CHEMISTRY A European Journal

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2015

Chemical Synthesis of *Burkholderia* Lipid A Modified with Glycosyl Phosphodiester-Linked 4-Amino-4-deoxy-β-L-arabinose and Its Immunomodulatory Potential

Ralph Hollaus,^[a] Simon Ittig,^[b] Andreas Hofinger,^[a] Mira Haegman,^[c] Rudi Beyaert,^[c] Paul Kosma,^[a] and Alla Zamyatina^{*[a]}

chem_201406058_sm_miscellaneous_information.pdf

Supplementary Information

Content

Supplementary SI-Figure 1	2
Supplementary SI-Figure 2	3
Supplementary SI-Figure 3	4
Experimental Procedures: Synthesis	5
Synthesis of 4	5
Synthesis of 5	5
Synthesis of 7	6
Synthesis of 8	6
Synthesis of fatty acids 9-11	6
Synthesis of 12	8
Synthesis of 13 and 14	8
Synthesis of 15	9
Synthesis of 1610	D
Synthesis of 1710	D
Synthesis of 181	1
Synthesis of 1912	1
Synthesis of 2012	2
NMR and Mass- spectra 12	2
¹ H and ¹³ C NMR spectra; ESI-MS spectra of compounds 1 and 2	2

SI-Figure 1. Progress of the reaction $28 \rightarrow 28a$ (reaction solvent + CD₃CN) followed by ³¹P NMR (161 MHz)

Supplementary SI-Figure 2

SI-Figure 2. Proton-decoupled and proton-coupled ³¹P NMR spectra (CD₃CN, 161 MHz) of reaction mixture 28a

Supplementary SI-Figure 3

SI-Figure 3. ³¹P NMR spectra (161 MHz, CD₃CN, proton-coupled) of H-phosphonate diester **28a** and activated Ara4N H-phosphonate **6a**.

Experimental Procedures: Synthesis

Synthesis of 4

Propen-1-yl 4-azido-4-deoxy-β-L-arabinopyranoside (4)

A solution of allyl 4-azido-4-deoxy-B-L-arabinopyranoside 3 (717 mg, 3.33 mmol) in dry THF (20 ml) was degassed by repeated evacuation and flushing the flask with Ar. To this stirred solution H₂-activated [Ir⁺(COD)(PMePh₂)₂]PF₆⁻ [(1,5cyclooctadiene)bis(methyldiphenylphosphine)iridium(I) hexa-fluorophosphate] (15 mg, 17.7 µmol) in THF (30 mL) was added and the reaction mixture was stirred for 1 h. [Activation of the catalyst was performed as follows: Ir[(COD)₂bis(methyldiphenylphosphine)]PF₆ (15 mg) was placed in a three necked flask and dissolved in dry THF (30 ml). The solution was first degassed by repeated evacuation and filling the flask with Ar, then Ar was exchanged to H₂, which was kept for 3×15 sec in the flask such that the solution turned from pink to colourless. The gaseous phase was exchanged to Ar and a solution of the activated catalyst was transferred to the reaction mixture.] The reaction mixture was stirred for 30 min at r.t. and concentrated. The residue was purified by column chromatography on silica gel (dichloromethane/acetone, 5:1) to give 4 as a syrup (710 mg, 99%). $R_{\rm f}$ = 0.25 (dichloromethane/acetone 5:1); $[\alpha]_{\rm D}^{20}$ = +162 (c = 1.25 in methanol); ¹H NMR (600 MHz, MeOD, E/Z 14:1): δ = 6.21 (qd, J_{trans} = 12.2 Hz, J_{allyl} = 1.6 Hz, 1 H, -OCH= propenyl), 5.16 - 5.09 (m, 1 H, =CH propenyl), 5.00 (d, J_{2,1} = 3.6 Hz, 1 H, H-1), 4.02 (d, J_{4,3} = 4.0 Hz, J_{2,3} = 9.8 Hz, 1 H, H-3), 3.89 - 3.86 (m, 1 H, H-4), 3.83 (dd, J_{4.5a} = 1.7 Hz, J_{5a,b} = 12.5 Hz, 1 H, H-5a), 3.74 (dd, 1 H, H-2), 3.60 (dd, J_{4.5b} = 2.2 Hz, 1 H, H-5b), 1.55 (dd, J_{vic} = 6.9 Hz, 3 H, -CH₃ propensil); ¹³C NMR (150 MHz, MeOD): δ = 144.83 (-OCH= propenyl), 105.23 (=CH propenyl), 100.27 (C-1), 70.77 (C-3), 70.07 (C-2), 63.94 (C-4), 62.07 (C-5), 12.46 (-CH₃ propenyl); HRMS (⁺ESI-TOF): calcd for $C_8H_{17}N_4O_4 m/z [M + NH_4]^+$: 233.1244; found 233.1247.

Synthesis of 5

2,3-di-O-Allyloxycarbonyl-4-azido-4-deoxy-α/β-L-arabinopyranose (5)

A solution of 4 (624 mg, 2.90 mmol) and TMEDA (770 µL, 5.16 mmol) in dry dichloromethane (20 mL) was cooled to 0°C and allylchloroformate (990 µL, 9.3 mmol) was added. The reaction mixture was stirred for 1 h at r.t., diluted with ethyl acetate (250 mL) and washed with 1 N ag. HCl (50 mL) followed by satd. ag. NaHCO₃ (50 mL). The organic phase was dried over Na₂SO₄. filtered and concentrated. The crude product was dissolved in THF (40 mL) and a solution of iodine in THF/H₂O (2:1, 12 mL) was added dropwise at 0°C. After stirring for 2.5 h at 0°C the reaction was quenched by addition of a 7% aq. Na₂S₂O₃ solution (50 mL). The reaction mixture was diluted with ethyl acetate (150 mL), the organic phase was washed with satd. aq. NaHCO₃ (50 mL), dried over Na₂SO₄, filtered and concentrated. The residue was purified by column chromatography on silica gel (dichloromethane/EtOAc, 12:1) to give 5 (745 mg, 75%, β/α = 2:1) as a syrup. R_f = 0.10 (hexane/EtOAc, 2:1); ¹H NMR (400 MHz, CDCl₃, TMS, β/α = 2:1): δ = 5.98 - 5.86 (m, 4 H, =CH Alloc), 5.50 (d, J_{2β,1β} = 3.4 Hz, 1 H, H-1β), 5.40 - 5.24 (m, 8 H, =CH₂ Alloc), 5.27 (dd, J_{2β,3β} = 10.4 Hz, J_{4β,3β} = 3.7 Hz, 1 H, H-3β), 5.05 (dd, 1 H, H-2β), 4.97 - 4.90 (m, 2 H, H-2α, H-3α), 4.70 - 4.63 (m, 8 H, OCH₂ Alloc), 4.67 (m, 1 H, H-1α), 4.20 (ddd, J_{5aβ,4β} = 2.1 Hz, J_{5bβ,4β} = 2.9 Hz, 1 H, H-4β), 4.19 (dd, J_{5a,bβ} = 12.9 Hz, 1 H, H-5aβ), 4.12 (dd, J_{3,4α} = J_{5aα,4α} = 3.3 Hz, J_{5bα,4α} = 1.9 Hz, 1 H, H-4α), 4.08 (dd, J_{5a,bα} = 12.8 Hz, 1 H, H-5aα), 3.75 (dd, 1 H, H-5bβ), 3.67 (dd, 1 H, H-5bα); 13 C NMR (100 MHz, CDCl₃): \bar{o} = 154.69, 153.98, 153.90, 153.85 (C=O Alloc), 131.07, 131.00, 130.91, 130.89 (=CH Alloc), 119.43, 119.37, 119.32 (=CH₂ Alloc), 95.61 (C-1α), 90.78 (C-1β), 74.88 (C-3α), 74.31 (C-2α), 72.34 (C-3β), 71.74 (C-2β), 69.30, 69.27, 69.11, 69.10 (OCH₂ Alloc), 63.04 (C-5α), 60.04 (C-5β), 59.27 (C-4β), 58.15 (C-4α); HRMS (⁺ESI-TOF): calcd for C₁₃H₁₇N₃NaO₈ *m*/*z* [M + Na]⁺: 366.0908, found 366.0908

Synthesis of 7

Compound **7** was prepared as described^[1] in 5 steps, one crystallization, 62 % yield as follows:

Analytical data of compound 7 were identical to those reported in the literature.^[2]

Synthesis of 8

Tert-Butyldimethylsilyl 2-deoxy-4,6-O-(p-methoxybenzylidene)-2-(2,2,2-trichloroethoxycarbonylamino)-β-D-glucopyranoside (8)

