
Biochemical and EPR-spectroscopic Investigation into Heterologously Expressed Vinyl Chloride Reductive Dehalogenase (VcrA) from *Dehalococcoides mccartyi* strain VS

Anutthaman Parthasarathy, Troy A. Stich, Svenja T. Lohner, Ann Lesnefsky, R. David Britt, and Alfred M. Spormann

SUPPORTING INFORMATION

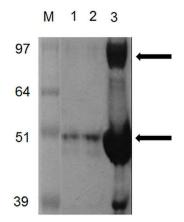
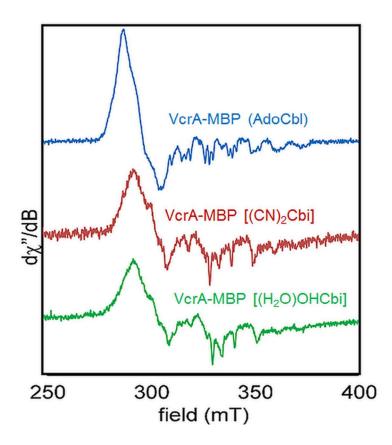
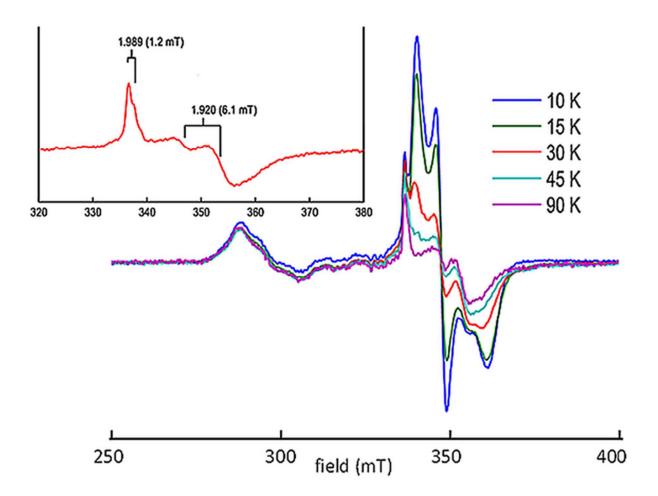
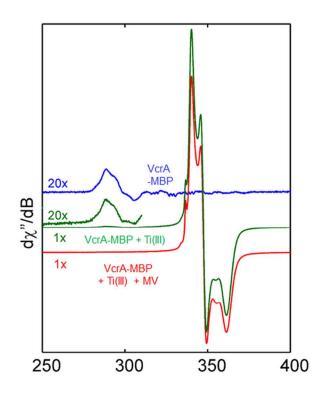


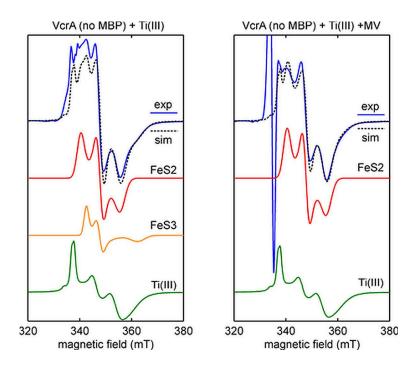
Fig S1. Model of vinyl chloride reduction in the *Dehalococcoides mccartyi* strain VS cell – VcrA (the catalytic vinyl chloride reductase subunit) is shown with two [4Fe-4S] clusters in red & black and a cartoon of a corrinoid in black. The entire complex of VcrA and hydrogenase (HupL), which presumably donates electrons to VcrA, as well as VcrB, which anchors VcrA to the membranes are oriented towards the periplasmic space. CM denotes the cytoplasmic membrane.


