges: 0.2−0.4 as 
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poor; 0.4−0.6 as fair; 0.6−0.8 as good; and 0.8−1.0 as excellent. In general, all palm species distributions 

modelled by Maxent and GBM were statistically well-predicted, with the majority of models having AUC > 

0.90 and TSS > 0.75 with a few exceptions (Table S6). For M. argun the SPATIAL model was poorly 

predicted by GBM as interpreted from the AUC and TSS statistics (Table S6), but also verified visually. 

Hence further processing of the output from the SPATIAL model relied solely on the Maxent predictions for 

M. argun to avoid any inconsistencies. For the final calibration of each model used for making predictions 

and projections we used 100% of the available data to avoid uncertainties in models by random removal of 

presences29. 

We chose to create two related models (based on the same climatic predictors) per species to 

be able to estimate the change in pure climatic suitability given by the CLIMATE model between the 

baseline and the three future time periods within realistic present-day range margins and within the margins 

of potential colonized areas of the species (deducted from the SPATIAL model). The SPATIAL model 

combined with a statistically set threshold produced an estimation of a given species’ actual distribution as 

the spatial filters constrain the model to reduce overpredictions into climatically suitable areas at far 

distances from any known occurrence records (Fig. S10). Processing of the outputs of each model type is 

explained in further detail below.  

 

Construction of dispersal scenarios 

We created two dispersal scenarios for the present study, namely a no-dispersal scenario where palms do not 

disperse outside their predicted current range limits and a 100-km-dispersal scenario where palms can 

disperse up to 100 km from their current range limits in all directions. The 100-km-dispersal scenario is a 

more realistic and conservative migration limit in relation to tropical trees30 relative to the unrealistic full 

migration scenario31 often applied in species distribution modelling studies32,33. To construct current actual 

distributions for all species we converted the continuous suitability prediction of the SPATIAL model to 

binary predictions using the threshold equal training sensitivity and specificity in Maxent. This corresponds 

to the optimized ROC threshold of BIOMOD, which minimises the absolute difference between sensitivity 

and specificity and is ranked among the most reliable thresholds34. We subsequently extracted the combined 
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area predicted as presence by Maxent and GBM except for M. argun (see above). To obtain a range as close 

to each species actual distribution each species’ distribution was examined for extreme outliers, grids 

predicted as presences, but occurring at far distances from any coherent group of presence grids and outside 

the known distribution. For most species this was mostly cells at a distance of more than 1000 km and for 

only seven species below 1000 km (between 140−700km distances). These were removed from the 

predictions and the resulting outputs were used as the species’ no-dispersal masks. To create the 100-km-

dispersal mask we extended the no-dispersal mask with 100 km in all directions (Fig. S10).   

 

Processing the modelling results.  

We refrained from converting the future continuous suitability projections of the Maxent and GBM 

CLIMATE models to binary predictions to avoid information loss and the uncertainties associated with the 

choice of thresholds35. Instead, we made all further processing of the modelling outputs based on the 

suitability scores of the baseline CLIMATE model and the 4320 future projections for 40 species across each 

possible modelling combinations (two SDMs × three GCMs × three SRES × three time periods × two CO2-

scenarios) within the species-specific no-dispersal or 100-km-dispersal masks and disregarded the suitability 

scores outside the masks (Fig S10). For GBM all model outputs are by default ranging from 0−1000 and as 

all further processing relies on suitability scores ranging between 0−1, we divided all GBM outputs by 1000. 

 

Assessments of the impact of climate change.  

We assessed the impact of climate change by first calculating the change in climatic suitability as the 

difference in climatic suitability between baseline (CLIMATE model) and future conditions following Hof et 

al.36 (Fig. S10). This was done for all 40 species across all model combinations (SDM × GCM × SRES) for 

the three time periods and for both CO2 scenarios within both dispersal masks. We identified the regions with 

the highest projected impact of climate change on palm richness patterns (all palms, rainforest palms and 

open-habitat palms) within the no-dispersal mask by summing the number of species per 10 × 10-km grid 

that (1) lose climatic suitability, termed ‘local climate losers’ (negative change in climatic suitability between 

future and current conditions), (2) gain climatic suitability, ‘local climate winners’ (positive change in 
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climatic suitability between future and current) and (3) show no change. Species were considered ‘losers’ or 

‘winners’ regardless of the magnitude of the change in climatic suitability and could be counted as winners 

in one grid cell and losers in another grid cell. To estimate the climate change effects on immigrant species 

we summed the number of species per 10 × 10-km grids which gained climatic suitability outside the no-

dispersal mask, but within the 100-km-dispersal mask, termed ‘immigrant winners’ (positive change in 

climatic suitability between current and future conditions). We further calculated the proportion of ‘local 

climate losers’ and ‘local climate winners’ of the total species pool per grid cell. 

 To determine the overall loss in climate suitability per species we summed the number of grid 

cells (10 × 10 km) projected to lose climate suitability within the no-dispersal mask and subtracted the 

number of grid cells projected to gain climate suitability in the band between the margins of the no-dispersal 

and 100-km-dispersal masks. Proportion of overall loss of climate suitability was computed by dividing this 

difference by the total number of grid cells in the no-dispersal mask. To estimate the effect of the potential 

water use efficiency under increased CO2 we calculated the percentage difference in proportion overall loss 

of climate suitability between the two CO2 scenarios. This was done for all combinations of SDM × GCM × 

SRES for all time periods. A final consensus’ was made as an arithmetic mean across SDM × GCM × SRES 

per time period.  

 Consensus maps were derived by calculating arithmetic means of the richness and proportions 

of ‘local climate losers’, ‘local climate winners’ and ‘immigrant climate winners’ across all model 

combinations (SDM × GCM × SRES) for the three time periods and two CO2 scenarios. As it is well-known 

that there is large differences in modelling output depending on the given SDM, GCM or SRES used37 we 

further mapped the ‘local climate loser’ richness patterns (all palms, rainforest palms and open-habitat 

palms) for 2080 for the +CO2-scenario separately as arithmetic means for (1) all combinations of SDM × 

GCM per SRES (Fig. S4), (2) across all combinations of SDM × SRES per GCMs (Fig. S5) and finally (3) 

across all combinations of GCMs × SRES per SDM (Fig. S6), to assess the uncertainty around the 

consensus. 
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Human population density scenarios 

To estimate the potential future threat from humans on palms we constructed human population density 

projections for three time periods centred on 2020, 2050 and 2080. We used the Gridded Population Density 

map of the World in 2.5’ resolution for year 200038. The global map was reprojected to the LAEA projection 

and resampled to 10 × 10 km resolution extracted only for continental Africa. We modified the 2000 layer 

using the latest population projections on human population densities (people/km2) by the United Nations 

(http://esa.un.org/unpd/wpp/unpp/panel_population.htm) which incorporates major influences on 

demographic trends available at country level. We obtained data on these country-level human population 

density projections for year 2000 to 2100 in 5-year intervals for all countries across continental Africa. These 

were subsequently averaged across three 30-year intervals to match the future climate data, 2010−2040 

(2020), 2040−2070 (2050) and 2070−2100 (2080). The per cent increase in human population densities 

(HPD) from 2000 to the three different future time periods (2020, 2050 and 2080) were computed per 

country in Africa. We multiplied country-based percentage HPD increases for 2020, 2050 and 2080 in a cell-

by-cell manner to the 2000 gridded population map thereby constructing three future human density maps 

(HPD2020, HPD2050 and HPD2080; Fig. S11). 

 

Assessment of the impact of human population density.  