To a stirred solution of **7** (3 g, 6.40 mmol) in dry acetonitrile (100 mL), camphorsulfonic acid (149 mg, 0.64 mmol) and anisaldehyde dimethyl acetal (1.58 mL, 9.28 mmol) were added successively. The reaction mixture was stirred for 12 h at r.t., diluted with dichloromethane (300 mL) and washed with satd. aq. NaHCO₃ (2×50 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated. The residue was purified by MPLC (dichloromethane/acetone, 1:0 \rightarrow 20:1) to give **8** (2.66 g, 75 %) as a solid. *R*_f = 0.29 (dichloromethane/acetone 20:1); $[\alpha]_D^{20} = -25$ (*c* = 1.8 in chloroform).¹H NMR (600 MHz, CDCl₃, TMS): δ = 7.41 (ad, *J* = 8.8 Hz, 2 H, m-CH-Ar), 6.90 (ad, 2 H, o-CH-Ar), 5.48 (s, 1 H, O-CH-O anisylidene), 5.15 (d, *J*_{2,NH} = 5.6 Hz, 1 H, N-H), 4.83 (d, *J*_{2,1} = 6.8 Hz, 1 H, H-1), 4.73 (d, *J*_{gem} = 11.8 Hz, 1 H, OCH_{2a} Troc), 4.66 (d, 1 H, OCH_{2b} Troc), 4.27 (dd, *J*_{gem} = 10.5 Hz, *J*_{5,6a} = 4.9 Hz, 1 H, H-6a), 4.04-3.93 (m, 1 H, H-3), 3.80 (s, 3 H, OMe), 3.75 (t, *J*_{5,6b} = 10.3 Hz, 1 H, H-6b), 3.53 (t, *J*_{3,4} = *J*_{5,4} = 9.2 Hz, 1 H, H-4), 3.47-3.40 (m, 1 H, H-5), 3.40-3.31 (m, 1 H, H-2), 2.98 (bs, 1H, OH), 0.89 (s, 9 H, *t*Bu), 0.12, 0.10 (2 s, 6 H, 2 x Si-Me); ¹³C NMR (150 MHz, CDCl₃, TMS): δ = 160.46 (C_q anisylidene), 154.56 (CO Troc), 129.69 (p-C_q anisylidene), 127.86 (m-CH anisylidene), 113.89 (o-CH anisylidene), 101.99 (O-CH-O anisylidene), 96.34 (C-1), 95.37 (CCl₃ Troc), 81.65 (C-4), 74.95 (CH₂ Troc), 70.84 (C-3), 68.75 (C-6), 66.37 (C-5), 60.92 (C-2), 55.47 (OMe), 25.74 (*t*Bu), 25.72 (CH₃ *t*Bu), -4.02, -5.14 (Si-CH₃); HRMS (⁺ESI-TOF): calcd. for C₂₃H₃₄Cl₃NNaO₈Si *m/z* [M+Na]⁺: 608.1011, found 608.1016.

Synthesis of fatty acids 9-11

Synthesis of the Alloc protected (*R*)-3-hydroxy fatty acids **9** and **10** and the acyloxyacyl fatty acid **11** was performed starting from the corresponding β -ketoesters **S1** and relied on the known protocols.^[3] The β -ketoesters were synthesized in multigram amounts by use of the Meldrum's acid method,^[4] starting from the corresponding commercially available acid chlorides. The first step of the sequence was the asymmetric *Noyori* hydrogenation^[5] of β -ketoesters. Addition of catalytic amount of hydrochloric acid substantially increased the hydrogenation rate, such that the reaction could be carried out at lower temperatures (60 °C) and under lower hydrogen pressure (8 bar).^[6,7] Upon application of commercially available catalyst (Sigma-Aldrich) the hydrogenation did not work in our hands. Therefore, the ruthenium catalyst was freshly prepared as described.^[6] The catalyst could be stored under argon at -20°C for at least 1 month without loss of activity. The reactions were performed under 8 bar of hydrogen, at 60°C in methanol for 15 h. in the presence of the ruthenium catalyst and a catalytic amount of hydrochloric acid starting with 10 g of β -ketoester to afford **S2** and **S3** which were purified by crystallisation from hexane. Enantiomeric purity was determined as described.^[3] The introduction of Alloc protecting groups to phenacyl esters **S6** and **S7** was performed by reaction with AllocCl in the presence of TMEDA to afford **S8** and **S9**. Finally the phenacyl ester was cleaved using freshly prepared zinc-copper couple to give the fatty acids **9** and **10** in a high overall yield. Similarly, (*R*)-3-(tetradecanoyloxy)hexadecanoic acid **11** was prepared, starting from **S7** by reaction with tetradecanoyl chloride as reported.

Phenacyl (R)-3-(allyloxycarbonyloxy)tetradecanoate (S8)

Phenacyl (*R*)-3-hydroxytetradecanoate **S6** (2.47 g, 6.82 mmol) was dissolved in dry dichloromethane (45 mL) and tetramethylethylenediamine (TMEDA) (1.52 mL, 10.23 mmol) was added. The mixture was cooled down to 0°C, then allyl chloroformate (2.16 mL, 20.45 mmol) was slowly added and the reaction was stirred at r.t. for 3 h. The mixture was diluted with dichloromethane (200 mL) and was washed with 2 N HCl (100 mL) and satd. NaHCO₃ (100 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography on silica gel (n-hexane/ethyl acetate, 5:1, dry-loading after dissolution in DCM) to give **S8** (2.98 g, 94%) as colorless oil. $R_f = 0.61$ (toluene/ethyl acetate 9:1; $[\alpha]_{20}^p = -2$ (*c* = 3.3 in chloroform);¹H NMR (300 MHz, CDCl₃): $\delta = 7.92$ -7.84 (m, 2 H, 2 x o-CH), 7.63-7.55 (m, 1 H, p-CH), 7.51-7.43 (m, 2 H, 2 x m-CH), 6.01-5.86 (m, 1 H, =CH Allyl), 5.39 (d, $J_{gem} = 16.4$ Hz, 1 H, α -CH_a phenacyl), 5.35 (qd, $J_{gem} = J_{allyl} = 1.6$ Hz, $J_{trans} = 17.2$ Hz, 1 H, =CH₂ trans Allyl), 5.30 (d, 1 H, α -CH_b phenacyl), 5.25 (qd, $J_{cis} = 10.4$ Hz, 1 H, =CH₂ cis Allyl), 5.17 (m, 1 H, β -CH), 4.66-4.60 (m, 2 H, -O-CH₂ Alloc), 2.86 (dd, $J_{gem} = 15.8$ Hz, $J_{vic} = 7.3$ Hz, 1 H, α -CH_a), 2.76 (dd, $J_{vic} = 5.6$ Hz, 1 H, α -CH_b), 1.80-1.62 (m, 2 H, γ -CH₂), 1.47-1.15 (m, 18 H, CH₂), 0.87 (t, J = 6.7 Hz, 3 H, ω -CH₃); ¹³C NMR (75 MHz, CDCl₃): $\delta = 191.77$ (C=O phenacyl), 169.78 (COO), 154.60 (C_q Alloc), 134.29 (i-C_q), 133.99 (p-CH), 131.81 (=CH Alloc), 128.97 (m-CH), 127.86 (o-CH), 118.82 (=CH₂ Alloc), 74.83 (β -CH), 68.57 (-OCH₂ Alloc), 66.28 (α -CH₂ phenacyl), 38.88 (α -CH₂), 34.33 (γ -CH₂), 32.02, 29.73, 29.72, 29.63, 29.54, 29.45, 29.43, 25.07, 22.79 (9 x CH₂), 14.22 (ω -CH₃); HRMS calcd. for $C_{26}H_{38}NaO_6$ *m/z* [M+Na]¹: 469.2561, found 469.2560.

Phenacyl (R)-3-(allyloxycarbonyloxy)hexadecanoate (S9)

S9 was prepared similarly to **S8** starting with phenacyl (*R*)-3-hydroxyhexadecanoate **S7** (6.24 g, 15.99 mmol). Yield: 7.20 g (95%) as colorless oil. $R_f = 0.63$ (toluene/ethyl acetate 9:1); $[\alpha]_{20}^D = -2$ (*c* = 2.6 in chloroform); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.92-7.87$ (m, 2 H, 2 x o-CH), 7.63-7.57 (m, 1 H, p-CH), 7.51-7.44 (m, 2 H, 2 x m-CH), 6.01-5.87 (m, 1 H, =CH Allyl), 5.39 (d, $J_{gem} = 16.4$ Hz, 1 H, α -CH_a phenacyl), 5.35 (qd, $J_{gem} = J_{allyl} = 1.5$ Hz, $J_{trans} = 17.2$ Hz, 1 H, =CH₂ trans Allyl), 5.30 (d, 1 H, α-CH_b phenacyl), 5.25 (qd, $J_{cis} = 10.4$ Hz, 1 H, =CH₂ cis Allyl), 5.17 (m, 1 H, β-CH), 4.65-4.61 (m, 2 H, OCH₂ Alloc), 2.86 (dd, $J_{gem} = 15.9$ Hz, $J_{vic} = 7.4$ Hz, 1 H, α-CH_a), 2.76 (dd, $J_{vic} = 5.6$ Hz, 1 H, α-CH_b), 1.77-1.60 (m, 2 H, γ-CH₂), 1.45-1.18 (m, 22 H, CH₂), 0.88 (t, J = 6.7 Hz, 3 H, ω-CH₃); ¹³C NMR (75 MHz, CDCl₃): $\delta = 191.79$ (C=O phenacyl), 169.80 (CO), 154.62 (C_q Alloc), 134.32 (C_q), 134.01 (p-CH), 131.82 (=CH Alloc), 128.99 (m-CH), 127.88 (o-CH), 118.86 (=CH₂ Alloc), 74.85 (β-CH), 68.55 (OCH₂ Alloc), 66.30 (α-CH₂ phenacyl), 38.90 (α-CH₂), 34.11 (γ-CH₂), 32.05, 29.81, 29.79, 29.77, 29.76, 29.66, 29.57, 29.48, 29.45, 25.09, 22.81 (11 x CH₂), 14.24 (ω-CH₃); HRMS calcd. for C₂₈H₄₂NaO₆ *m/z* [M+Na]⁺: 497.2874, found 497.2871.

