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1. Supplementary Material 

 

Appendix 1: Computing the distance between surfaces and the algorithm for surface matching 

The 𝑁 error terms compute the mismatch between surfaces by assuming the deformed template 

and target surfaces have local parameterizations 𝑆 = 𝑞(𝑢), 𝑢 ∈ 𝑈, 𝑆′ = 𝑞′(𝑢), 𝑢 ∈ 𝑈, with the 

distance between smooth coordinates based on the normals of the surfaces given by 𝑁(𝑢) =
𝜕𝑢1

𝑞(𝑢) × 𝜕𝑢2
𝑞(𝑢), 𝑁′(𝑢) = 𝜕𝑢1

𝑞′(𝑢) × 𝜕𝑢2
𝑞′(𝑢), 𝑢 = (𝑢1, 𝑢2) ∈ 𝑈, with × the cross-product. 

The disparity between surfaces or normed error between 𝑆, 𝑆′ is given by 

𝐸(𝑆, 𝑆′) = ∬ 𝑊(𝑢, 𝑢′)〈𝑁(𝑢), 𝑁′(𝑢′)〉𝑑𝑢𝑑𝑢′

𝑈𝑈

                                         (1) 

where 𝑊 is the smoothing window over which the integral is computed, and 〈⋅,⋅ 〉 is the inner-product 

between normal vectors.  

Since the vector space 𝑣 ∈ 𝑉 of vector fields is spatially smooth it has a reproducing kernel 

defined as 𝐾 implying that the variational minimizers of Eqn. (1) will involve the kernel (see below). 

The variational problem of Equation 1 is solved by representing the deforming surfaces as a 

dynamical system, with state 𝑞0, 𝑢 ∈ 𝑈, 𝑞𝑡 = 𝜑𝑡(𝑆𝑡𝑒𝑚𝑝), 𝑞0 = 𝑆𝑡𝑒𝑚𝑝. Denoting the 3 × 3 Jacobian 

matrix as (𝐷𝑣) = (𝜕𝑥𝑖
𝑣𝑗), (𝐷𝑣)𝑡 matrix transpose, the solution satisfies 𝑡 ∈ [0,1],  

�̇�𝑡 = 𝑣𝑡(𝑞𝑡) = ∫ 𝐾(𝑞𝑡, 𝑞𝑡(𝑢))𝑝𝑡(𝑢)𝑑𝑢
𝑈

,                                             

�̇� = −(𝐷𝑣𝑡)𝑡 ∘ 𝑞𝑡𝑝𝑡,                                                                           (2) 
subject to 𝑝𝑡𝑖

= ∇𝑞𝐸(𝑞𝑡𝑖
, 𝑆𝑖), 𝑖 = 1, … 𝑁                                              

with ∇𝑞𝐸(𝑞𝑡𝑖
, 𝑆𝑖) denoting the 3 × 1 gradient of the matching cost with respect to the state. The 

target surfaces enter through boundary conditions involving the state transforming the template. 

Appendix 2: Linear mixed-effects Modelling for Group Comparisons: Control versus 

Preclinical and Control versus Symptomatic 

Calculation of the MLE parameters for the linear mixed-effects model: The parameters 

𝛼𝑣, 𝛼𝑣
′ , 𝛽𝑣, 𝛽𝑣

′ , 𝜎𝑣
2 are estimated by maximum likelihood for all dimensions v for each of the two 
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hypotheses. Evaluating the log-likelihood in each case at the MLEs of the parameters gives log-

likelihood essentially determined by the mixed sums of squares. 

We describe the maximum likelihood estimation algorithm, focusing on the general hypothesis 

𝐻𝑣
1. The null hypothesis 𝐻𝑣

0 is handled the same way, without the parameters 𝛽𝑣, 𝛽𝑣
′ , or 𝛽𝑣 = 𝛽𝑣

′ = 0. 