We assessed the human population density change over time for each species by weighting the time-specific 

human population density maps (HPD2020, HPD2050 and HPD2080) by the proportion of suitability per 

grid within each dispersal mask given by the species specific distribution models for all combinations of 

models (SDM × GCM × SRES × CO2-scenario) matched with the specific time period (e.g., HPD2020 with 

SDM × GCM × SRES × CO2-scenario for year 2020). The proportion of suitability was computed for each 

grid by dividing the suitability of each grid within the species specific dispersal masks by the total sum of 

suitability per species across all grids within the given dispersal mask. The human population density per 

species per time period was subsequently calculated by summing up the weighted HPD values across all 

cells within either the no-dispersal or 100-km-dispersal masks. We obtained a consensus averaging by 



12 
 

calculating the arithmetic mean across all model combinations (SDM × GCM × SRES) per time slice and 

CO2 scenario.   

To assess whether palms species, by the end of the century, are likely to occur under HPD 

levels, which potentially could lead to increased risk of habitat loss and overexploitation, we set a threshold 

for high HPD corresponding to the continental-wide average HPD for year 2000 (CON-HPD; 50.14  

people/km2; Table S2). To assess how HPD is related to impacts on palm populations, we assessed the link 

between HPD and land cover transformation, one of the most important drivers of extinction risks in palms39, 

computing summary statistics of HPD for year 2000 within each land cover class in Africa given by the 

Land-cover map of Africa produced as a part of the Global Land Cover project in 2000 at 1 × 1-km 

resolution40. We resampled the Gridded Population Density map of the World for year 200038 to 1 × 1-km 

resolution and extracted the mean, median and standard deviation of HPD within each land cover type using 

Zonal statistics in ArcGIS and listed these in relation to the continental-wide average HPD for year 2000 

(CON-HPD; 50.14  people/km2; Table S2). This analysis showed that most natural land cover classes have 

mean HPD below CON-HPD, while most anthropogenic land cover classes and especially those in which 

most palm species would not be able to maintain populations (e.g., irrigated croplands and croplands >50%) 

have HPD above the CON-HPD threshold (Table S2). 

 

Protected area network.  

To assess the future role of the conservation network in Africa for African palms, we used the World 

database of Protected Areas41 from 2009. The protected area network contains points and polygon data for 

protected areas and these were dissolved and the layer was subsequently clipped and reprojected to match the 

climatic data. For each 10 ×10 km grid cell across Africa we obtained the proportion of the cell covered by 

conservation areas (Fig. S12). 

 

Assessment of the impact of climate change on conservation areas.  

To assess the number of species gaining or losing climate suitability within the existing protected area 

network in Africa in the future we applied an index derived from a probabilistic estimation of the matching 
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between species’ climate suitability and the proportion of grid cells that is conserved following the approach 

of Araújo et al.42. The matching of climatic suitability with conserved area  (conserved suitability; CS) was 

done by multiplying the proportion of grid cell n covered by protected area with the suitability score of grid 

cell n estimated by species-specific distribution models (CSn) on a cell-by-cell basis. Both measures range 

from 0 to1, so resulting values for CS range from 0 for grids which are unsuitable for a given species or with 

no areas conserved, to 1 for cells with climate suitability equal 1 which are fully conserved. For each 

combination of models (SDM × GCM × SRES × CO2-scenario) for each time period (baseline, 2020, 2050 

and 2080) we quantified the expected climate suitability for each species within protected areas (CS) as the 

sum of CSn within the species specific no-dispersal and 100-km-dispersal masks. Changes in CS were 

calculated for each species within each of the dispersal masks between CS of the baseline period and each of 

the future time periods. Species projected to have increased climate suitability in protected areas in Africa 

were termed ‘conservation winners’ (CSFuture/CSBaseline > 1), while species projected to have decreased 

climate suitability in protected areas in Africa were termed ‘conservation losers’ (CSFuture/CSBaseline < 1). 

We assessed the number and proportion of all palms, rainforest palms and open-habitat palms projected as 

winners and losers by summing the number of winner and loser species per group and dividing the sum by 

the total number of palm species per group. Consensus results were obtained by calculating arithmetic means 

across all model combinations (SDM × GCM × SRES) for each time period and CO2-scenario.  

All GIS analyses were done using Python 2.5 and ArcGIS 9.3 (ESRI, Redlands, CA, USA).  
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Supplementary figures 

 