(R)-3-(allyloxycarbonyloxy)tetradecanoic acid (9)

Preparation of a Zn-Cu-couple: Zinc (15.23 g, 0.23 mol) was suspended in deionized water (50 mL) and a 5% solution of CuSO4·5H₂O (5.33 g, 21.34 mmol in 107 mL H₂O) was added and the mixture was stirred for 5 min at r.t. The solid were separated on the filter, washed with water (50 mL), ethanol (50 mL) and diethyl ether (50 mL). Phenacyl (*R*)-3-(allyloxycarbonyloxy)tetradecanoate **S8** (2.91 g, 6.53 mmol) was dissolved in a mixture of toluene (95 mL) and glacial acetic acid (62 mL). The freshly prepared Zn-Cu-couple was added to the solution and the reaction was stirred at r.t. for 4 h. The solids were removed by filtration over Celite. The filtrate was evaporated and redissolved in dichloromethane (200 mL). The mixture was washed with 2 m HCl (50 mL) and deionized water (50 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography on silica gel (1. hexane/ethyl acetate 5:1; 2. hexane/ethyl acetate + 1% acetic acid) to afford **9** (2.03 g, 95%) of as colorless oil. *R*_f = 0.1 (toluene/ethyl acetate 3:1); $[\alpha]_{20}^{D} = -0.1$ (*c* = 0.9 in chloroform); ¹H NMR (300 MHz, CDCl₃): δ = 5.93 (m, 1 H, =CH Allyl), 5.35 (qd, $J_{gem} = J_{allyl} = 1.5$ Hz, 1 H, α -CH_a), 2.61 (dd, J_{vic} = 5.4 Hz, 1 H, α -CH_b), 1.79-1.56 (m, 2 H, γ -CH₂), 1.42-1.17 (m, 18 H, CH₂), 0.88 (t, *J* = 6.7 Hz, 3 H, ω -CH₃); ¹³C NMR (75 MHz, CDCl₃): δ = 175.70 (COO), 154.62 (Cq Alloc), 131.69 (=CH Alloc), 118.98 (=CH₂ Alloc), 74.61 (β -CH), 68.60 (OCH₂ Alloc), 38.82 (α -CH₂), 34.11 (γ -CH₂), 32.05, 29.75, 29.75, 29.66, 29.58, 29.47, 29.46, 25.10, 22.82 (9 x CH₂), 14.25 (ω -CH₃); HRMS calcd. for C₁₈H₃₂O₅ *m/z* [M-H]: 327.2177, found 327.2179.

(R)-3-(allyloxycarbonyloxy)hexadecanoic acid (10)

10 was prepared similarly to **9** starting with phenacyl (*R*)-3-(allyloxycarbonyloxy)hexadecanoate **S9** (7.13 g, 15.02 mmol). Yield: 3.99 g (75%) as colorless oil. $R_{\rm f} = 0.32$ (n-hexane/ethyl acetate 3:1 + 1% AcOH); $[\alpha]_{20}^{D} = -0.6$ (*c* = 0.6 in chloroform);¹H NMR (300 MHz,

CDCl₃): δ = 5.93 (m, 1 H, =CH Allyl), 5.35 (qd, J_{gem} = J_{allyl} = 1.5 Hz, 1 H, =CH₂ trans Allyl), 5.2 (qd, 1 H, =CH₂ cis Allyl), 5.08 (m, 1 H, β-CH), 4.65-4.60 (m, 2 H, -O-CH₂ Alloc), 2.73 (dd, J_{gem} = 16.3 Hz, J_{vic} = 7.4 Hz, 1 H, α-CH_a), 2.62 (dd, J_{vic} = 5.3 Hz, 1 H, α-CH_b), 1.79-1.57 (m, 2 H, γ-CH₂), 1.43-1.17 (m, 22 H, CH₂), 0.88 (t, J = 6.7 Hz, 3 H, ω-CH₃); ¹³C NMR (75 MHz, CDCl₃): δ = 176.21 (CO), 154.60 (Cq Alloc), 131.68 (=CH Alloc), 118.99 (=CH₂ Alloc), 74.53 (β-CH), 68.60 (OCH₂ Alloc), 38.83 (α-CH₂), 34.11 (γ-CH₂), 32.07, 29.83, 29.80, 29.79, 29.76, 29.67, 29.59, 29.50, 29.46, 25.10, 22.84 (11 x CH₂), 14.26 (ω-CH₃); HRMS calcd. for C₂₀H₃₅O₅ *m/z* [M-H]⁻: 355.2490, found 355.2489.

(R)-3-(tetradecanoyloxy)hexadecanoic acid (11)

Compound **S7** (5.89 g, 15.08 mmol) was dissolved in dry dichloromethane (70 mL), pyridine (7.4 mL, 91.58 mmol) and DMAP (10 mg) were added. The mixture was cooled down to 0°C and myristoyl chloride (3.72 mL, 15.08 mmol) was slowly added and the reaction was stirred at r.t. for 15 h. The reaction was quenched by addition of methanol (2.5 mL) and the stirring was continued for another 30 min. The mixture was diluted with ethyl acetate (300 mL) and washed with 2 M HCl (100 mL) and brine (50 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated to give **S10** as slightly yellowish solid. Cleavage of the phenacyl ester was performed similar to the preparation of **9**. The crude product was purified by silica gel column chromatography (1. toluene/ethyl acetate 6:1; 2. dichloromethane/methanol 85:15) to give **11** (5.62 g, 93%) as a colorless oil. $R_f = 0.35$ (toluene/ethyl acetate 10:1); $[\alpha]_{20}^D = -0.3 (c = 1.4 \text{ in chloroform})$; ¹H NMR (600 MHz, CDCl₃): $\delta = 5.23-5.18$ (m, 1 H, β -CH), 2.62 (dd, $J_{gem} = 15.8$ Hz, $J_{vic} = 7.3$ Hz, 1 H, α -CH_a), 2.62 (dd, $J_{vic} = 5.4$ Hz, 1 H, α -CH_b), 2.27 (t, J = 7.5 Hz, 2 H, α -CH₂ ^{tetradecanoate}), 1.67-1.55 (m, 4 H, γ -CH₂, β -CH₂ ^{tetradecanoate}), 70.16 (β -CH), 39.04 (α -CH₂), 34.64 (γ -CH₂), 34.14 (α -CH₂ ^{tetradecanoate}), 32.07, 29.84, 29.82, 29.79, 29.70, 29.64, 29.51, 29.43, 29.28, 29.26, 25.16, 22.84 (CH₂), 14.24 (ω -CH₃); HRMS (ESI) calcd. for C₃₀H₅₇O₄ *m/z* [M-H]⁻: 481.4262, found 481.4267.