	1			50
VcrA DmccaTceA	.MSKFHKTIS MSEKYHSTVT	RRDFMKRLGL	A <mark>GA G</mark> AGA <mark>L G</mark> A	# SAPVFHDIDELVS AVLAENNLPH EFKDVDDLLS
DEth195 SmultivoPceA DesulfH DesulfCprA	MSEKYHSTVT MEKKKKPELS MGEIN	RRDFGK.LII RRNFLK.VSI	G <mark>GGA</mark> AVT <mark>IA</mark> P L <mark>GAAAAAVA</mark> S	AVLAENNLPH EFKDVDDLLS FGVPGANAAE KEKNAAEIRQ ASAVKGMVSP LVADAADIVA
Consensus	k			d
	51 1	#		100
VcrA DmccaTceA DEth195 SmultivoPceA DesulfH	AGKALEGDHA AGKALEGDHA QFAMTAGSPI	NSTKDQPWYV NKVNNEPWWV NKVNNHPWWV IVNDKLERYA	TTRDHEDPTC TTRDHEDPTC EVRTAFTH	TVDWDIFDRY DGYQHKGVYE NIDWSLIKRY SGWNNQGAYF NIDWSLIKRY SGWNNQGAYF PTS FF DPEANKTPIK FHYDDVSKIT
DesulfCprA				
Consensus .	• • • • • • • • • • •	·····y·	rt.	
	101		#	150
VcrA DmccaTceA DEth195 SmultivoPceA DesulfH DesulfCprA Consensus	LPEDYLSPTY LPEDYLSPTY .KPNYKGEVK GKKDTGKDLP	TGRRHTIVDA TGRRHTIVDS P T	FREIKLQGKK KLEIELQGKK .WFLSAYDEK .LNAERLGIK .MENNEQRQQ	QKKR ILAAKKERFP YRDSAWIKSG IDWMKENIDP YRDSAFIKSG IDWMKENIDP VRQIENGENG PKMKAKNVGE GRPATHTETS ILFHTQHLGA TGMNRRSFLK VGAAATTMGV .r
	151			200
VcrA DmccaTceA DEth195 SmultivoPceA DesulfH DesulfCprA Consensus	DYDPGELGYG DYDPGELGYG ARAGR MLTQRHNETG IGAIKAPAKV	DRREDALIYA DRREDALIYA ALEA WTGLDEALNA ANAAETMNYV	ATNGSHNCWE ATNGSHNCWE AGWTLDINYG GAWAVEFDYS PGPTNARSKL	EGHGLFQPYP .DQPGKFYAR NPLYGRYK GSRPYLSMRT NPLYGRYE GSRPYLSMRT NIYPNRFFML GFNAT GGGPGSVIPL RPVHDFAGAK VRFVENNDEW p
	201		#	250
DmccaTceA DEth195 SmultivoPceA DesulfH	MNGINGLHEF MNGINGLHEF WSGETMTNTQ YPINPMTNEI LGTTKIISKV	GHADIKTTNY GHADIKTTNY LWAPVGL ANEPVMVPGL KKTSEADAGF	PKWEGTPEEN PKWEGTPEEN DRR PPDTT DP YNWDNIDVES MQAVRGLYGP	FLMLRAAAKY FGAGGVGALN LLIMRTAARY FGASSVGAIK LLIMRTAARY FGASSVGAIK VELTNYV VRQQGQQWKF ESKEEASKIV DPQRGFFQFI AKHPFGGTIS g.i.
	251		#	300
DmccarTceA DEth195 SmultivoPceA DesulfH DesulfCprA	ITD.NVKKIF ITD.NVKKIF KFAARMAGAD KKATRLLGAD WARNLIAAED	YTKAQPFSLG YAKVQPFCLG LVGVARLN.R LVGIAPYD.E VVDGDAEPTK	KGTYSEIGGP PW.YTITNFA PW.YTITNMA NWVYSEA RWTYSTWGRK TPIPDPEQMS	GMIDAKIYPK VPDHAVP EYIEYPVP VDNYAIP EYIEYPVP VDNYAIP VTIPADVPYE QSLHKEIEKP IYKPCKMPNG RTKYLPWDLP QHIRDCCYFL RADEVGIGKM ip