Figure S1 | Three measures (‘local climate losers’, ‘local climate winners’ and ‘immigrant climate 
winners’) of the projected impact of climate change for year 2020.  a, Spatial overlap of the number of 
species per grid and the highest proportion of species (80−100%) projected to lose climate suitability in a 
given area. b, Spatial overlap of the number of species per grid and the highest proportion of species 
(80−100%) projected to gain climate suitability in a given area. c, Number of species per grid projected to 
gain climate suitability outside their current range at distances up to 100 km in a given area. Values for a-c 
computed as arithmetic means across two species distribution models, three global circulation models and 
three gas emission scenarios for the +CO2-scenario (Supplementary Methods). The light grey areas in all 
panels indicate the absence of palms, while the darker shade grey denotes the predicted baseline range limit 
of a particular palm group. The black hatched areas in a and b indicate proportions (80−100%) of climate 
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losers or winners of the total species pool in a given area. The map was created in ArcGIS 9.3 (ESRI, 
Redlands, CA, USA). 
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Figure S2 | Three measures (‘local climate losers’, ‘local climate winners’ and ‘immigrant climate 
winners’) of the projected impact of climate change for year 2050.  a, Spatial overlap of the number of 
species per grid and the highest proportion of species (80−100%) projected to lose climate suitability in a 
given area. b, Spatial overlap of the number of species per grid and the highest proportion of species 
(80−100%) projected to gain climate suitability in a given area. c, Number of species per grid projected to 
gain climate suitability outside their current range at distances up to 100 km in a given area. Values for a-c 
computed as arithmetic means across two species distribution models, three global circulation models and 
three gas emission scenarios for the +CO2-scenario (Supplementary Methods). The light grey areas in all 
panels indicate the absence of palms, while the darker shade grey denotes the predicted baseline range limit 
of a particular palm group. The black hatched areas in a and b indicate proportions (80−100%) of climate 
losers or winners of the total species pool in a given area. The map was created in ArcGIS 9.3 (ESRI, 
Redlands, CA, USA). 
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Figure S3 | Average human population density within areas of palm distributions. Average human 
population density (on log10 scale) within no-dispersal ranges of a, all palms (n = 40), b, rainforest palms (n 
= 27) and c, open-habitat palm (n = 11) palms for the +CO2 scenario (Supplementary Methods) for four time 
periods in the 21st century. The upper and lower dotted lines mark population density in the densest 
populated country in Africa in year 2000 (Rwanda; 307 people/km2) and the continental-wide average human 
population density in year 2000 (50.14 people/km2), respectively. The most extreme outlier species for each 
group and time slice are named. Values computed as arithmetic means of all model combinations of two 
species distribution models, three global circulation models and three gas emissions. The horizontal black 
bar is the median for each group per time period. The box indicates the interquartile range and whiskers 
extend to the most extreme data point, which is no more than 1.5 times the interquartile range from the box, 
while more extreme values are displayed as open circles. 
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Figure S4 | Geographic variation in the number of ‘local climate losers’ for different gas emission 
scenarios, projected for the year 2080 for the +CO2 scenario. a, A1B; b, A2A and c, B2A for all, 
rainforest and open-habitat palms. Values are computed as arithmetic means across two species distribution 
models and three global circulation models. The light grey areas in all panels indicate the absence of palms, 
while the darker shade grey denotes the baseline range limit of a particular palm group. The map was created 
in ArcGIS 9.3 (ESRI, Redlands, CA, USA). 
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Figure S5 | Geographic variation in the number of ‘local climate losers’ for different global circulation 
models, projected for the year 2080 for the +CO2 scenario. a, CCCMA; b, CSIRO and c, HADCM for 
all, rainforest and open-habitat palms. Values are computed as arithmetic means across two species 
distribution models and three gas emissions. The light grey areas in all panels indicate the absence of palms, 
while the darker shade grey denotes the baseline range limit of a particular palm group. The map was created 
in ArcGIS 9.3 (ESRI, Redlands, CA, USA). 
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Figure S6 | Geographic variation in the number of ‘local climate losers’ for different species 
distribution models, projected for the year 2080 for the +CO2 scenario. a, Maxent and b, Generalised 
Boosting Method for all, rainforest and open-habitat palms. Values are computed as arithmetic means across 
three global circulation models and three gas emissions. The light grey areas in all panels indicate the 
absence of palms, while the darker shade grey denotes the baseline range limit of a particular palm group. 
The map was created in ArcGIS 9.3 (ESRI, Redlands, CA, USA). 
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Figure S7 | Fitted linear regressions of four (C1, C2, C3, C4) correction factors (c-factor) for potential 
evapotranspiration as a function of CO2 rise. The c-factors are given by Kruijt et al.9. See supplementary 
Table S4 for specific values. 
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Figure S8 | Geographic variation of absolute differences in annual mean temperature (ºC) between 
pairs of Global Circulation Models (GCMs) at 2080.  The vertical panels show the absolute difference in 
ºC of the variable annual mean temperature between two GCMs (CCCMA versus HADCM; CCCMA versus 
CSIRO; HADCM versus CSIRO) for three different gas emission scenarios (B2a, A2a, and A1b). The map 
was created in ArcGIS 10.2.2 (ESRI, Redlands, CA, USA).   
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Figure S9 | Geographic variation of absolute differences in annual water balance (mm) between pairs 
of Global Circulation Models (GCMs) at 2080.  The vertical panels show the absolute difference in mm of 
the variable annual water balance between two GCMs (CCCMA versus HADCM; CCCMA versus CSIRO; 
HADCM versus CSIRO) for three different gas emission scenarios (B2a, A2a, and A1b). The map was 
created in ArcGIS 10.2.2 (ESRI, Redlands, CA, USA).   
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Figure S10 | Flow diagram of the steps in estimating the change in climatic suitability between time 
periods for two dispersal scenarios for the palm species Hyphaene compressa. The first panel of maps 
shows the SPATIAL and CLIMATE models. The SPATIAL model is based on six climatic predictor 
supplemented with six spatial filters converted to binary output using the threshold equal training sensitivity 
and specificity which corresponds to the 0 km dispersal mask (blue area). The 100 km dispersal scenario is 
derived by adding a 100 km buffer to the binary output of the SPATIAL model. The CLIMATE model is 
based on the same six climatic predictors and is depicted with climate suitability ranging from 0-1 with 
darker blue indicating higher suitability (see Methods; Supplementary Methods). The central panel shows the 
predicted suitability for the baseline time period (Current suitability) and for the end of the century (Future 
suitability) within the 0 km (white hatched area) and 100 km dispersal masks. The right panel shows the 
change in climatic suitability between the Current and Future scenarios and is computed as Current 
suitability minus Future suitability in a cell-by-cell manner. Negative values indicate a loss in climatic 
suitability. The individual maps were created in ArcGIS 10.2.2 (ESRI, Redlands, CA, USA).  
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Figure S11 | Spatial patterns of human population density (people/km2) across Africa. a, Gridded population density for year 2000. b, Gridded 
population density projected for year 2020. c, Gridded population density projected for year 2050 d, Gridded population density projected for year 
2080. The map was created in ArcGIS 9.3 (ESRI, Redlands, CA, USA). 
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Figure S12 | Proportion of 10 × 10 km grids covered by protected areas across Africa. The map was 
created in ArcGIS 9.3 (ESRI, Redlands, CA, USA). 
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Supplementary Tables 

Table S1 | Details on African palm species. Overview of 40 species (82.5% of total species recognized for 
Africa) extracted from the African palm database giving information of unique occurrence records available 
for each species at 10 × 10 km resolution. The habitat affiliation is given for each species. “Rainforest” 
includes species with strictly tropical rain forest affinity whereas “open-habitat” includes species which only 
occur in open habitats covering savanna woodlands to dry deserts. Two species can occur in both habitats 
and are marked “Mixed”. 
Species Habitat No. of unique occurrences 
Borassus aethiopum Open-habitat 116 
Borassus akeassii Open-habitat 13 
Calamus deerratus Rainforest 140 
Chamaerops humilis Open-habitat 19 
Elaeis guineensis Mixed 113 
Eremospatha cabrae Rainforest 33 
Eremospatha cuspidata Rainforest 19 
Eremospatha haullevilleana Rainforest 100 
Eremospatha hookeri Rainforest 39 
Eremospatha laurentii Rainforest 49 
Eremospatha macrocarpa Rainforest 105 
Eremospatha wendlandiana Rainforest 47 
Hyphaene compressa Open-habitat 41 
Hyphaene coriacea  Open-habitat 47 
Hyphaene guineensis Open-habitat 18 
Hyphaene petersiana Open-habitat 66 
Hyphaene thebaica Open-habitat 48 
Laccosperma acutiflorum Rainforest 26 
Laccosperma laeve  Rainforest 39 
Laccosperma opacum Rainforest 90 
Laccosperma robustum Rainforest 55 
Laccosperma secundiflorum Rainforest 100 
Medemia argun  Open-habitat 14 
Oncocalamus macrospathus Rainforest 14 
Oncocalamus mannii Rainforest 31 
Oncocalamus tuleyi  Rainforest 16 
Phoenix reclinata  Mixed 294 
Podococcus acaulis  Rainforest 25 
Podococcus barteri  Rainforest 65 
Raphia farinifera  Open-habitat 39 
Raphia hookeri  Rainforest 58 
Raphia mambillensis Rainforest 13 
Raphia palma-pinus Rainforest 32 
Raphia regalis  Rainforest 23 
Raphia sese  Rainforest 10 
Raphia sudanica  Open-habitat 31 
Raphia vinifera  Rainforest 13 
Sclerosperma mannii Rainforest 43 
Sclerosperma profizianum Rainforest 11 
Sclerosperma walkeri  Rainforest 11 
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Table S2 | Summary statistics of human population density (HPD) within land cover classes across 
Africa and for continental Africa. The land cover classes are given by the Land-cover map of Africa 
produced as a part of the Global Land Cover project in 200040. Mean, median and standard deviation of HPD 
has been extracted using zonal statistics in GIS at 1 × 1-km resolution.  