Synthesis of 12

tert-Butyldimethylsilyl 3-*O*-[(*R*)-3-(allyloxycabonyloxy)tetradecanoyl]-2-deoxy-4,6-*O*-(*p*-methoxybenzylidene)-2-(2,2,2-trichloroethoxycarbonylamino)-β-D-glucopyranoside (12)

To a stirred solution of 8 (3.02 g, 5.14 mmol) and fatty acid 9 (2.03 g, 6.17 mmol) in dry dichloromethane (40 mL), DMAP (13 mg) was added and the mixture was cooled to 0°C. Then a solution of N,N'-diisopropylcarbodiimide (DIC) (955 µL, 6.17 mmol) in dry dichloromethane (4 mL) was added dropwise and the reaction was stirred at 0°C for 5 hours. The reaction mixture was filtered, the filtrate was diluted with dichloromethane (200 ml) and washed with 1 M aq. HCl (20 mL), water (50 mL) and satd. aq. NaHCO₃ (2×50 mL), dried over Na₂SO₄, filtered and concentrated. The residue was purified by MPLC (toluene/ethyl acetate, 50:1 → 15:1) to provide 12 (4.47 g, 97%) as a syrup. $R_{\rm f}$ = 0.31 (toluene/ethyl acetate 15:1); [α]₂₀² = -14.0 (c = 0.9 in chloroform); ¹H NMR (600 MHz, CDCl₃, TMS): δ = 7.35 (ad, J = 8.7 Hz, 2 H, m-CH-Ar), 6.87 (ad, 2 H, o-CH-Ar), 5.91 (m, 1 H, =CH Alloc), 5.45 (s, 1 H, O-CH-O anisylidene), 5.39 (at, J_{4,3} = J_{2,3} = 9.9 Hz, 1 H, H-3), 5.34 (qd, J_{gem} = J_{allyl} ~ 1.5 Hz, 1 H, =CH₂ trans Alloc), 5.26 (qd, 1 H, =CH₂ cis Alloc), 5.24 (d, J_{2,NH} ~ 7.2 Hz, 1 H, NH), 5.03 (m, 1 H, β-CH^{Myr}), 4.95 (d, J_{2,1} = 7.8 Hz, 1 H, H-1), 4.74 (d, J_{gem} = 12.0 Hz, 1 H, OCH_{2a} Troc), 4.62 (d, 1 H, OCH_{2b} Troc), 4.61 (td, J_{gem} = 13.2 Hz, 1 H, -O-CH_{2a} Alloc), 4.57 (td, 1 H, -O-CH_{2b} Alloc), 4.29 (dd, J_{6a,6b} = 10.6 Hz, J_{5,6a} = 5.0 Hz, 1 H, H-6a), 3.79 (s, 3 H, -OMe), 3.78 (t, J_{5,6b} = 10.3 Hz, 1 H, H-6b), 3.67 (t, J_{5,4} 0 9.5 Hz, 1 H, H-4), 3.54-3.47 (m, 2 H, H-5, H-2), 2.68 (dd, J_{gem} = 15.5 Hz, J_{vic} = 6.7 Hz, 1 H, α-CH_a^{Myr}), 2.60 (dd, J_{vic} = 5.8 Hz, 1 H, α-CH_b^{Myr}), 1.67-1.54 (m, 2 H, γ-CH₂^{Myr}), 1.35-1.14 (m, 18 H, CH₂^{Myr}), 0.90-0.86 (m, 12 H, tBu, ω-CH₃^{Myr}), 0.12, 0.10 (2 s, 6 H, 2 x Si-Me); ¹³C NMR (150 MHz, CDCl₃): δ = 169.87 (CO^{Myr}), 160.31 (C_q anisylidene), 154.58 (C_a Alloc), 154.16 (CO Troc), 131.69 (=CH Alloc), 129.55 (p-C_a anisylidene), 127.68 (m-CH anisylidene), 119.11 (=CH₂ Alloc), 113.76 (o-CH anisylidene), 101.61 (O-CH-O anisylidene), 96.68 (C-1), 95.44 (CCl₃ Troc), 78.94 (C-4), 74.82 (CH₂ Troc), 74.77 (β-CH^{Myr}), 71.27 (C-3), 68.73 (C-6), 68.61 (OCH₂ Alloc), 66.60 (C-5), 59.42 (C-2), 55.41 (OMe), 39.05 (α-CH₂^{Myr}), 33.86 (γ-CH₂^{Myr}), 32.06, 29.78, 29.76, 29.69, 29.64, 29.49, 29.44 (7 x CH₂^{Myr}), 25.70 (C_α tBu), 25.67 (CH₃ tBu), 25.11, 22.83 (2 x CH₂^{Myr}), 14.26 (ω-CH₃^{Myr}), -4.09, -5.15 (Si-CH₃); HRMS (ESI-TOF): calcd. for C₄₁H₆₃Cl₃NO₁₂Si *m*/z [M-H]: 894.3191; found 894.3190.

Synthesis of 13 and 14

tert-Butyldimethylsilyl 3-O-[(*R*)-3-(allyloxycarbonyloxy)tetradecanoyl]-2-deoxy-4-O-*p*-methoxybenzyl-2-(2,2,2-trichloroethoxycarbonylamino)- β -D-glucopyranoside (13) and

tert-butyldimethylsilyl 3-O-[(R)-3-(allyloxycarbonyloxy)tetradecanoyl)]-2-deoxy-6-O-p-methoxybenzyl-2-(2,2,2-trichloroethoxycarbonylamino)- β -D-glucopyranoside (14)

To a solution of 12 (2.96 g, 3.30 mmol) in dry acetonitrile (70 mL) powdered molecular sieves (3 Å, 3 g) were added and the suspension was stirred for 1 h at r.t. under Ar. Then sodium cyanoborohydride (2.49 g, 39.61 mmol) was added and the mixture was cooled to 0°C and TMSCI (5.06 mL, 39.61 mmol) was added drowpwise via syringe and stirring was continued for 6 h at r.t. under Ar. The reaction was cooled to 0°C and guenched by addition of satd. aq. NaHCO₃ (50 mL). The mixture was diluted with ethyl acetate (50 mL) and filtered over a pad of Celite, the solids were washed with ethyl acetate (150 mL). The organic phase was washed with 1 M HCl (80 mL), followed by satd. aq. NaHCO₃ (2×50 mL) and brine (100 mL), dried over Na₂SO₄, filtered and concentarted. The residue was purified by chromatography on silica gel (dichloromethane/acetone, 30:1) to give an inseparable mixture 13 + 14 (13 : 14 = 60 : 40 according to ¹H-NMR, 2.63 g, 90%) as a syrup. Small portions of 13 and 14 were isolated in pure form and characterized by NMR. 13: Rf = 0.33 (dichloromethane/acetone 30:1); $[\alpha]_{20}^{D}$ = +1 (c = 1.5 in chloroform); ¹H NMR (600 MHz, CDCl₃, TMS): δ = 7.20 (ad, J = 8.6 Hz, 2 H, m-CH-Ar), 6.86 (ad, 2 H, o-CH-Ar), 5.91 (m, 1 H, =CH Alloc), 5.34 (qd, J_{gem} = J_{allyl} ~ 1.4 Hz, 1 H, =CH₂ trans Alloc), 5.25 (qd, 1 H, =CH₂ cis Alloc), 5.22 (dd, J_{4,3} = 9.2 Hz, J_{2,3} = 10.5 Hz, 1 H, H-3), 5.13 (d, J_{2,NH} = 9.2 Hz, 1 H, NH), 5.07-5.02 (m, 1 H, β-CH^{Myr}), 4.78 (d, J_{2,1} = 7.9 Hz, 1 H, H-1), 4.73 (d, Jgem = 12.0 Hz, 1 H, OCH_{2a} Troc), 4.64-4.54 (m, 2 H, OCH₂ Alloc, 1 H, OCH_{2b} Troc, 1 H, OCH_{2a} PMB), 4.52 (d, J_{gem} = 11.6 Hz, 1 H, OCH_{2b} PMB), 3.83 (ddd, J_{6a,b} = 12.0 Hz, J_{5,6a} = 2.7 Hz, J_{6-OH,6a} = 5.3 Hz, 1 H, H-6a), 3.79 (s, 3 H, -OMe), 3.70 (ddd, J_{5,6b} = 4.2 Hz, J_{6-OH,6b} = 8.0 Hz, 1 H, H-6b), 3.66 (at, J_{5,4} = 9.5 Hz, 1 H, H-4), 3.50 (aq, 1 H, H-2), 3.41 (ddd, 1 H, H-5), 2.59 (dd, J_{gem} = 16.3 Hz, J_{vic} = 7.6 Hz, 1 H, α-CH_a^{Myr}), 2.51 (dd, J_{vic} = 4.9 Hz, 1 H, α-CH_b^{Myr}), 1.82 (dd, 1 H, 6-OH), 1.69-1.54 (m, 2 H, γ-CH₂^{Myr}), 1.46-1.19 (m, 18 H, CH₂^{Myr}), 0.91-0.83 (m, 12 H, *t*Bu, ω-CH₃^{Myr}), 0.11, 0.08 (2 s, 6 H, 2 x Si-Me); ¹³C NMR (150 MHz, CDCI₃): δ = 170.30 (CO^{Myr}), 159.64 (Cq PMB), 154.58 (Cq Alloc), 154.20 (CO Troc), 131.72 (=CH Alloc), 129.94 (m-CH PMB), 129.82 (p-Cq PMB), 119.04 (=CH₂ Alloc), 114.11 (o-CH PMB), 96.34 (C-1), 95.49 (CCl₃ Troc), 75.35 (C-4, C-5), 74.77 (CH₂ Troc), 74.60, 74.55 (β-CH^{Myr}, C-3), 73.36 (OCH₂ PMB), 68.59 (OCH₂ Alloc), 62.03 (C-6), 58.78 (C-2), 55.39 (OMe), 38.92 (α-CH₂^{Myr}), 34.02 (γ-CH₂^{Myr}), 32.05, 29.76, 29.75, 29.68, 29.63, 29.49, 29.47 (7 x CH2^{Myr}), 25.67 (Cq tBu), 25.66 (CH3 tBu), 25.16, 22.82 (2 x CH2^{Myr}), 14.24 (ω-CH3^{Myr}), -3.99, -5.11 (Si-CH3); HRMS (⁺ESI-TOF): calcd. for C₄₁H₆₆Cl₃NNaO₁₂Si *m/z* [M+Na]⁺: 920.3312, found 920.3301.