We also work with fixed 𝑣, since the models across shape coordinates do not share any parameter 

and can be estimated independently from each other. The model parameters for 𝐻𝑣
1 are then 𝜃𝑣 =

(𝛼𝑣, 𝛼𝑣
′ , 𝛽𝑣, 𝛽𝑣

′ ), 𝜎𝑣
2 and 𝜌𝑣; for 𝐻𝑣

0 then 𝜃𝑣 = (𝛼𝑣, 𝛼𝑣
′ , 0, 0), 𝜎𝑣

2 . 

We now describe the estimation procedure.  

Let 𝑛 denote the number of subjects, 𝑁𝑠 the number of scans for subject 𝑠 and 𝑁 the total number 

of scans (the sum of all 𝑁𝑠). Let 𝑑 be the number of variables in the linear model (𝑑 = 4 in our case) 

and 𝐾 the dimension of the shape marker. Denote 𝑌𝑣(𝑠) the vector with coordinates  𝑦𝑣𝑗(𝑠) for 𝑗 =

1, … , 𝑁𝑠 and define 𝜀𝑣(𝑠). Rewrite the linear model for coordinate 𝑣 as 𝑌𝑣(𝑠) = 𝑋(𝑠)𝜃𝑣 + 𝜀𝑣(𝑠), 

where 𝑋(𝑠) is an 𝑁𝑠 by 𝑑 matrix and 𝜃𝑣 a 𝑑-dimensional vector. 

Let 𝟏𝑠 denote the  𝑁𝑠-dimensional vector with all coordinates equal to 1. The covariance matrix of 

𝜀𝑣(𝑠) is the 𝑁𝑠 × 𝑁𝑠 matrix 𝐴𝑣(𝑠) = 𝜎𝑣
2(𝐼𝑑 + 𝜌𝑣𝟏𝑠𝟏𝑠

𝑇). 

One has 𝐴𝑣(𝑠)−1 = 𝜎−2 (𝐼𝑑 −
𝜌𝑣

1+𝑁𝑠𝜌𝑣
𝟏𝑠𝟏𝑠

𝑇) and det(𝐴𝑣(𝑠)) = 𝜎𝑣
2𝑁𝑠(1 + 𝑁𝑠𝜌𝑣). 

This implies that the log-likelihood of the sample is (up to an additive constant) 

𝑙 = − ∑ ∑
1

2𝜎𝑣
2

‖𝑌𝑣(𝑠) − 𝑋(𝑠)𝜃𝑣‖2

𝑛

𝑠=1

𝐾

𝑣=1

 

       + ∑ ∑
𝜌𝑣

2(1 + 𝑁𝑠𝜌𝑣)𝜎𝑣
2

𝑛

𝑠=1

(𝟏𝑠
𝑇(𝑌𝑣(𝑠) − 𝑋(𝑠)𝜃𝑣))

2

 

𝐾

𝑣=1

 

      −
𝑁

2
∑ log𝜎𝒗

2 

𝐾

𝑣=1

−
1

2
∑ ∑ log

𝑛

𝑠=1

(1 + 𝑁𝑠𝜌𝑣) 

𝐾

𝑣=1

 

The procedure loops over the following two steps until convergence (which usually requires a 

small number of iterations) 

Step 1: Least square estimation, updating all parameters except 𝜌𝑣. 

This minimizes the likelihood with respect to 𝜃𝑣 and 𝜎𝑣
2. Define the covariance matrices 𝑆𝑋𝑋 =

∑ 𝑋(𝑠)𝑇𝑋(𝑠)𝑛
𝑠=1 , 𝑆𝑋𝑌

𝑣 = ∑ 𝑋(𝑠)𝑇𝑌(𝑠)𝑛
𝑠=1 . Define also the row vector �̅�(𝑠) = 𝟏𝑠

𝑇𝑋(𝑠) = ∑ 𝑋𝑗(𝑠)𝑁𝑠
𝑗=1  

where 𝑋𝑗(𝑠) is the 𝑗th row of 𝑋(𝑠), and the scalar �̅�𝑣(𝑠) = 𝟏𝑠
𝑇𝑌𝑣(𝑠) = ∑ 𝑦𝑣𝑗(𝑠)𝑁𝑠

𝑗=1 .  