Land cover class Mean HPD Median HPD Standard deviation HPD 

Cities 1606.12 667 2616.38 
Irrigated croplands 676.81 130 863.17 
Tree crops 399.13 326 403.60 
Mangrove 152.09 51 365.07 
Montane forest (>1500 m) 100.67 65 134.99 
Waterbodies 89.42 29 319.31 
Mosaic Forest / Croplands 75.29 37 154.02 
Croplands (>50%) 68.49 32 165.59 
Degraded evergreen lowland forest 63.61 35 106.30 
Continental Africa (CON-HPD) 50.14 34 57.88 
Open deciduous shrubland 37.37 10 130.87 
Croplands with open woody vegetation 35.98 19 62.85 
Submontane forest (900 -1500 m) 34.97 13 51.14 
Deciduous shrubland with sparse trees 34.63 16 78.97 
Closed deciduous forest 31.00 11 120.24 
Deciduous woodland 29.19 13 95.99 
Closed grassland 25.62 6 86.58 
Swamp bushland and grassland 23.77 15 38.82 
Mosaic Forest / Savanna 20.77 8 54.69 
Open grassland with sparse shrubs 20.76 5 67.88 
Salt hardpans 19.24 3 68.26 
Sparse grassland 17.94 6 42.03 
Closed evergreen lowland forest 16.36 6 57.76 
Open grassland 10.12 3 28.34 
Bare rock 8.72 0 82.07 
Swamp forest 7.76 3 11.97 
Stony desert 4.42 0 155.29 
Sandy desert and dunes 1.40 0 14.57 

HPD is given in number of people per km2. The columns have been sorted in descending order based on Mean HPD. 
The year 2000 continental-wide measures of average, median and standard deviation of HPD across Africa are inserted 
and marked in bold. The mean is used as a threshold for high HPD in the analyses. Deviations from the expectation of 
HPD below CON-HPD in natural land cover classes and HPD above CON-HPD in human-influenced land cover 
classes are marked in italic and underlined.
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Table S3 | Number of palm species projected to gain (winners; W) or lose (losers; L) climatic suitability within the protected area network. 
Loser and winner species for all, rainforest and open-habitat palms derived for three future time periods (2020, 2050, 2080) for different combinations 
of species distribution models (Maxent and Generalized Boosting Models), global circulation models (CCCMA; CSIRO; HADCM) and gas emission 
scenarios (A1B; A2A; B2A) for two CO2-scenarios (+CO2; −CO2; see Supplementary Methods) within the margins of two dispersal scenarios (no-
dispersal; 100-km-dispersal). Winner and loser species within the 100-km-dispersal mask are marked in bold. 

Time 
CO2- 
scenario 

MAXENT GENERALISED BOOSTING METHOD 
CCCMA CSIRO HADCM CCCMA CSIRO HADCM 

A1b A2a B2a A1b A2a B2a A1b A2a B2a A1b A2a B2a A1b A2a B2a A1b A2a B2a 
ALL (40) W L W L W L W L W L W L W L W L W L W L W L W L W L W L W L W L W L W L 

2020 
+CO2 

17 23 23 17 16 24 17 23 13 27 13 27 16 24 18 22 18 22 6 34 12 28 9 31 6 34 6 34 7 33 7 33 8 32 6 34 
20 20 28 12 21 19 19 21 14 26 16 24 19 21 21 19 12 18 10 30 13 27 11 29 10 30 8 32 9 31 8 32 9 31 10 30 

−CO2 
13 27 22 18 17 23 14 26 12 28 12 28 14 26 17 23 16 24 6 34 12 28 9 31 6 34 6 34 7 33 6 34 8 32 6 34 
18 22 23 17 18 22 18 22 13 27 15 25 18 22 19 21 19 21 9 31 13 27 11 29 8 32 7 33 9 31 8 32 9 31 9 31 

2050 
+CO2 

10 30 17 23 14 26 13 27 11 29 13 27 11 29 10 30 16 24 2 38 6 34 3 37 1 39 3 37 3 37 2 38 3 37 3 37 
12 28 20 20 19 21 16 24 13 27 13 27 13 27 12 28 17 23 3 37 10 30 8 32 2 38 5 35 6 34 3 37 3 37 5 35 

−CO2 
7 33 14 26 12 28 9 31 10 30 11 29 9 31 8 32 13 27 2 38 3 37 3 37 0 40 3 37 3 37 2 38 3 37 4 36 
10 30 16 24 16 24 15 25 13 27 13 27 11 29 9 31 15 25 3 37 9 31 6 34 2 38 5 35 5 35 3 37 3 37 5 35 

2080 
+CO2 

6 34 8 32 15 25 5 35 7 33 10 30 6 34 7 33 10 30 0 40 2 38 4 36 0 40 2 38 2 38 1 39 2 38 3 37 
8 32 11 29 17 23 5 35 10 30 13 27 7 33 7 33 13 27 2 38 2 38 7 33 1 39 4 36 5 35 2 38 2 38 4 36 

−CO2 
6 34 6 34 12 28 4 36 5 35 10 30 6 34 6 34 8 32 0 40 2 38 4 36 0 40 2 38 2 38 1 39 2 38 3 37 
6 34 7 33 13 27 6 34 4 36 8 32 6 34 7 33 10 30 2 38 2 38 6 34 1 39 3 37 4 36 1 39 2 38 4 36 

RAIN (27)  

2020 
+CO2 

10 17 15 12 10 17 8 19 6 21 7 20 7 20 11 16 10 17 4 23 10 17 7 20 4 23 4 23 5 22 4 23 6 21 5 22 
10 17 19 8 13 14 9 18 6 21 7 20 9 18 12 15 13 14 7 20 11 16 9 18 7 20 6 21 7 20 5 22 7 20 8 19 

−CO2 
7 20 15 12 9 18 9 18 6 21 7 20 9 18 8 19 9 18 4 23 10 17 7 20 4 23 4 23 5 22 4 23 6 21 5 22 
9 18 16 11 11 16 8 19 6 21 7 20 8 19 10 17 11 16 6 21 11 16 9 18 5 22 5 22 7 20 5 22 7 20 7 20 

2050 
+CO2 

5 22 11 16 8 19 6 21 6 21 6 21 5 22 5 22 9 18 1 26 2 25 2 25 0 27 2 25 2 25 1 26 2 25 2 25 
7 20 12 15 11 16 8 19 6 21 6 21 5 22 6 21 10 17 2 25 8 19 6 21 1 26 4 23 4 23 2 25 2 25 3 24 

−CO2 
5 22 8 19 6 21 5 22 5 22 6 21 5 22 4 23 8 19 1 26 5 22 2 25 1 26 2 25 2 25 1 26 2 25 3 24 
6 21 10 17 10 17 7 20 6 21 6 21 7 20 5 22 8 19 2 25 7 20 4 23 1 26 4 23 3 24 2 25 2 25 3 24 

2080 
+CO2 

5 22 5 22 9 18 3 24 5 22 5 22 4 23 4 23 5 22 0 27 1 26 3 24 0 27 1 26 1 26 0 27 1 26 2 25 
6 21 7 20 10 17 3 24 6 21 6 21 4 23 4 23 7 20 1 26 1 26 6 21 0 27 3 24 3 24 1 26 1 26 3 24 

−CO2 
5 22 5 22 6 21 3 24 3 24 5 22 3 24 4 23 5 22 0 27 1 26 3 24 0 27 1 26 1 26 0 27 1 26 2 25 
5 22 5 22 7 20 4 23 3 24 5 22 4 23 4 23 5 22 1 26 1 26 5 22 0 27 2 25 3 24 0 27 1 26 3 24 

OPEN (11)  

2020 
+CO2 

6 5 6 5 6 5 6 5 7 4 5 6 7 4 8 3 7 4 2 9 2 9 2 9 2 9 2 9 2 9 3 8 2 9 1 10 
9 2 7 4 7 4 9 2 7 4 8 3 9 2 8 3 8 3 3 8 2 9 2 9 3 8 2 9 2 9 3 8 2 9 2 9 

−CO2 
5 6 5 6 6 5 7 4 6 5 5 6 6 5 6 5 6 5 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 1 10 
8 3 6 5 6 5 9 2 6 5 7 4 9 2 8 3 7 4 3 8 2 9 2 9 3 8 2 9 2 9 3 8 2 9 2 9 

2050 
+CO2 

4 7 5 6 5 6 5 6 5 6 6 5 5 6 5 6 6 5 1 10 1 10 1 10 0 11 1 10 1 10 1 10 1 10 1 10 
4 7 7 4 7 4 6 5 6 5 6 5 5 6 6 5 6 5 1 10 2 9 2 9 1 10 1 10 2 9 1 10 1 10 2 9 