	301				350
DmccarTceA DEth195 SmultivoPceA DesulfH DesulfCprA	KMLSGGGV PE <mark>Y</mark> GYYTHHV i.f	GHYSYKRFGG GHYSYKRFGG PIET EVFGHAKFEP SDTVGLMSKP	DDKIVVPNA. DDKIAVPNA. DDELIIPNT. DWEKYAGFK. VEECVIPVIK	.LENIFTYTI .LDNIFTYTI .CENVIVAGI .PKSVIVEVL IYPNVIVVMI	MLPQKRFKYA MLPEKRFKYA AMNREMMQTA EEDYEAIRTS DQGIETMWAS e
	351				400
DmccaTCeA DEth195 SmultivoPceA DesulfH DesulfCprA	GGIA.GAG HSVPMDPC HSIPMDPC PNSMACAT PSVISSAT TGYDGISGAM a.	SCIAYPLFSE SCIAYPLFTE TAFCYSRMCM VGKSYSNMAE SMQSYFTSGC	VEARIQQFIA VEARIQQFIA FDMVLCQFIR VAYKIAVFIR IAVIMAKYIR	YLGYHALYWP GLGYNSMGGG GLGYNSMGGG YMGYYAIPSC KLGYYAAPCG TLGYNARXHH	VEAWGPGSAF VEAWGPGSAF .NGVGQSVAF .NDTGISVPM AKNYEAIMPV
	401				450
DmccaTceA DEth195 SmultivoPceA DesulfH DesulfCprA	TTFD. GQGEQ GNLS. GLGEQ GNLS. GLGEQ	SRVS.SIIEP SRVS.SIIEP SRMG.ACITP GRNG.LLITQ SRTGDCAIHP	KFGSSQRGSE RYGSNTKGSL RYGSNTKGSL EFGPNVRLT. KFGPRHRIA. RLGYRHKVA.	RMLTDL PLAP RMLTDL PLAP KVFTNM PLVP KVYTDLE LAP AVTTDL PLAP	TKPIDAGIRE TKPIDAGIRE DKPIDFGVTE DKERKFGVRE DKPIDFGLLD
	451				500
DmccaTceA DEth195 SmultivoPceA DesulfH DesulfCprA	FCKTCYICRD FCKTCGICAE FCKTCGICAE	HCPTQAISHE HCPTQAISHE ECPSKAIT ACPAQAISHE NCPNDAITFD	DEPTWDS G.PRYDS G.PRYDS EGPRTF.EG KDPKVLQPED EDP	PYWDCVSGYE PHWDCVSGYE RSIHNQSGKL CEVAENPYTE IEYNGYL	GWHLDYHKCI GWHLDYHKCI QWQNDYNKCL KWHLDSNRCG RWNSDFKKCT
	501				550
DmccaTceA DEth195	N N	QCGMCQSSCP .CTICEAVCP .CTICEAVCP	FFTMSNN <mark>S</mark> FFTMSNNS	LVHKIVKGVV WVHNLVKSTV WVHNLVKSTV	ATTPVFNGFF ATTPVFNGFF
DesulfCprA	SFWAYNGS EFRTTNEEGS	PCSNCVAVCS SCGTCLKVCP	WNKVET WNSKEDS	WNHD.VARVA WFHKAGVWVG	TQIPELQDAA SKGEAASTEL
DesulfH DesulfCprA	SFWAYNGS EFRTTNEEGS	PCSNCVAVCS SCGTCLKVCP	WNKVET WNSKEDS	WNHD.VARVA WFHKAGVWVG	TQIPELQDAA SKGEAASTEL


Fig S2. Amino acid sequence alignments with the GenBank accession numbers in brackets; VcrA from *Dehalococcoides* VS (ACZ62391.1) compared with DmccaTceA = *Dehalococcoides mccartyi* TceA (AFX81898.1); Deth195 = *Dehalococcoides ethenogenes* 195 dehalogenase (AAW39060.1); SmultivoPceA = *Sulfospirillum multivorans* PceA (AHJ12791.1); DesulfH = *Desulfitobacterium hafniense* Y51 dehalogenase (BAC00915.1) and DesulfCprA = *Desulfitobacterium dehalogenans* CprA (AAD44542.1). The * mark and blue shading refer to the conserved Cys residues for binding the FeS clusters; # suggests a possible catalytic role and \$ refers to the conserved His. Yellow = single amino acid conserved in \geq 5 of the 6 sequences. Grey = conservation in \leq 4 out of 6 sequences. Green = multiple amino acid region with conservation in \geq 5 of the 6 sequences. All markings are made with like-for-like amino acid substitution criteria (eg. E is considered conserved if E is changed into D in some entries). The portion of the sequence where the heading is underlined is a predicted TAT signal according to an earlier study (Müller et al, 2004). After post-translational processing, the first amino acid of VcrA is a glutamate represented by the symbol <u>1</u> (E59 in this alignment).


Fig S3. SDS-PAGE analysis of TEV digestion of VcrA-MBP. On the left of the gel, the sizes of the bands in the molecular mass marker are shown in kDa. The position of the arrows indicates the bands of interest, the upper shows VcrA-MBP and the lower VcrA without MBP. Lanes M = molecular mass marker, 1 & 2 = flow through from the Ni-IDA column after digestion; 3 = TEV protease digest of VcrA-MBP.