14: R_{f} = 0.25 (dichloromethane/acetone 30:1); [α]^D₂₀ = -8.3 (*c* = 1.56 in chloroform); ¹H NMR (600 MHz, CDCl₃, TMS): δ = 7.25 (ad, *J* = 8.6 Hz, 2 H, m-CH-Ar), 6.87 (ad, 2 H, o-CH-Ar), 5.90 (m, 1 H, =CH Alloc), 5.34 (qd, $J_{gem} = J_{allyl} \sim 1.4$ Hz, 1 H, =CH₂ trans Alloc), 5.25 (qd, 1 H, =CH₂ cis Alloc), 5.16 (d, $J_{2,NH}$ = 8.9 Hz, 1 H, N-H), 5.06 (dd, $J_{4,3}$ = 9.4 Hz $J_{2,3}$ = 10.3 Hz, 1 H, H-3), 5.03 (m, 1 H, β-CH^{Myr}), 4.76 (d, $J_{2,1}$ = 7.9 Hz, 1 H, H-1), 4.73 (d, J_{gem} = 12.0 Hz, 1 H, OCH_{2a} Troc), 4.65-4.55 (m, 1 H, OCH_{2b} Troc, 2 H, OCH₂ Alloc), 4.53 (d, J_{gem} = 11.6 Hz, 1 H, OCH_{2a} PMB), 4.50 (d, 1 H, OCH_{2b} PMB), 3.81 (s, 3 H, OMe), 3.74 (dd, J_{gem} = 10.5 Hz, $J_{5,6a}$ = 4.9 Hz, 1 H, H-6a), 3.72 (dd, $J_{5,6b}$ = 4.2 Hz, 1 H, H-6b), 3.67 (dd, $J_{3,4} = J_{5,4} = 9.4$ Hz, $J_{4,4-OH}$ = 3.3 Hz, 1 H, H-4), 3.55-3.49 (m, 2 H, H-2, H-5), 3.15 (d, 1 H, 4-OH), 2.68 (dd, J_{gem} = 15.4 Hz, J_{vic} = 7.8 Hz, 1 H, α-CH_a^{Myr}), 0.12, 0.09 (2 s, 6 H, 2 x Si-Me); ¹³C NMR (150 MHz, CDCl₃): δ = 171.21 (CO^{Myr}), 159.47 (i-C_q PMB), 154.90 (C_q Alloc), 154.22 (CO Troc), 131.53 (=CH Alloc), 130.05 (p-C_q PMB), 129.42 (m-CH PMB), 119.22 (=CH₂ Alloc), 114.00 (o-CH PMB), 96.43 (C-1), 95.55 (CCl₃ Troc), 75.65 (C-3), 75.30 (β-CH^{Myr}), 74.75 (CH₂ Troc), 74.36 (C-5), 73.51 (OCH₂ PMB), 70.67 (C-4), 70.04 (C-6), 68.75 (OCH₂ Alloc), 58.12 (C-2), 55.42 (OMe), 39.65 (α-CH₂^{Myr}), 14.25 (ω-CH₃^{Myr}), -3.99, -5.15 (Si-CH₃); HRMS ('ESI-TOF): calcd. for C₄₁H₆₅Cl₃NO₁₂Si m/z [M-H]^{*} 896.3347; found 896.3353.

Synthesis of 15

tert-Butyldimethylsilyl 6-O-allyloxycarbonyl-3-O-[(*R*)-3-(allyloxycarbonyloxy)tetradecanoyl]-2-deoxy-4-O-*p*-methoxybenzyl-2-(2,2,2-trichloroethoxycarbonylamino)-β-D-glucopyranoside (15)

To a stirred solution of an inseparable mixture **13 + 14** (6:4, 2.67 g, 2.97 mmol) in dry dichloromethane (150 mL) 2,4,6-collidine (5.87 mL, 44.55 mmol) and allyloxycarbonyl chloride (AllocCl) (14.26 mL, 133.65 mmol) were added succesively at 0°C under Ar. The reaction mixture was stirred at 45°C under reflux for 15 h, then cooled to r.t. and diluted with dichloromethane (250 mL). The mixture was washed with 1 m HCl (3 x 100 mL), water (100 mL), satd. aq. NaHCO₃ (2 x 150 mL), dried over Na₂SO₄, filtered and concentrated. The residue was purified by MPLC (dichloromethane/ethyl acetate, $30:1 \rightarrow 10:1$) to afford **15** (1.95 g, 96 % based on the proportion of **13 RH235** in the starting mixture **13+14**) as a syrup and a recovered **14** (1.08 g, 91% recovery based on the proportion of **14** in the starting mixture **13+14**). **15**: $R_{\rm f} = 0.32$ (dichloromethane/ethyl, acetate 30:1); $[\alpha]_{20}^{D} = +11$ (*c*= 0.74 in chloroform); ¹H NMR (600 MHz, CDCl₃): $\delta = 7.19$ (ad, J = 8.6 Hz, 2 H, m-CH-Ar), 6.86 (ad, 2 H, o-CH-Ar), 5.97-5.87 (m, 2 H, =CH Alloc), 5.39-5.31 (m, 2 H, =CH₂ trans Alloc), 5.29-5.22 (m, 3 H, =CH₂ cis Alloc, H-3), 5.10 (d, $J_{2,\rm NH} = 9.2$ Hz, 1 H, N-H), 5.08-5.03 (m, 1 H, β -CH^{Myr}), 4.76 (d, $J_{2,\rm I} = 7.9$ Hz, 1 H, H-1), 4.73 (d, $J_{\rm gem} = 11.9$ Hz, 1 H, OCH_{2a} Troc), 4.65-4.55 (m, 2 H, OCH₂ Alloc, 1 H, OCH_{2b} Troc, 1 H, OCH_{2a} PMB), 4.47 (d, $J_{\rm gem} = 11.0$ Hz, 1 H, OCH_{2b} PMB), 4.40 (dd, $J_{6,\rm ab} = 1.15$ Hz, $J_{5,\rm 6a} = 1.9$ Hz, 1 H, H-6a), 4.24 (dd, $J_{5,\rm 6b} = 5.1$ Hz, 1 H, H-6b), 3.79 (s, 3 H, OMe), 3.61 (at, $J_{5,4} = 9.6$ Hz, 1 H, H-4), 3.57 (ddd, 1 H, H-5), 3.49 (aq, 1 H, H-2), 2.61 (dd, $J_{\rm gem} = 16.3$ Hz, $J_{\rm vic} = 7.5$ Hz, 1 H, α -CH_a^{Myr}), 0.88 (s, 3 H, *t*Bu), = 4.8 Hz, 1 H, α -CH_b^{Myr}), 1.70-1.57 (m, 2 H, γ -CH₂^{Myr}), 1.37-1.22 (m, 18 H, CH₂^{Myr}), 0.88 (t, J = 7.0 Hz, 3 H, ω -CH₃^{Myr}), 0.88 (s, 3 H, *t*Bu),

0.09, 0.07 (2 s, 6 H, 2 x Si-Me); ¹³C NMR (150 MHz, CDCl₃): δ = 170.19 (CO,^{Myr}), 159.70 (C_q PMB), 154.91, 154.59 (2 x C_q Alloc), 154.17 (CO Troc), 131.70, 131.66 (2 x =CH Alloc), 129.98 (m-CH PMB), 129.54 (p-C_q PMB), 119.14, 119.07 (2 x =CH₂ Alloc), 114.15 (o-CH PMB), 96.23 (C-1), 95.52 (CCl₃ Troc), 75.52 (C-4), 74.76 (CH₂ Troc), 74.65, 74.58 (β-CH^{Myr}; C-3), 73.33 (CH₂ PMB), 73.11 (C-5), 68.73, 68.63 (OCH₂ Alloc), 66.27 (C-6), 58.72 (C-2), 55.41 (OMe), 38.94 (α -CH₂^{Myr}), 34.03 (γ -CH₂^{Myr}), 32.06, 29.78, 29.77, 29.69, 29.64, 29.49 (CH₂^{Myr}), 25.70 (C_q t-Bu), 25.68 (CH₃ *t*Bu), 25.19, 22.83 (2 x CH₂^{Myr}), 14.26 (ω -CH₃^{Myr}), -4.08, -5.22 (Si-CH₃); HRMS (⁺ESI-TOF):calcd. for C₄₅H₇₄Cl₃N₂O₁₄Si *m*/*z* [M+NH₄]⁺: 999.3969, found 999.3969.