Set 𝑆�̅�𝑋
𝑣 = 𝜌𝑣 ∑ �̅�(𝑠)𝑇𝑛

𝑠=1 �̅�(𝑠)/(1 + 𝑁𝑠𝜌𝑣), 𝑆�̅�𝑌
𝑣 = 𝜌𝑣 ∑ �̅�(𝑠)𝑇𝑛

𝑠=1 �̅�𝑣(𝑠)/(1 + 𝑁𝑠𝜌𝑣) 

Then, a direct computation shows that the least square estimator of 𝜃𝑣 is given by 

𝜃𝑣 = (𝑆𝑋𝑋 − 𝑆�̅�𝑋
𝑣 )−1(𝑆𝑋𝑌

𝑣 − 𝑆�̅�𝑌
𝑣 ). 

To estimate the variance, define the residual 𝑅𝑣(𝑠) = 𝑌𝑣(𝑠) = 𝑋(𝑠)𝜃𝑣.  For a given 𝑣, let �̅�𝑣(𝑠) =
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𝟏𝑠
𝑇𝑅𝑣(𝑠) = ∑ 𝑅𝑣𝑗(𝑠)𝑁𝑠

𝑗=1 , then, one must take 

�̂�𝑣
2 =

1

𝑁
∑‖𝑅𝑣(𝑠)‖2

𝑛

𝑠=1

−
𝜌𝑣

𝑁
∑

�̅�𝑠(𝑠)2

1 + 𝜌𝑁𝑠

𝑛

𝑠=1

 

Step 2: Update 𝜌𝑣 with all other parameters fixed. Focusing on the part of the likelihood that 

depends on 𝜌𝑣, we see that �̂�𝑣 minimizes the function  

𝜌 −
ρ

σ̂𝑣
2

∑
�̅�𝑠(𝑠)2

1 + 𝜌𝑁𝑠

𝑛

𝑠=1

+ ∑ log(1 + ρNs)

𝑛

𝑠=1

 

This minimization problem has no closed-form solution and must be performed numerically. 

Note that the computations in steps 1 and 2 are made independently across shape coordinates. 

Appendix 3: Changepoint Model 

Calculation of the MLE parameters for the linear mixed-effects onset model: Via the Heaviside 

function, the model implies a sharp changepoint from atrophy rate 𝑦 = 𝛼 + 𝛼′𝑎 in the control to =
𝛼 + (𝛼′ + 𝛽′)𝑎 at age 𝑎 = 𝑡 − 𝛥 in the preclinical group, i.e., 𝛥 years before the clinical onset, if the 

latter is finite. There is no change for control, since their onset time is infinite. We can interpret as the 

anatomical phenotype changepoint time. The null hypothesis is 𝛽𝑣
′ = 0. 

In this model, the structural onset time is the same for all shape coordinates. One can relax this 

assumption by using a heterogeneous onset model in the non null-hypothesis in which the onset time 

would be indexed across the shape 𝛥𝑣.  

Estimation Procedure: Start with homogeneous onset. We want to minimize 

∑ (𝑦𝑣𝑗(𝑠) − 𝛼𝑣 − 𝛼𝑣
′ 𝑎𝑗(𝑠) − 𝛽𝑣

′ 𝑎𝑗(𝑠)𝐻 (𝑎𝑗(𝑠) − (𝑡𝑠𝑦𝑚𝑝𝑡𝑜𝑚 − 𝛥)))
2

𝑣,𝑗,𝑠

 

with respect to the model parameters. We use an alternating minimization procedure that loops over 

the following steps until stabilization. 

1. Use linear least-square regression to generate estimates �̂�, �̂�′, �̂�, �̂�′, 𝛿 for all 𝑞’s and 

for fixed value 𝛥. 

2. Let 𝑅𝑆𝑆(𝑞, 𝛥) denote the residual sum of squares and 𝐿(𝛥) denote the log likelihood: 

𝑅𝑆𝑆(𝑞, 𝛥) = ∑ (𝑦𝑣𝑗(𝑠) − �̂�𝑣 − �̂�𝑣
′ 𝑎𝑗(𝑠) − �̂�𝑣

′ 𝑎𝑗(𝑠)𝐻 (𝑎𝑗(𝑠) − (𝑡𝑠𝑦𝑚𝑝𝑡𝑜𝑚 − 𝛥)))
2

𝑣,𝑗,𝑠

. 