Fig S4. CW EPR spectra of VcrA-MBP reconstituted with different corrinoids and reduced with 2-mercaptoethanol. AdoCbl = adenosylcobalamin (blue); $(CN)_2Cbi$ = dicyanocobinamide (brown) and (H₂O)OHCbi = aquahydroxocobinamide (green). The hyperfine structure due to axial ¹⁴N coordination seen in the blue trace is absent in the other two samples (which lack the lower nitrogenous ligand), showing that the ¹⁴N signal arises from the corrinoid cofactor and not from a proteinaceous ligand like a His residue.

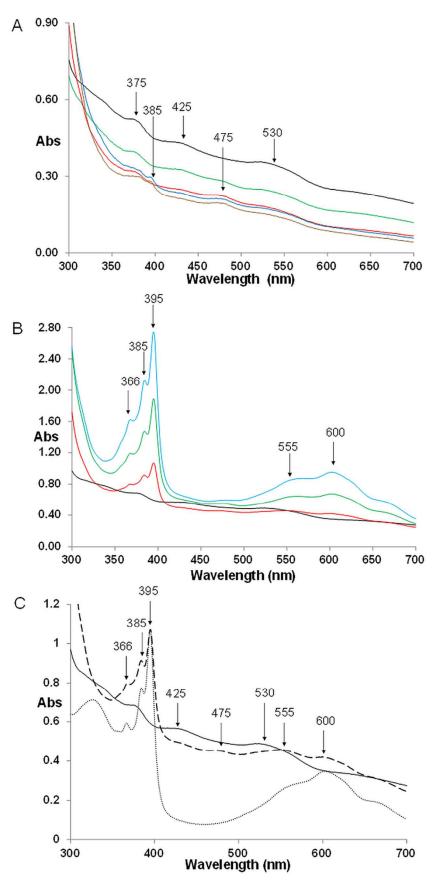

Fig S5. X band EPR spectra showing the temperature response of Ti(III)-reduced VcrA-MBP at 10, 15, 30, 45 and 90 K as indicated [inset shows the signals arising from Ti (III)]. The signals at *g*-values of 1.989 and 1.920 do not decay considerably with the rise of temperature, while the ones at *g*-values of 1.969 and 1.928 decay much faster, suggesting [4Fe-4S] cluster(s) in the reduced +1 state.

Fig S6. X-band spectra of VcrA-MBP following rapid desalting (which resulted in the loss of some bound cobalamin) after the reduction of each sample. The blue trace was measured after reduction with 2-mercaptoethanol, the green trace after Ti(III) reduction, and the red trace after reduction with Ti(III) and the electron carrier dye methyl viologen. The features attributed to S = 1/2 Ti(III) species are greatly diminished, whereas the [4Fe-4S]¹⁺ signal remains unchanged in the latter two samples. The Cob(II)alamin signals are abolished upon the reduction via methyl viologen, suggesting reduction to the Co(I) state.

Figure S7. X-band (9.38 GHz) CW EPR spectra (blue traces) for reconstituted VrcA lacking the MBP tag and treated with 1.0 mM Ti(III)citrate (left panel) and 1.0 mM Ti(III)citrate + 0.5 mM methylviologen (right panel). Spectrometer settings are same as given in earlier CW EPR figures. Red trace is a simulation of an FeS cluster signal obtained using the parameters g = [1.957, 1.928, 1.849]; *g*-Strain = [0.01, 0.0125, 0.03] that was fit based on the difference spectrum of 15 K and 90 K spectra of VcrA (no MBP) +Ti(III) + MV. The orange trace is a simulation of an FeS cluster signal obtained using the parameters g = [1.970, 1.928, 1.885]; *g*-Strain = [0.018, 0.014, 0.023] that was fit based on the difference spectrum of the 15 K data of VcrA (no MBP) +Ti(III) *minus* VcrA (no MBP) +Ti(III) + MV. The green trace is a spectrum of the VcrA (no MBP) +Ti(III) sample collected at 90 K. All FeS cluster signals relax too quickly at this temperature and only the signals corresponding to Ti(III)-containing species remain. The dotted black trace is a summation of the FeS2, FeS3, and Ti(III) signals weighted by the concentrations given in Table S1. The MV sample underwent accidental oxidation during freezing and the [4Fe-4S] cluster corresponding to the FeS2 signal was converted into a [3Fe-4S] cluster.