Synthesis of 16

$6-O-Allyloxycarbonyl-3-O-[(R)-3-(allyloxycarbonyloxy)tetradecanoyl]-2-deoxy-4-O-p-methoxybenzyl-2-(2,2,2-trichloroethoxycarbonylamino)-<math>\alpha$ -D-glucopyranose (16)

To a stirred solution of 15 (350 mg, 0.36 mmol) in dry THF (20 mL) in a PTFE flask a solution of Et₃N (148 µL, 1.07 mmol) in THF (1 mL) and triethylamine hydrofluoride (1.42 mL, 8.73 mmol) were added successively (pH 6) and the reaction mixture was stirred at r.t. for 48 h under Ar. The mixture was diluted with ethyl acetate (250 mL) and washed satd. aq. NaHCO₃ (2×50 mL) and water (50 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography on silica gel (toluene/ethyl acetate, 4:1) to afford **16** (306 mg, 98 %) as a syrup. $R_f = 0.23$ (toluene/ethyl acetate, 5:1); $[\alpha]_D^{20} = +45$ (c = 0.7 in chloroform); ¹H NMR (600 MHz, CDCl₃, TMS, α/β = 10:1, α -anomer) δ = 7.21 (ad, J = 8.5 Hz, 2 H, m-CH-Ar), 6.87 (ad, 2 H, o-CH-Ar), 5.98-5.86 (m, 2 H, =CH Alloc), 5.43-5.30 (m, 1 H, H-3, 1 H, N-H, 2 H, 2 x =CH₂ trans Alloc), 5.30-5.23 (m, 2 H, 2 x =CH₂ cis Alloc), 5.27 (d, J_{2,1} = 3.7 Hz, 1 H, H-1), 5.10-5.05 (m, 1 H, β-CH^{Myr}), 4.71 (d, J_{gem} = 12.0 Hz, 1 H, OCH_{2a} Troc), 4.68 (d, 1 H, OCH_{2b} Troc), 4.65-4.54 (m, 5 H, OCH₂ Alloc, OCH_{2a} PMB), 4.37 (d, J_{gen} = 11.0 Hz, 1 H, OCH_{2b} PMB), 4.41 (dd, J_{6a,b} = 11.6 Hz, J_{5,6a} = 2.0 Hz, 1 H, H-6a), 4.25 (dd, J_{5,6b} = 4.4 Hz, 1 H, H-6b), 4.11 (ddd, J_{4,5} = 10.0 Hz, 1 H, H-5), 3.92 (ddd, J_{NH,2} = 9.8 Hz, J_{3,2} = 10.2 Hz, 1 H, H-2), 3.79 (s, 3 H, OMe), 3.61 (at, J_{3.4} = 9.6 Hz, 1 H, H-4), 2.92 (d, 1 H, OH), 2.64 (dd, J_{gen} = 16.6 Hz, J_{vic} = 7.9 Hz, 1 H, α-CH_a^{Myr}), 2.54 (dd, J_{vic} = 4.8 Hz, 1 H, α-CH_b^{Myr}), 1.69-1.55 (m, 2 H, γ-CH₂^{Myr}), 1.37-1.22 (m, 18 H, CH₂^{Myr}), 0.88 (t, *J* = 7.0 Hz, 3 H, ω-CH₃^{Myr}); ¹³C NMR (151 MHz, CDCI₃): δ = 170.51 (CO^{Myr}), 159.71 (C_q PMB), 154.92, 154.63 (2 x C_q Alloc), 154.48 (CO Troc), 131.82, 131.59 (2 x =CH Alloc), 130.05 (m-CH PMB), 129.55 (p-C_q PMB), 119.32, 118.96 (2 x =CH₂ Alloc), 114.18 (o-CH PMB), 95.54 (CCl₃ Troc), 91.94 (C-1), 75.15 (C-4), 74.80 (CH₂ Troc), 74.65 (OCH₂ PMB), 74.44 (β-CH^{Myr}), 73.35 (C-3), 69.19 (C-5), 68.90, 68.58 (OCH₂ Alloc), 66.12 (C-6), 55.41 (OMe), 54.72 $(C-2),\ 38.93\ (\alpha-CH_2^{Myr}),\ 34.13\ (\gamma-CH_2^{Myr}),\ 32.07,\ 29.78,\ 29.70,\ 29.65,\ 29.53,\ 29.49,\ 25.17,\ 22.84\ (CH_2^{Myr}),\ 14.26\ (\omega-CH_3^{Myr});\ HRMS$ (⁺ESI-TOF): calcd. for C₃₉H₅₆Cl₃NNaO₁₄ *m*/*z* [M+Na]⁺: 890.2659, found 890.2659.

Synthesis of 17

6-O-Allyloxycarbonyl-3-O-[(R)-3-(allyloxycarbonyloxy)tetradecanoyl]-2-deoxy-4-O-p-methoxybenzyl-2-(2,2,2-trichloroethoxycarbonylamino)-D-glucopyranosyl trichloroacetimidate (17)

To a stirred solution of 16 (604 mg, 0.69 mmol) in dry dichloromethane (20 mL) trichloroacetonitrile (1.39 mL, 13.90 mmol) and Cs₂CO₃ (204 mg, 0.63 mmol) were added succesively. The reaction mixture was stirred for 1 h at r.t. and filtered over a pad of Celite. The filtrate was diluted with dichloromethane (200 mL) and washed with satd. aq. NaHCO₃ (2 x 50 mL) and water (50 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography on silica gel (hexane/ethylacetate, 3:1 supplemented with 0.1 % NEt₃) to give 17 (562 mg, 80 %) as a syrup. $R_f = 0.55$ (toluene/ethyl acetate, 5:1); $[\alpha]_D^{20} = +10$ (c = 1.2 in chloroform); ¹H NMR (600 MHz, CDCl₃, TMS, α:β = 10:1, α-anomer) δ = 8.72 (s, 1 H, =NH), 7.22 (ad, J = 8.6 Hz, 2 H, m-CH-Ar), 6.87 (ad, 2 H, o-CH-Ar), 6.38 (d, J_{2,1} = 3.6 Hz, 1 H, H-1), 5.98-5.87 (m, 2 H, =CH Alloc), 5.42 (dd, J_{2,3} = 10.2 Hz, J_{4,3} = 9.2 Hz, 1 H, H-3), 5.41-5.31 (m, 3 H, 2 x =CH₂ trans Alloc, NH), 5.31-5.24 (m, 2 H, 2 x =CH₂ cis Alloc), 5.12-5.07 (m, 1 H, β-CH^{Myr}), 4.74 (d, J_{aem} = 12.1 Hz, 1 H, OCH_{2a} Troc), 4.66-4.61 (m, 5 H, OCH_{2b} Troc, OCH₂ Alloc, OCH_{2a} PMB), 4.60-4.56 (m, 1 H, OCH₂ Alloc), 4.37 (d, J_{aem} = 10.8 Hz, 1 H, OCH_{2b} PMB), 4.39 (dd, J_{6a,b} = 11.9 Hz, J_{5,6a} = 2.1 Hz, 1 H, H-6a), 4.30 (dd, J_{5,6b} = 3.2 Hz, 1 H, H-6b), 4.14 (ddd, J_{NH,2} = 9.0 Hz, 1 H, H-2), 4.02 (ddd, J_{4,5} = 10.0 Hz, 1 H, H-5), 3.84 (t, 1 H, H-4), 3.79 (s, 3 H, OMe), 2.66 (dd, J_{gem} = 16.5 Hz, J_{vic} = 8.1 Hz, 1 H, α-CH_a^{Myr}), 2.57 (dd, J_{vic} = 4.6 Hz, 1 H, α-CH_b^{Myr}), 1.71-1.54 (m, 2 H, γ-CH₂^{Myr}), 1.37-1.20 (m, 18 H, CH₂^{Myr}), 0.88 (t, J = 7.0 Hz, 3 H, ω-CH₃^{Myr}); ¹³C NMR (151 MHz, CDCl₃): δ = 170.79 (CO^{Myr}), 160.76 (OC=NH), 159.84 (C_q PMB), 154.68, 154.37 (2 x C_q Alloc, CO Troc), 131.75, 131.55 (2 x =CH Alloc), 130.24 (m-CH PMB), 129.22 (p-Cq PMB), 119.35, 119.07 (2 x =CH₂ Alloc), 114.14 (o-CH PMB), 95.45 (CCl₃ Troc), 94.80 (C-1), 74.95 (CH₂ Troc), 74.78 (OCH₂ PMB), 74.37 (β-CH^{Myr}), 74.20 (C-4), 72.92 (C-3), 71.54 (C-5), 68.90, 68.66 (OCH₂ Alloc), 65.39 (C-6), 55.41 (OMe), 54.45 (C-2), 38.99 (α-CH₂^{Myr}), 34.15 (γ-CH₂^{Myr}), 32.06, 29.78, 29.69, 29.63, 29.52, 29.48, 25.18, 22.83 (CH₂^{Myr}), 14.26 (ω-CH₃^{Myr}); HRMS (⁺ESI-TOF): calcd. for C₄₁H₅₆Cl₆N₂NaO₁₄ *m/z* [M+Na]⁺: 1033.1755, found 1033.1744.