−CO2 
2 9 5 6 5 6 3 8 5 6 5 6 4 7 4 7 5 6 1 10 1 10 1 10 0 11 1 10 1 10 1 10 1 10 1 10 
3 8 5 6 5 6 6 5 6 5 6 5 5 6 4 7 6 5 1 10 2 9 2 9 1 10 1 10 2 9 1 10 1 10 2 9 

2080 
+CO2 

1 10 3 8 5 6 1 10 2 9 5 6 2 9 3 8 5 6 0 11 1 10 1 10 0 11 1 10 1 10 1 10 1 10 1 10 
1 10 3 8 6 5 2 9 4 7 6 5 3 8 3 8 5 6 1 10 1 10 1 10 1 10 1 10 2 9 1 10 1 10 1 10 

−CO2 
1 10 1 10 5 6 2 9 2 9 5 6 3 8 2 9 3 8 0 11 1 10 1 10 0 11 1 10 1 10 1 10 1 10 1 10 
1 10 2 9 5 6 2 9 1 10 3 8 2 9 3 8 5 6 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 
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Table S4 | Dependent and independent variables used to build linear equations. Correction factors 
(C1−C4) for potential evapotranspiration used as dependent variables and CO2 concentration rises as 
independent variables to build linear regression equations to be used to compute correction factors across a 
set of future CO2 concentration rises (see supplementary Table S5) for the rescaling of future potential 
evapotranspiration. Correction factors marked in bold are derived from Kruijt et al.9 for two different CO2 

concentration rises between the baseline and future conditions. The remaining correction factors (C1−C4 =1) 
are given presuming potential evapotranspiration is unchanged under stable CO2 levels.    

CO2 rise (ppm) C1 C2 C3 C4 
0 1 1 1 1 
150 0.98 0.96 0.97 0.96 
385 0.95 0.91 0.92 0.89 
 

Table S5 | Correction factors to rescale potential evapotranspiration (PET). Correction factors (c-
factors) for all possible CO2 concentration rises of Bern and ISAM models10 across three gas emission 
scenarios (SRES; A1B, A2A, B2A) computed using linear regression equations (see below table) based on 
data derived from Kruijt et al.9 (Supplementary Table S4, Fig. S7) and CO2 concentration rises calculated as 
the difference in CO2 between baseline (1970-1990 average) and three future time periods 2020 (average of 
2010−2040), 2050 (2040−2070) and 2080 (2070−2100). Correction factors used to rescale PET are marked 
in bold. 

Year 
SRES 
model 

[CO2] 
rise 

(ppm) C1 C2 C3 C4 
Average 
(C1−C4) 

C-factors (Average  
of Bern and ISAM 

20
20

 

B2 Bern 78 0.992 0.9824 0.9849 0.9777 0.98425  
B2 ISAM 81.17 0.991683 0.981766 0.984266 0.976749 0.983616 0.983933 
A1 Bern 96 0.9902 0.9788 0.9813 0.9723 0.98065  
A1 ISAM 100.67 0.989733 0.977866 0.980366 0.970899 0.979716 0.980183 
A2 Bern 93.25 0.990475 0.97935 0.98185 0.973125 0.9812  
A2 ISAM 98.67 0.989933 0.978266 0.980766 0.971499 0.980116 0.980658 

         

20
50

 

B2 Bern 148 0.985 0.9684 0.9709 0.9567 0.97025  
B2 ISAM 153.17 0.984483 0.967366 0.969866 0.955149 0.969216 0.969733 
A1 Bern 204.25 0.979375 0.95715 0.95965 0.939825 0.959  
A1 ISAM 213.17 0.978483 0.955366 0.957866 0.937149 0.957216 0.958108 
A2 Bern 209.75 0.978825 0.95605 0.95855 0.938175 0.9579  
A2 ISAM 220.92 0.977708 0.953816 0.956316 0.934824 0.955666 0.956783 

         

20
80

 

B2 Bern 229 0.9769 0.9522 0.9547 0.9324 0.95405  
B2 ISAM 236.67 0.976133 0.950666 0.953166 0.930099 0.952516 0.953283 
A1 Bern 316.25 0.968175 0.93475 0.93725 0.906225 0.9366  
A1 ISAM 327.17 0.967083 0.932566 0.935066 0.902949 0.934416 0.935508 
A2 Bern 385 0.9613 0.921 0.9235 0.8856 0.92285  
A2 ISAM 401.67 0.959633 0.917666 0.920166 0.880599 0.919516 0.921183 

Linear regressions are given by: C1 = y = -0.0001x + 0.9998; C2 = y = -0.0002x + 0.998; C3 = y = -0.0002x 
+ 1.0005; C4 = y = -0.0003x + 1.0011 (see Fig S7). 
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Table S6 | Summary statistics of predictive ability among species distribution models (Maxent and Generalised Boosting Model) and threshold 
statistics for 40 palm species. Predictive ability is given by two measures namely the Area Under the receiver operating Curve (AUC) and the True 
Skill Statistics (TSS). Mean, median, min and max values are given for Maxent and Generalised Boosting Model (GBM) for both the SPATIAL (upper 
value) and CLIMATE (lower value) models (see Supplementary Methods) as well as for the threshold equal training sensitivity and specificity used for 
the SPATIAL model. 

Species 

AUC (SPATIAL/CLIMATE) TSS (SPATIAL/CLIMATE) Thresholds (SPATIAL) 

Mean Median [min-max] Mean Median [min-max] Mean/Median [min-max] 

Maxent GBM Maxent GBM Maxent GBM Maxent GBM Maxent GBM Maxent GBM Maxent GBM Maxent GBM 

Borassus aethiopum 
0.919/ 
0.881 

0.904/ 
0.883 

0.922/ 
0.871 

0.901/ 
0.883 

[0.892-0.946]/ 
[0.845-0.930] 

[0.836-0.948]/ 
[0.847-0.910] 

0.733/ 
0.669 

0.688/ 
0.689 

0.733/ 
0.661 

0.665/ 
0.689 

[0.657-0.804]/ 
[0.596-0.768] 

[0.591-0.804]/ 
[0.602-0.773] 

0.288/ 
0.290 

0.500/ 
0.503 

[0.263-0.307] [0.453-0.524] 

Borassus akeassii 
0.981/ 
0.957 

0.945/ 
0.771 

0.989/ 
0.965 

0.959/ 
0.817 

[0.955-0.998]/ 
[0.890-0.992] 

[0.733-1.000]/ 
[0.421-0.964] 

0.966/ 
0.937 

0.635/ 
0.557 

0.968/ 
0.953 

0.499/ 
0.490 

[0.911-0.997]/ 
[0.836-0.987] 

[0.000-1.000]/ 
[0.006-0.930] 

0.288/ 
0.303 

0.189/ 
0.145 

[0.203-0.327] [0.087-0.529] 

Calamus deerratus 
0.936/ 
0.910 

0.951/ 
0.918 

0.934/ 
0.908 

0.949/ 
0.923 

[0.923-0.953]/ 
[0.889-0.938] 

[0.943-0.966]/ 
[0.895-0.935] 

0.777/ 
0.712 

0.829/ 
0.739 

0.775/ 
0.697 

0.828/ 
0.742 

[0.752-0.819]/ 
[0.682-0.772] 

[0.789-0.885]/ 
[0.648-0.804] 

0.307/ 
0.311 

0.527/ 
0.527 

[0.247-0.343] [0.490-0.568] 

Chamaerops humilis 
0.995/ 
0.995 

0.963/ 
0.959 

0.994/ 
0.995 

0.997/ 
0.993 

[0.992-0.998]/ 
[0.989-0.999] 