Fig S8. Electronic absorption spectra of VcrA-MBP

Panel A: 80 μ M VcrA-MBP reduced with different concentrations of Ti(III)-citrate: black = 0 mM, unreduced (note the iron-sulfur peak at 420 nm & the Cob(II)alamin peaks at 375 and 530 nm); green = 0.2 mM; blue = 0.4 mM; red = 0.8 mM and brown = 1.6 mM. All the spectral features between 300 and 400 nm disappeared at 2.5 mM of Ti(III)-citrate (data not shown). The peak Co(I) is at 385 nm. **Panel B:** 100 μ M VcrA-MBP reduced with 0.4 mM methyl viologen; sequential additions of Ti(III)-citrate induced the generation of peaks at 366, 385 and 395 nm, and two more broad peaks around 555 and 600 nm (black = 0 mM, unreduced; red = 0.3 mM; green = 0.6 mM and blue = 1 mM). The 600 nm peak belongs to reduced methyl viologen. **Panel C:** 100 μ M unreduced VcrA-MBP (solid line), 100 μ M of VcrA-MBP reduced with 0.4 mM methyl viologen and 0.3 mM Ti(III)-citrate (dashed line) and 0.4 mM free methyl viologen reduced with 0.3 mM Ti(III)-citrate (dotted line). Although the peaks at 366, 385, 395 and 600 nm could arise from free methyl viologen and thus mask the 385-390 nm peak of Co(I), the peak at 555 nm (shifting from 530 nm for unreduced VcrA-MBP) suggests a reduction of the Co(II) to the Co(I) state.

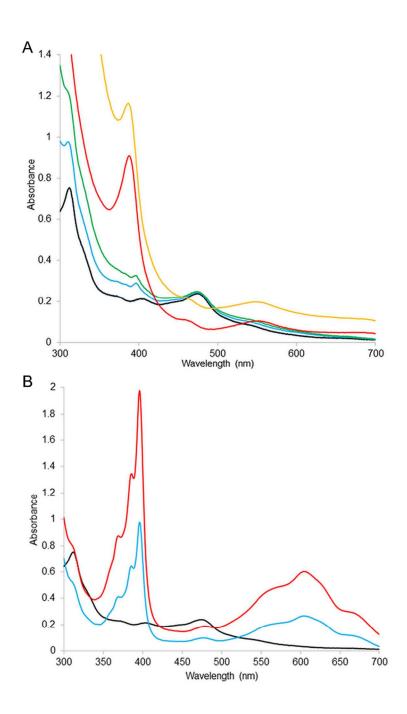


Fig S9. Electronic absorption spectra of TEV-protease digested and purified VcrA

Panel A: 50 μ M, reconstituted with hydroxocobalamin & FeS clusters. Recorded upon sequential reduction by Ti(III)citrate – black (unreduced, 0 mM), sky blue (0.2 mM), green (0.4 mM), red (1 mM) and golden (1.5 mM); showing the emergence of a clear Cob(I)alamin peak at 390 nm at higher Ti(III) concentrations. Concomitant with the appearance of the Cob(I)alamin

signal, the 475 nm Cob(II)alamin maximum is replaced by another at 465 nm (which shows that cobalamin is still bound to VcrA), while a new peak is also generated at 550 nm for Cob(I)alamin. The Cob(I)alamin signals are not observed above [Ti(III)citrate] = 2 mM since all maxima are masked by the Ti(III) absorption [data not shown]. Our spectra are strikingly similar to those published for the corrinoid iron sulfur protein (Kung et al, 2012). **Panel B:** 48 μ M, reconstituted with hydroxocobalamin & FeS clusters] treated with 0.4 mM reduced methylviologen. The traces show the sequential reduction of VcrA by Ti(III)citrate – black (unreduced, 0 mM), sky blue (0.9 mM) and red (1.8 mM).

Table S1. Concentration (µM) of paramagnetic species in VcrA samples lacking the MBP Tag.

Sample	FeS2	FeS3	Ti(III)
VrcA(no MBP) + Ti(III)	23	60	114
VrcA(no MBP) + Ti(III)		66	104
+ MV			