Synthesis of 18

tert-Butyldimethylsilyl 4-O-allyloxycarbonyl-3-[(R)-3-(allyloxycarbonyloxy)tetradecanoyl]-2-deoxy-6-O-p-methoxy-benzyl-2-(2,2,2-trichloroethoxycarbonylamino)- β -D-glucopyranoside (18)

To a stirred solution of 14 (1.94 g, 2.15 mmol) and tetramethylethylenediamine (TMEDA) (1.28 mL, 8.62 mmol) in dry dichloromethane (50 mL) allyl chloroformate (2.28 mL, 21.54 mmol) was added dropwise via syringe at 0 °C under Ar. The reaction mixture was stirred at r.t. for 3 h., diluted with dichloromethane (300 mL) and washed with 1 M HCl (2 x 100 mL), followed by satd. aq. NaHCO₃ (100 mL) and water (100 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated. The residue was purified by chromatography on silica gel (dichloromethane/ethyl acetate, 30:1) to provide **18** (2.0 g, 95%) as a syrup. $R_{f} = 0.18$ (toluene/ethyl acetate 30:1); $[\alpha]_{20}^{D} =$ +12 (c = 2.2 in chloroform); ¹H NMR (600 MHz, CDCl₃): δ = 7.23 (ad, J = 8.8 Hz, 2 H, m-CH-Ar), 6.86 (ad, 2 H, o-CH-Ar), 5.92 (m, 1 H, =CH Alloc), 5.85 (m, 1 H, =CH Alloc), 5.36-5.30 (m, 1 H, H-3), 5.35 (qd, J_{qem} = J_{allyl} ~ 1.5 Hz, 1 H, =CH₂ trans Alloc), 5.30 (qd, J_{qem} = J_{allyl} ~ 1.5 Hz, 1 Hz, ~ 1.5 Hz, 1 H, =CH₂ trans Alloc), 5.26 (qd, 1 H, =CH₂ cis Alloc), 5.23 (m, 1 H, NH), 5.23 (qd, 1 H, =CH₂ cis Alloc), 5.01 (m, 1 H, β-CH^{Myr}), 4.89 (d, J_{2,1} = 7.8 Hz, 1 H, H-1), 4.89 (dd, J_{5,4} = 9.9 Hz, J_{3,4} = 9.2 Hz, 1 H, H-4), 4.72 (d, J_{aem} = 11.8 Hz, 1 H, OCH_{2a} Troc), 4.66-4.50 (m, 1 H, OCH_{2b} Troc, 4 H, OCH₂ Alloc), 4.49 (d, J_{gem} = 11.7 Hz, 1 H, OCH_{2a} PMB), 4.45 (d, 1 H, OCH_{2b} PMB), 3.80 (s, 3 H, OMe), 3.72-3.66 (m, 1 H, H-5), 3.60 (dd, J_{6a,6b} = 10.6 Hz, J_{5,6a} = 3.2 Hz, 1 H, H-6a), 3.58 (dd, J_{5,6b} = 4.9 Hz, 1 H, H-6b), 3.53-3.47 (aq, 1 H, H-2), 2.68 (dd, J_{gem} = 16.0 Hz, J_{vic} = 6.9 Hz, 1 H, α -CH_a^{Myr}), 2.58 (dd, J_{vic} = 5.5 Hz, 1 H, α -CH_b^{Myr}), 1.67-1.54 (m, 2 H, γ -CH₂^{Myr}), 1.37-1.20 (m, 18 H, CH₂^{Myr}), 0.89-0.86 (m, 12 H, *t*Bu, ω-CH₃^{Myr}), 0.13, 0.09 (2 s, 6 H, 2 x Si-Me); ¹³C NMR (151 MHz, CDCl₃): δ = 169.93 (CO^{Myr}), 159.34 (C_q PMB), 154.57 (C_q Alloc), 154.08 (CO Troc), 154.02 (C_q Alloc), 131.70 (=CH Alloc), 131.47 (=CH Alloc), 130.13 (p-C_q PMB), 129.34 (m-CH PMB), 119.14 (=CH₂ Alloc), 119.08 (=CH₂ Alloc), 113.89 (o-CH PMB), 95.90 (C-1), 95.48 (CCl₃ Troc), 74.74 (β-CH^{Myr}), 74.57 (CH₂ Troc), 73.57 (OCH₂ PMB), 73.33 (C-4), 73.08 (C-5), 72.33 (C-4), 69.01 (C-6), 68.90 (OCH₂ Alloc), 68.61 (OCH₂ Alloc), 58.74 (C-2), 55.39 (OMe), 38.80 (α-CH₂^{Myr}), 33.96 (γ-CH₂^{Myr}), 32.05, 29.77, 29.75, 29.68, 29.63, 29.47, 29.46 (7 x CH₂^{Myr}), 25.70 (C₀ tBu), 25.70 (CH₃ tBu), 25.13, 22.82 (2 x CH₂^{My}), 14.25 (ω-CH₃^{My}), -4.02, -5.16 (Si-CH₃); HRMS (ESI-TOF): calcd. for C₄₅H₆₉Cl₃NO₁₄Si *m/z* [M-H]⁻: 980.3558, found 980.3559.

Synthesis of 19

tert-Butyldimethylsilyl 4-O-allyloxycarbonyl-2-[(R)-3-(allyloxycarbonyloxy)hexadecanoylamino]-3-O-[(R)-3-(allyloxycarbonyloxy)tetradecanoyl]-2-deoxy-6-O-p-methoxybenzyl- β -D-glucopyranoside (19)

To a stirred solution of 18 (1 g, 1.02 mmol) in dioxane/acetic acid (2:1, 30 mL) Zn dust (10 µm, 4 g, 61.2 mmol) was added and the mixture was stirred for 1h upon sonication every 10 min. The reaction mixture was filtered over a pad of Celite and the solids were washed with ethyl acetate washing (300 mL). The mixture was washed with water (100 mL), followed by satd. aq. NaHCO₃ and brine (2 x 50 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated. The residue was dried by repeated reconstitution in dry toluene (3 x 50 mL) and concentration. The residue was dissolved in dry dichloromethane (50 mL) and a solution of fatty acid 10 (436 mg, 1.22 mmol) in dry dichloromethane (5 mL) was added under Ar. Then the stirred mixture was cooled to 0°C and N.N'diisopropylcarbodiimide (190 µL, 1.22 mmol) was added and the reaction was stirred for 15 h at 4°C. Then another portion of N,N'diisopropylcarbodiimide (50 µL, 0.32 mmol) and fatty acid 10 (140 mg, 0.32 mmol) were added and the reaction was stirred for 5 h. at 0 °C. The mixture was diluted with dichloromethane (250 mL), washed with 2 M HCl (50 mL), satd. aq. NaHCO₃ (50 mL) and water (50 mL). The organic phase was dried over Na₂SO₄, filtered and concentrated. The residue was purified by chromatography on silica gel (toluene/ethyl acetate, 18:1) to give 19 (955 mg, 82 %) as a syrup. $R_{\rm f}$ = 0.34 (toluene/ethyl acetate, 10:1); $[\alpha]_{20}^{\rm p}$ = 10 (c = 1.2 in chloroform); ¹H NMR (600 MHz, CDCl₃, TMS): δ = 7.23 (ad, J = 8.6 Hz, 2 H, m-CH-Ar), 6.85 (ad, 2 H, o-CH-Ar), 5.97-5.88 (m, 2 H, 2 x =CH Alloc), 5.88-5.81 (m, 2 H, =CH Alloc, NH), 5.37-5.32 (m, 2 H, 2 x =CH₂ trans Alloc), 5.31 (dd, J_{2,3} = 10.7 Hz, J_{4,3} = 9.3 Hz, 1 H, H-3), 5.31-5.27 (m, 1 H, =CH₂ trans Alloc), 5.27-5.24 (m, 2 H, 2 x =CH₂ cis Alloc), 5.24-5.21 (m, 1 H, =CH₂ cis Alloc), 5.02–4.93 (m, 2 H, 2 x β-CH^{acyl}), 4.96 (d, J_{2.1} = 7.8 Hz, 1 H, H-1), 4.86 (dd, J_{5.4} = 9.9 Hz, J_{3.4} = 9.3 Hz, 1 H, H-4), 4.66-4.50 (m, 6 H, OCH₂ Alloc), 4.49 (d, J_{oem} = 11.6 Hz, 1 H, -OCH_{2a} PMB), 4.44 (d, 1 H, OCH_{2b} PMB), 3.80 (s, 3 H, OMe), 3.71-3.66 (m, 2 H, H-5, H-2), 3.60-3.55 (m, J_{6a,b} = 11.1 Hz, 2 H, H-6), 2.48 (d, J = 6.1 Hz, 2 H, α -CH₂^{acyl}), 2.48 (dd, J_{gem} = 15.2 Hz, J_{vic} = 6.5 Hz, 1 H, α -CH₂^{acyl}), 2.35 (dd, J_{vic} = 5.7 Hz, 1 Hz, CH_{2b}^{acyl}), 1.68-1.55 (m, 4 H, γ-CH₂^{acyl}), 1.37-1.20 (m, 44 H, -CH₂^{acyl}), 0.89-0.86 (m, 15 H, t-Bu, 2 x ω-CH₃^{acyl}), 0.11, 0.08 (2 s, 6 H, 2 x Si-Me); ¹³C NMR (151 MHz, CDCl₃): δ = 169.94 (CO^{acyl}), 169.33 (CONH, ^{acyl}), 159.33 (C_a PMB), 154.79, 154.51, 154.10 (3 x C_a Alloc), 131.86, 131.74, 131.56 (=CH Alloc), 130.22 (p-C_g PMB), 129.34 (m-CH PMB), 119.15, 119.05, 118.91 (=CH₂ Alloc), 113.89 (o-CH PMB), 95.83 (C-1), 75.49, 74.68 (2 x β-CH^{acyl}), 73.69 (C-4), 73.31 (OCH₂ PMB), 73.04 (C-5), 72.68 (C-3), 69.08 (C-6), 68.98, 68.60