[0.828-0.999]/ 
[0.825-0.997] 

0.989/ 
0.990 

0.896/ 
0.891 

0.986/ 
0.991 

0.994/ 
0.990 

[0.983-0.996]/ 
[0.973-0.997] 

[0.658-0.999]/ 
[0.657-0.994] 

0.337/ 
0.339 

0.373/ 
0.456 

[0.288-0.372] [0.054-0.587] 

Elaeis guineensis 
0.944/ 
0.911 

0.959/ 
0.920 

0.944/ 
0.910 

0.965/ 
0.927 

[0.911-0.964]/ 
[0.879-0.942] 

[0.892-0.979]/ 
[0.801-0.977] 

0.880/ 
0.898 

0.882/ 
0.810 

0.923/ 
0.902 

0.914/ 
0.860 

[0.748-0.955]/ 
[0.789-0.959] 

[0.603-0.951]/ 
[0.526-0.963] 

0.264/ 
0.259 

0.250/ 
0.215 

[0.224-0.328] [0.120-0.484] 

Eremospatha cabrae 
0.957/ 
0.956 

0.906/ 
0.875 

0.963/ 
0.955 

0.967/ 
0.883 

[0.916-0.978]/ 
[0.942-0.976] 

[0.547-0.991]/ 
[0.636-0.987] 

0.930/ 
0.786 

0.831/ 
0.762 

0.974/ 
0.753 

0.928/ 
0.765 

[0.746-0.992]/ 
[0.615-0.992] 

[0.327-0.984]/ 
[0.548-0.974] 

0.323/ 
0.323 

0.255/ 
0.257 

[0.262-0.407] [0.151-0.393] 

Eremospatha cuspidata 
0.972/ 
0.904 

0.934/ 
0.880 

0.985/ 
0.902 

0.934/ 
0.877 

[0.907-0.997]/ 
[0.803-0.995] 

[0.889-0.964]/ 
[0.832-0.925] 

0.813/ 
0.719 

0.773/ 
0.645 

0.808/ 
0.710 

0.777/ 
0.641 

[0.749-0.875]/ 
[0.660-0.791] 

[0.710-0.886]/ 
[0.604-0.713] 

0.143/ 
0.146 

0.513/ 
0.512 

[]0.108-0.174 [0.482-0.544] 

Eremospatha haullevilleana 
0.934/ 
0.931 

0.939/ 
0.936 

0.932/ 
0.937 

0.939/ 
0.937 

[0.919-0.956]/ 
[0.895-0.949] 

[0.899-0.962]/ 
[0.925-0.952] 

0.797/ 
0.784 

0.838/ 
0.828 

0.799/ 
0.787 

0.848/ 
0.828 

[0.711-0.861]/ 
[0.694-0.854] 

[0.776-0.894]/ 
[0.797-0.861] 

0.375/ 
0.372 

0.590/ 
0.592 

[0.317-0.420] [0.537-0.651] 

Eremospatha hookeri 
0.990/ 
0.982 

0.986/ 
0.950 

0.990/ 
0.985 

0.988/ 
0.975 

[0.981-0.995]/ 
[0.959-0.996] 

[0.962-0.992]/ 
[0.830-0.992] 

0.966/ 
0.955 

0.959/ 
0.877 

0.968/ 
0.966 

0.966/ 
0.914 

[0.929-0.986]/ 
[0.882-0.983] 

[0.906-0.977]/ 
[0.670-0.983] 

0.149/ 
0.152 

0.265/ 
0.273 

[0.109-0.191] [0.086-0.367] 

Eremospatha laurentii 
0.973/ 
0.968 

0.973/ 
0.941 

0.973/ 
0.970 

0.974/ 
0.958 

[0.963-0.983]/ 
[0.950-0.984] 

[0.963-0.980]/ 
[0.847-0.978] 

0.911/ 
0.898 

0.930/ 
0.860 

0.906/ 
0.897 

0.926/ 
0.874 

[0.892-0.943]/ 
[0.846-0.954] 

[0.908-0.961]/ 
[0.712-0.934] 

0.147/ 
0.136 

0.283/ 
0.273 

[0.120-0.199] [0.243-0.343] 

Eremospatha macrocarpa 
0.972/ 
0.962 

0.970/ 
0.959 

0.974/ 
0.965 

0.968/ 
0.960 

[0.954-0.981]/ 
[0.941-0.977] 

[0.956-0.988]/ 
[0.934-0.979] 

0.860/ 
0.831 

0.845/ 
0.806 

0.861/ 
0.838 

0.826/ 
0.807 

[0.809-0.917]/ 
[0.739-0.899] 

[0.763-0.962]/ 
[0.724-0.873] 

0.101/ 
0.097 

0.337 
/0.331 

[0.090-0.129] [0.193-0.607] 

Eremospatha wendlandiana 
0.991/ 
0.990 

0.990/ 
0.974 

0.992/ 
0.991 

0.992/ 
0.987 

[0.987-0.994]/ 
[0.977-0.997] 

[0.976-0.999]/ 
[0.919-0.996] 

0.963/ 
0.960 

0.953/ 
0.917 

0.974/ 
0.969 

0.953/ 
0.969 

[0.911-0.979]/ 
[0.890-0.992] 

[0.866-0.994]/ 
[0.686-0.991] 

0.137/ 
0.133 

0.247/ 
0.207 

[0.115-0.165] [0.079-0.534] 

Hyphaene compressa 
0.968/ 
0.912 

0.977/ 
0.915 

0.968/ 
0.913 

0.986/ 
0.917 

[0.955-0.989]/ 
[0.811-0.976] 

[0.912-0.997]/ 
[0.868-0.963] 

0.882/ 
0.773 

0.909/ 
0.749 

0.881/ 
0.782 

0.928/ 
0.718 

[0.832-0.970]/ 
[0.520-0.956] 

[0.817-0.992]/ 
[0.642-0.918] 

0.143/ 
0.144 

0.253/ 
0.235 

[0.095-0.180] [0.067-0.643] 

Hyphaene coriacea  
0.994/ 
0.976 

0.973/ 
0.970 

0.994/ 
0.980 

0.976/ 
0.970 

[0.988-0.996]/ 
[0.944-0.991] 

[0.919-0.996]/ 
[0.947-0.995] 

0.979/ 
0.909 

0.896/ 
0.874 

0.987/ 
0.937 

0.896/ 
0.864 

[0.944-0.990]/ 
[0.800-0.967] 

[0.758-0.988]/ 
[0.797-0.977] 

0.117/ 
0.122 

0.188/ 
0.176 

[0.065-0.133] [0.056-0.426] 

Hyphaene guineensis 
0.993/ 
0.993 

0.978/ 
0.940 

0.997/ 
0.994 

0.997/ 
0.983 

[0.975-0.999]/ 
[0.986-0.998] 

[0.828-1.000]/ 
[0.657-1.000] 

0.983/ 
0.988 

0.928/ 
0.827 

0.996/ 
0.990 

0.997/ 
0.827 

[0.927-0.998]/ 
[0.970-0.998] 

[0.650-0.999]/ 
[0.614-1.000] 

0.189/ 
0.125 

0.407/ 
0.439 

[0.114-0.519] [0.051-0.581] 

Hyphaene petersiana 
0.961/ 
0.956 

0.969/ 
0.953 

0.967/ 
0.966 

0.970/ 
0.959 

[0.944-0.973]/ 
[0.905-0.980] 

[0.947-0.981]/ 
[0.918-0.982] 

0.864/ 
0.846 

0.864/ 
0.832 

0.859/ 
0.866 

0.866/ 
0.833 

[0.802-0.939]/ 
[0.686-0.946] 

[0.780-0.942]/ 
[0.739-0.909] 

0.244/ 
0.252 

0.324/ 
0.309 

[0.187-0.301] [0.119-0.461] 

Hyphaene thebaica 
0.842/ 
0.763 

0.849/ 
0.778 

0.842/ 
0.765 

0.855/ 
0.778 

[0.780-0.903]/ 
[0.647-0.869] 

[0.775-0.915]/ 
[0.672-0.862] 

0.618/ 
0.536 

0.637/ 
0.530 

0.595/ 
0.532 

0.630/ 
0.528 

[0.555-0.774]/ 
[0.415-0.713] 

[0.470-0.812]/ 
[0.369-0.668] 

0.416/ 
0.417 

0.396/ 
0.395 

[0.366-0.442] [0.280-0.503] 

Laccosperma acutiflorum 
0.965/ 
0.987 

0.969/ 
0.954 

0.966/ 
0.991 

0.987/ 
0.992 

[0.884-0.996]/ 
[0.948-0.994] 

[0.781-0.996]/ 
[0.645-0.996] 

0.881/ 
0.957 

0.939/ 
0.913 

0.844/ 
0.970 

0.956/ 
0.977 

[0.770-0.988]/ 
[0.809-0.986] 

[0.714-0.990]/ 
[0.590-0.993] 

0.134/ 
0.122 

0.151/ 
0.142 

[0.090-0.210] [0.075-0.246] 

Laccosperma laeve  
0.989/ 
0.984 

0.976/ 
0.981 

0.989/ 
0.985 

0.990/ 
0.982 

[0.982-0.995]/ 
[0.973-0.994] 

[0.842-0.995]/ 
[0.966-0.994] 

0.967/ 
0.948 

0.945/ 
0.941 

0.970/ 
0.955 

0.970/ 
0.956 

[0.939-0.985]/ 
[0.901-0.985] 

[0.702-0.990]/ 
[0.886-0.975] 

0.131/ 
0.113 

0.205/ 
0.194 

[0.105-0.194] [0.059-0.418] 

Laccosperma opacum 
0.980/ 
0.961 

0.979/ 
0.964 

0.979/ 
0.965 

0.979/ 
0.964 

[0.974-0.989]/ 
[0.947-0.970] 

[0.973-0.988]/ 
[0.949-0.978] 

0.904/ 
0.844 

0.914/ 
0.861 

0.904/ 
0.847 

0.901/ 
0.861 

[0.867-0.954]/ 
[0.780-0.900] 

[0.874-0.957]/ 
[0.816-0.929] 

0.138/ 
0.133 

0.405/ 
0.404 

[0.118-0.162] [0.291-0.487] 

Laccosperma robustum 
0.972/ 
0.976 

0.980/ 
0.945 

0.970/ 
0.976 

0.979/ 
0.953 

[0.947-0.995]/ 
[0.962-0.989] 

[0.966-0.996]/ 
[0.893-0.973] 

0.889/ 
0.914 

0.911/ 
0.827 

0.895/ 
0.922 

0.910/ 
0.844 

[0.780-0.984]/ 
[0.838-0.954] 

[0.864-0.986]/ 
[0.718-0.930] 

0.115/ 
0.116 

0.301/ 
0.267 

[0.079-0.148] [0.162-0.594] 
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Species 

AUC (SPATIAL/CLIMATE) TSS (SPATIAL/CLIMATE) Thresholds (SPATIAL) 

Mean Median [min-max] Mean Median [min-max] Mean/Median [min-max] 

Maxent GBM Maxent GBM Maxent GBM Maxent GBM Maxent GBM Maxent GBM Maxent GBM Maxent GBM 

Laccosperma secundiflorum 
0.966/ 
0.951 

0.965/ 
0.950 

0.968/ 
0.954 

0.968/ 
0.950 

[0.952-0.975]/ 
[0.928-0.963] 

[0.935-0.977]/ 
[0.927-0.971] 

0.877/ 
0.826 

0.870/ 
0.806 

0.877/ 
0.831 

0.881/ 
0.806 

[0.839-0.914]/ 
[0.757-0.875] 

[0.766-0.910]/ 
[0.700-0.894] 

0.195/ 
0.190 

0.459/ 
0.487 

[0.177-0.226] [0.277-0.537] 

Medemia argun  
0.998/ 
0.983 

0.741/ 
0.914 

0.998/ 
0.987 

0.756/ 
0.981 

[0.994-1.000]/ 
[0.936-0.998] 

[0.005-0.998]/ 
[0.733-0.999] 

0.877/ 
0.969 

0.499/ 
0.834 

0.877/ 
0.979 

0.499/ 
0.966 

[0.749-0.982]/ 
[0.872-0.997] 

[0.000-0.998]/ 
[0.472-0.998] 

0.517/ 
0.524 

0.211/ 
0.168 

[0.483-0.541] [0.097-0.557] 

Oncocalamus macrospathus 
0.934/ 
0.948 

0.852/ 
0.914 

0.930/ 
0.946 

0.972/ 
0.956 

[0.879-0.987]/ 
[0.901-0.988] 

[0.505-0.999]/ 
[0.527-0.997] 

0.976/ 
0.932 

0.831/ 
0.756 

0.974/ 
0.942 

0.952/ 
0.914 

[0.941-0.996]/ 
[0.856-0.980] 

[0.489-0.998]/ 
[0.444-0.994] 

0.264/ 
0.260 

0.276/ 
0.256 

[0.198-0.349] [0.156-0.539] 

Oncocalamus mannii 
0.993/ 
0.991 

0.959/ 
0.984 

0.993/ 
0.993 

0.971/ 
0.984 

[0.985-0.999]/ 
[0.979-0.999] 

[0.894-0.997]/ 
[0.957-0.999] 

0.997/ 
0.969 

0.833/ 
0.920 

0.997/ 
0.969 

0.832/ 
0.902 

[0.996-0.999]/ 
[0.932-0.996] 

[0.661-0.988]/ 
[0.816-0.996] 

0.066/ 
0.063 

0.102/ 
0.068 

[0.043-0.088] [0.036-0.286] 

Oncocalamus tuleyi  
0.998/ 
0.996 

0.999/ 
0.963 

0.998/ 
0.996 

0.999/ 
0.996 

[0.997-0.999]/ 
[0.994-0.997] 

[0.997-1.000]/ 
[0.829-0.999] 

0.992/ 
0.994 

0.998/ 
0.927 

0.992/ 
0.994 

0.998/ 
0.994 

[0.989-0.996]/ 
[0.992-0.996] 

[0.994-1.000]/ 
[0.657-0.998] 

0.354/ 
0.355 

0.350/ 
0.345 

[0.252-0.412] [0.118-0.614] 

Phoenix reclinata  
0.910/ 
0.872 

0.988/ 
0.978 

0.911/ 
0.877 

0.997/ 
0.999 

[0.878-0.930]/ 
[0.847-0.885] 

[0.896-1.000]/ 
[0.896-0.999] 

0.981/ 
0.985 

0.976/ 
0.957 

0.985/ 
0.984 

0.994/ 
0.997 

[0.962-0.990]/ 
[0.965-0.997] 

[0.796-1.000]/ 
[0.798-0.999] 

0.330/ 
0.332 

0.374/ 
0.378 

[0.318-0.338] [0.038-0.595] 

Podococcus acaulis  
0.996/ 
0.995 

0.989/ 
0.985 

0.995/ 
0.995 

0.995/ 
0.985 

[0.995-0.998]/ 
[0.991-0.998] 

[0.951-0.997]/ 
[0.971-0.993] 

0.688/ 
0.977 

0.942/ 
0.926 

0.688/ 
0.976 

0.982/ 
0.926 

[0.603-0.745]/ 
[0.970-0.983] 

[0.800-0.994]/ 
[0.861-0.972] 

0.257/ 
0.254 

0.178/ 
0.141 

[0.196-0.317] [0.034-0.617] 

Podococcus barteri  
0.994/ 
0.992 

0.911/ 
0.883 

0.994/ 
0.992 

0.911/ 
0.887 

[0.992-0.995]/ 
[0.988-0.994] 

[0.893-0.934]/ 
[0.842-0.903] 

0.880/ 
0.606 

0.705/ 
0.630 

0.865/ 
0.602 

0.695/ 
0.642 

[0.770-0.985]/ 
[0.565-0.647] 

[0.668-0.770]/ 
[0.560-0.669] 

0.154/ 
0.156 

0.574/ 
0.574 

[0.114-0.174] [0.561-0.590] 

Raphia farinifera  
0.961/ 
0.874 

0.949/ 
0.898 

0.963/ 
0.863 

0.960/ 
0.922 

[0.931-0.996]/ 
[0.818-0.963] 

[0.828-0.982]/ 
[0.715-0.986] 

0.944/ 
0.685 

0.837/ 
0.763 

0.942/ 
0.680 

0.852/ 
0.828 

[0.916-0.976]/ 
[0.573-0.869] 

[0.706-0.926]/ 
[0.372-0.952] 

0.215/ 
0.225 

0.229/ 
0.201 

[0.146-0.281] [0.119-0.350] 

Raphia hookeri  
0.985/ 
0.972 

0.979/ 
0.967 

0.985/ 
0.972 

0.988/ 
0.972 

[0.977-0.991]/ 
[0.951-0.988] 

[0.902-0.990]/ 
[0.927-0.988] 

0.945/ 
0.895 

0.956/ 
0.887 

0.965/ 
0.893 

0.960/ 
0.900 

[0.663-0.999]/ 
[0.801-0.978] 

[0.887-0.974]/ 
[0.801-0.953] 

0.106/ 
0.108 

0.371/ 
0.368 

[0.079-0.127] [0.126-0.548] 

Raphia mambillensis 
0.964/ 
0.958 

0.853/ 
0.890 

0.989/ 
0.974 

0.994/ 
0.998 

[0.748-0.999]/ 
[0.914-0.992] 

[0.496-1.000]/ 
[0.375-1.000] 

0.975/ 
0.923 

0.844/ 
0.843 

0.981/ 
0.965 

0.988/ 
0.998 

[0.941-0.988]/ 
[0.833-0.987] 

[0.486-1.000]/ 
[0.013-1.000] 

0.155/ 
0.179 

0.287/ 
0.240 

[0.058-0.326] [0.129-0.547] 

Raphia palma-pinus 
0.990/ 
0.961 

0.976/ 
0.935 

0.990/ 
0.972 

0.984/ 
0.940 

[0.982-0.993]/ 
[0.891-0.990] 

[0.908-0.996]/ 
[0.829-0.988] 

0.969/ 
0.889 

0.879/ 
0.792 

0.963/ 
0.947 

0.879/ 
0.792 

[0.942-0.997]/ 
[0.644-0.975] 

[0.652-0.986]/ 
[0.313-0.968] 

0.141/ 
0.111 

0.156/ 
0.116 

[0.086-0.293] [0.031-0.499] 

Raphia regalis  
0.987/ 
0.986 

0.956/ 
0.962 

0.987/ 
0.986 

0.991/ 
0.983 

[0.975-0.998]/ 
[0.971-0.998] 

[0.753-0.997]/ 
[0.852-0.995] 

0.950/ 
0.965 

0.931/ 
0.900 

0.970/ 
0.968 

0.973/ 
0.943 

[0.899-0.994]/ 
[0.919-0.996] 

[0.725-0.995]/ 
[0.660-0.990] 

0.102/ 
0.093 

0.250/ 
0.184 

[0.064-0.181] [0.140-0.576] 

Raphia sese  
0.969/ 
0.953 

0.933/ 
0.814 

0.977/ 
0.957 

0.982/ 
0.814 

[0.939-0.997]/ 
[0.912-0.988] 

[0.726-0.996]/ 
[0.549-0.988] 

0.944/ 
0.912 

0.873/ 
0.709 

0.944/ 
0.918 

0.967/ 
0.709 

[0.891-0.964]/ 
[0.824-0.984] 

[0.480-0.994]/ 
[0.439-0.982] 

0.207/ 
0.265 

0.252/ 
0.231 

[0.124-0.265] [0.121-0.463] 

Raphia sudanica  
0.974/ 
0.932 

0.901/ 
0.862 

0.975/ 
0.940 

0.905/ 
0.832 

[0.953-0.988]/ 
[0.888-0.957] 

[0.764-0.988]/ 
[0.787-0.947] 

0.996/ 
0.862 

0.831/ 
0.756 

0.997/ 
0.868 

0.819/ 
0.719 

[0.985-0.999]/ 
[0.794-0.907] 

[0.644-0.967]/ 
[0.637-0.887] 

0.398/ 
0.389 

0.204/ 
0.203 

[0.338-0.450] [0.057-0.331] 

Raphia vinifera  
0.997/ 
0.995 

0.921/ 
0.945 

0.998/ 
0.997 

0.997/ 
0.994 

[0.992-0.999]/ 
[0.975-0.999] 

[0.744-1.000]/ 
[0.522-0.999] 

0.914/ 
0.991 

0.797/ 
0.886 

0.927/ 
0.996 

0.994/ 
0.988 

[0.812-0.966]/ 
[0.951-0.999] 

[0.493-0.999]/ 
[0.455-0.998] 

0.222/ 
0.195 

0.352/ 
0.410 

[0.154-0.432] [0.076-0.573] 

Sclerosperma mannii 
0.977/ 
0.963 

0.950/ 
0.962 

0.977/ 
0.970 

0.974/ 
0.962 

[0.957-0.990]/ 
[0.922-0.983] 

[0.863-0.992]/ 
[0.925-0.986] 

0.905/ 
0.883 

0.891/ 
0.847 

0.905/ 
0.907 

0.922/ 
0.860 

[0.874-0.938]/ 
[0.752-0.944] 

[0.676-0.965]/ 
[0.650-0.933] 

0.196/ 
0.190 

0.256/ 
0.257 

[0.170-0.246] [0.057-0.429] 

Sclerosperma profizianum 
0.919/ 
0.892 

0.920/ 
0.917 

0.921/ 
0.899 

0.965/ 
0.956 

[0.888-0.943]/ 
[0.805-0.939] 

[0.488-0.987]/ 
[0.705-0.989] 

0.928/ 
0.871 

0.852/ 
0.810 

0.920/ 
0.876 

0.933/ 
0.928 

[0.881-0.989]/ 
[0.768-0.917] 

[0.000-0.981]/ 
[0.079-0.980] 

0.470/ 
0.471 

0.348/ 
0.371 

[0.449-0.492] [0.171-0.503] 

Sclerosperma walkeri  
0.948/ 
0.923 

0.761/ 
0.812 

0.941/ 
0.928 

0.741/ 
0.964 

[0.914-0.993]/ 
[0.878-0.960] 

[0.259-0.998]/ 
[0.243-1.000] 

0.997/ 
0.892 

0.585/ 
0.686 

0.998/ 
0.895 

0.500/ 
0.930 

[0.992-0.999]/ 
[0.861-0.943] 

[0.000-0.996]/ 
[0.000-0.999] 

0.343/ 
0.341 

0.245/ 
0.221 

[0.302-0.395] [0.148-0.409] 
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