3. Maximize L(Δ) 

�̂� B arg maxΔ (2𝐿(𝛥) = cst − 𝑛𝑠𝑢𝑏𝑗 ∑ log(𝑅𝑆𝑆(𝑣, 𝛥))

𝑣

) 

For the heterogeneous onset model, the second step is simply replaced by the maximization of 

2𝐿(𝑣, 𝛥) = cst − 𝑛𝑠𝑢𝑏𝑗 ∑ log(𝑅𝑆𝑆(𝑣, 𝛥))𝑣  with respect to 𝛥 (independently for each 𝑣) to obtain 𝛥𝑞. 
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The maximization in Δ is made, in both cases, by computing 𝐿(𝛥) (or 𝐿(𝑣, 𝛥)) for all 𝛥 over a 

discrete time interval. 

Tests for Significance: The test statistic is the log-likelihood difference between the null hypothesis 

𝐻0
𝑣: 𝛽𝑣

′ = 0 and the general hypothesis 𝐻1
𝑣, namely 𝑆𝑣 = 𝐿𝐻1

𝑣 − 𝐿𝐻0
𝑣 . 

The global statistic is then defined by 𝑆∗ = max𝑣𝑆𝑣. P-values are computed using permutation 

sampling run until a 10% accuracy is reached with high probability. Permutations affect the value of 

the onset time by expressing 𝑡𝑘 as 𝑡𝑘 = 𝑎1(𝑘) + 𝛿𝑘, where 𝑎1(𝑘) is the age of subject 𝑘 at the 

beginning of the study (first scan), and permuting the values of 𝛿𝑘, so that, for a permutation π, the 

permuted times are 𝑡𝑘
𝜋 = 𝑎1(𝑘) + 𝛿𝜋(𝑘). 

A global p-value is obtained as the fraction of permutations 𝜋 for which the resulting statistic, say 

𝑆𝜋
∗ , is larger than the observed one 𝑆∗. When using the heterogeneous onset model, variables 𝑣 for 

which 𝑆𝑣 is larger than the 95th percentile of the values of 𝑆𝜋
∗  that were observed via permutations are 

considered as significant. 

Appendix 4: 

Here the subfields of the entorhinal cortex (ERC) are summarized. For details see Krimer et al. 

(1997). 

1. Prorhinal (Pr): occupies the most rostral subarea of the ERC. The Pr first appears a few 

millimeters rostral to the amygdala, but for the most part lies adjacent to it. 

2. Lateral (L): Caudally, L replaces Pr cortex. L is bordered dorsally by Pr, and more caudally by 

I. Ventrally, it is bounded by S. 

3. Intermediate (I) has a rostral and caudal subdivision. A third dorso-medial component 

designated as I superior (Is) is also defined. This region is medial to the intrarhinal sulcus. 

4. Intermediate-Rostral (Ir) appears first dorsal to L and then, as it progresses caudally, it  

extends laterally and borders S. 

5. Intermediate-Caudal (Ic) replaces the larger Ir dorso-caudally and abuts the parasubiculum of 

the hippocampal formation medially and dorsally. Laterally, Ic extends down to adjoin S. 

6. Intermediate-Superior (Is) occupies the most medial and superior portion of the entorhinal 

region, above the intrarhinal sulcus. 

7. Medial-Rostral (Mr) Continuing caudally, Mr replaces Ic, bordering the parasubiculum dorso-

medially and S ventro-laterally. 

8. Medial-Caudal (Mc) This subdivision replaces Mr and merges caudally with the 

parahippocampal gyrus. Mc is bounded dorso-medially by the parasubiculum and ventro-

laterally by S. 

9. Sulcal (S) is a subdivision between the medial subdivisions of Pr, L, I, M. It extends onto the 

medial bank of the collateral sulcus, and borders obliquely with the neighboring perirhinal 

cortex.  