(OCH₂ Alloc), 57.36 (C-2), 55.41 (OMe), 41.50, 38.74 (2 x α-CH₂^{acyl}), 34.27, 34.00 (2 x γ-CH₂^{acyl}), 32.08, 29.85, 29.84, 29.81, 29.79, 29.73, 29.70, 29.68, 29.57, 29.53, 29.51 (CH₂^{acyl}), 25.79 (C_q *t*Bu), 25.78 (CH₃ *t*Bu), 25.28, 22.11, 22.83 (CH₂^{acyl}), 14.26 (ω -CH₃^{acyl}), -3.99, -4.98 (Si-CH₃); HRMS (⁺ESI-TOF): calcd. for C₆₂H₁₀₄NO₁₆Si *m*/z [M+H]⁺: 1146.7119, found 1146.7122.

Synthesis of 20

tert-Butyldimethylsilyl 4-O-allyloxycarbonyl-2-deoxy-2-[(*R*)-3-(allyloxycarbonyloxy)hexadecanoylamino]-3-O-[(*R*)-3- (allyloxycarbonyloxy)tetradecanoyl]-β-D-glucopyranoside (20)

19 (552 mg, 0.48 mmol) was dissolved in dry dichloromethane (30 mL) and trifluoromethansulfonic acid (TFA) (3.34 mL 43.33 mmol) was added. After the reaction was stirred for 15 minutes at r.t., the mixture was diluted with dichloromethane (150 mL) and washed with sat. NaHCO₃ (2 x 50 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated, the residue was re-dissolved in toluene and concentrated to dryness (2 x 50 mL) to give **20** (456 mg, 92 %) a a colorless syrup. $R_{\rm f}$ = 0.48 (dichloromethane/ethyl acetate 6:1); $[\alpha]_{20}^{D}$ = +7.5 (*c* = 0.9 in chloroform); ¹H NMR (600 MHz, CDCl₃, TMS): δ = 5.97-5.86 (m, 4 H, 3 x =CH Alloc, NH), 5.38 (dd, *J*_{2,3} = 10.6 Hz, *J*_{4,3} = 9.2 Hz, 1 H, H-3), 5.37-5.31 (m, 3 H, 3 x =CH₂ trans Alloc), 5.28-5.25 (m, 3 H, 3 x =CH₂ alloc), 5.04 (d, *J*_{2,1} = 7.9 Hz, 1 H, H-1), 5.02–4.93 (m, 2 H, 2 x β -CH^{acyl}), 4.85 (t, *J*_{5,4} = 9.9 Hz 1 H, H-4), 4.67-4.57 (m, 6 H, OCH₂ Alloc), 3.76 (ddd, *J*_{5,6a} = 2.6 Hz, *J*_{6-OH,6a} = 7.4 Hz, *J*_{6a,b} = 12.6 Hz, 1 H, H-6a), 3.68-3.62 (m, 2 H, H-6b, H-2), 3.57 (ddd, *J*_{6b,5} = 4.6 Hz, 1 H, H-5), 2.59 (d, *J* = 6.1 Hz, 2 H, α -CH₂^{acyl}), 2.49 (dd, *J*_{gem} = 15.2 Hz, *J*_{vic} = 6.4 Hz, 1 H, α -CH₂^{acyl}), 2.36 (dd, *J*_{vic} = 5.6 Hz, 1 H, α -CH₂^{bacyl}), 2.08 (t, 1 H, 6-OH), 1.68-1.55 (m, 4 H, Y-CH₂^{acyl}), 1.40-1.20 (m, 44 H, CH₂^{acyl}), 0.90-0.85 (m, 15 H, *t*Bu, 2 x ω -CH₃^{acyl}), 0.11, 0.09 (2 s, 6 H, 2 x Si-Me); ¹³C NMR (150 MHz, CDCl₃): δ = 169.85 (CO^{acyl}), 169.42 (CONH₄^{acyl}), 154.79, 154.51 (Cq Alloc), 131.84, 131.69, 131.33 (3 x =CH Alloc), 119.38, 119.20, 118.91 (3 x =CH₂ Alloc), 9.574 (C-1), 75.44, 74.70 (2 x β -CH^{acyl}), 73.89 (C-5), 72.88 (C-4), 72.26 (C-3), 69.24, 68.64, 68.60 (3 x OCH₂ Alloc), 61.66 (C-6), 57.50 (C-2), 41.47, 38.76 (2 x α -CH₂^{acyl}), 34.28, 34.00 (2 x γ -CH₂^{acyl}), 32.07, 29.85, 29.83, 29.80, 29.78, 29.73, 29.69, 29.67, 29.56, 29.51 (CH₂^{acyl}), 25.72 (CH₃ *t*Bu), 25.28, 25.13, 22.82 (CH₂^{acyl}), 17.99 (C_q *t*Bu), 14

References

- Bazin-Lee, H. G., Johnson, C. L., Johnson, D. A., and Sowell, C. G. 2005, Processes for the production of aminoalkyl glucosaminide phosphate and disaccharide immunoeffectors, and intermediates therefor. Patent: EP20030763418 -[PCT/US2003/021504].
- [2] K. M. Koeller, C. H. Wong, Chem.Eur.J. 2000, 6, 1243-1251.
- [3] D. S. Keegan, S. R. Hagen, D. A. Johnson, *Tetrahedron: Asymmetry* **1996**, 7, 3559-3564.
- [4] Y. Oikawa, K. Sugano, O. Yonemitsu, J. Org. Chem. 1978, 43, 2087-2088.
- [5] R. Noyori, T. Ohkuma, M. Kitamura, H. Takaya, N. Sayo, H. Kumobayashi, S. Akutagawa, J.Am. Chem. Soc. 1987, 109, 5856-5858.
- [6] S. A. King, A. S. Thompson, A. O. King, T. R. Verhoeven, J.Org. Chem. 1992, 57, 6689-6691.
- [7] R. Kramer, R. Brückner, Angew. Chem. Int. Ed. 2007, 46, 6537-6541.

NMR and Mass- spectra

¹H and ¹³C NMR spectra; ESI-MS spectra of compounds 1 and 2

6, ¹H NMR, 600 MHz, $CDCI_3$

15, ¹H NMR, 600 MHz, CDCl₃, 4.0 – 6.0 ppm

S20

16, α/β = **10**:**1**, ¹H NMR, 600 MHz, CDCl₃

21, 13 C NMR, 150 MHz, CDCl₃

^{22,} ¹³C NMR, 150 MHz, CDCl₃

24, ¹³C NMR, 150 MHz, CDCl₃

25, ¹H NMR, 600 MHz, CDCl₃, 4.5 – 6.5 ppm

25, ¹³C NMR, 150 MHz, CDCl₃, 65 – 75 ppm

2, ¹H NMR, 600 MHz, CDCl₃ – CD₃OD, 4:1

², HSQC, $CDCI_3 - CD_3OD$, 4:1

2, ESI-MS, positive mode

26, 1 H NMR, 600 MHz, CDCl₃, 3.5 – 6.5 ppm

26, ¹³C NMR, 150 MHz, CDCl₃, 55 -76 ppm

^{27,} 13 C NMR, 150 MHz, CDCl₃

28, ¹H NMR, 600 MHz, CDCl₃ – MeOD, 4:1

^{28,} ¹H NMR, 600 MHz, CDCl₃ – MeOD, 4:1, 4.5 – 6.0 ppm

28, ¹³C NMR, 150 MHz, CDCl₃ – MeOD, 4:1

28, COSY, CDCI₃ – MeOD, 4:1, 3.5 – 6.0 ppm

28, HSQC, CDCl₃ – MeOD, 4:1

28, HSQC full, CDCl₃ – MeOD, 4:1

1, ¹H NMR, 600 MHz, CDCl₃ – MeOD, 4:1

1, HSQC, CDCl₃ – MeOD, 4:1

1, ESI-MS, positive mode:

