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1 Relating payoffs to birth

If payoffs affect birth instead of competition, the corresponding reactions can be written as

X +X
a−→ X +X +X

X + Y
b−→ X + Y +X

X + Y
c−→ X + Y + Y

Y + Y
d−→ Y + Y +X.

Using the same principle as in the main text, i.e. individuals with higher payoffs have advantages

in pairwise interactions, the birth rates should be an increasing function of the payoff elements

a, b, c, and d. The simplest choice is that birth rates equal payoffs. We assume constant intrinsic

death rate λd for both types, which implies

X
λd−→ 0 and Y

λd−→ 0.

Following a logistic growth model, we assume neutral competition

X +X
λc−→ X

X + Y
λc−→ X

X + Y
λc−→ Y

Y + Y
λc−→ Y.
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Combining the ten reactions above, we obtain the deterministic rate equations

ẋ = x (a x+ b y − λc(x+ y)− λd) ,

ẏ = y (c x+ d y − λc(x+ y)− λd) , (1)

where x and y are the densities of individuals of type X and type Y . We denote the frequencies

by u = x/(x + y) and v = y/(x + y). With Eqs. (1), we obtain the change of the frequency of

type X as

u̇ =
ẋ y − ẏ x
(x+ y)2

= (x+ y)︸ ︷︷ ︸
N

u(1− u)[(a− b− c+ d)u+ b− d]︸ ︷︷ ︸
Replicator dynamics

. (2)

The dynamics is equivalent to the replicator dynamics scaled by the total population size N .

As N changes over time, this can be considered as a dynamical, non-linear rescaling of time

without changing the trajectories or equilibria from the standard replicator dynamics [1].

If we now focus on a homogenous population with type X individuals only, i.e. y = 0, in

Eqs. (1), we have

ẋ = x ((a− λc)x− λd) . (3)

This equation has two equilibria, x = 0 and x = λd
a−λc . The first equilibrium x = 0, corresponding

to extinction, is stable. The second equilibrium x = λd
a−λc exists when a > λc. However it is

always unstable as ẋ > 0 for x > λd
a−λc and ẋ < 0 for x < λd

a−λc . In this alternative model where

interactions affect birth, a homogenous population either goes extinct or explodes, depending

on the initial population size. Although, the deterministic equations Eqs. (1) and (2) appear to

be reasonable, their ecological meaning remains unclear [2].
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2 Master equation and the diffusion approximation

The microscopic process is a two dimensional Markov process in continuous time which can

described by its master equation [3],

∂P (x, y, t)

∂t
= T+

x−1P (x− 1, y, t) + T+
y−1P (x, y − 1, t)

+ T−x+1P (x+ 1, y, t) + T−y+1P (x, y + 1, t)

− (T+
x + T+

y + T−x + T−y )P (x, y, t),

(4)

where P (x, y, t) is the probability that there are x individuals of type X and y individuals of

type Y at time t, and T is the transition rate of the population from one state to its neighbouring

state. The subscript of T refers to the type whose density changes, and the superscript denotes

whether its density increases by one or decreases by one. For example, T+
x is rate that the

number of type X increases from x to x + 1 and the number of type Y remains constant and

T+
y is rate that the number of type Y increases from y to y + 1 and the number of type X

remains constant. The transition rates can be deduced from the reaction rates and the number

of individuals of those types involved in the corresponding reactions,

T+
x = λx→xx x

T+
y = λy→yy y

T−x = λx→0 x+
x2

aM
+
x y

bM

T−y = λy→0 y +
y2

dM
+
x y

cM
. (5)

Here, M is a scaling term which determines the frequency of competition compared to intrinsic

growth. As we have shown in the main text, it controls the size of the system. When M is

larger, the density of individuals in the deterministic equilibria is larger.

To perform a diffusion approximation of the master equation, we scale the numbers x and

y by M , x̃ = x/M and ỹ = y/M . The new variables x̃ and ỹ are approximately continuous for
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sufficiently large M . We also rescale time as t̃ = t/M . This leads to

∂P (x̃, ỹ, t̃ )

∂t̃
= T+

x̃− 1
M

P (x̃− 1

M
, ỹ, t̃ ) + T+

ỹ− 1
M

P (x̃, ỹ − 1

M
, t̃ )

+ T−
x̃+ 1

M

P (x̃+
1

M
, ỹ, t̃ ) + T−

ỹ+ 1
M

P (x̃, ỹ +
1

M
, t̃ )

− (T+
x̃ + T+

ỹ + T−x̃ + T−ỹ )P (x̃, ỹ, t̃ ),

(6)

Note when we rescale the time, we also need to rescale the transition rates accordingly. Thus

in the same time unit, the transition rate from, for example, from state (x, y) to state (x + 1, y),

equals to the transition rate from the scaled state (x̃, ỹ) and the scaled state (x̃ + 1
M , ỹ). This

leads to

T+
x̃ = Mλx→xx x̃

T+
ỹ = M(λy→yy ỹ)

T−x̃ = M(λx→0 x̃+
x̃ 2

aM
+
x̃ y

bM
)

T−ỹ = M(λy→0 ỹ +
ỹ 2

dM
+
x̃ ỹ

cM
). (7)

Now we expand the transition rates and probability densities in Eq. (6) in a Taylor series at

x̃ or ỹ, and we obtain

P (x̃± 1

M
, ỹ, t̃ ) ≈ P (x̃, ỹ, t̃ )± ∂P (x̃, ỹ, t̃ )

∂x̃

1

M
+
∂2P (x̃, ỹ, t̃ )

∂x̃2
1

2M2
,

P (x̃, ỹ ± 1

M
, t̃ ) ≈ P (x̃, ỹ, t̃ )± ∂P (x̃, ỹ, t̃ )

∂ỹ

1

M
+
∂2P (x̃, ỹ, t̃ )

∂ỹ2
1

2M2
,

T+
x̃− 1

M

≈ T+
x̃ −

∂ T+
x̃

∂x̃

1

M
+
∂2 T+

x̃

∂x̃2
1

2M2
,

T−
x̃+ 1

M

≈ T−x̃ +
∂ T−x̃
∂x̃

1

M
+
∂2 T−x̃
∂x̃2

1

2M2
,

T+
ỹ− 1

M

≈ T+
ỹ −

∂ T+
ỹ

∂ỹ

1

M
+
∂2 T+

ỹ

∂ỹ2
1

2M2
,

T−
ỹ+ 1

M

≈ T−ỹ +
∂ T−ỹ
∂ỹ

1

M
+
∂2 T−ỹ
∂ỹ2

1

2M2
. (8)

4



We denote P = P (x̃, ỹ, t̃ ) and insert Eqs. (8) into Eq. (6), then we obtain

∂P

∂t̃
≈

(
T+
x̃ −

∂ T+
x̃

∂x̃

1

M
+
∂2 T+

x̃

∂x̃2
1

2M2

)(
P − ∂P

∂x̃

1

M
+
∂2P

∂2x̃

1

2M2

)
+

(
T+
ỹ −

∂ T+
ỹ

∂ỹ

1

M
+
∂2 T+

ỹ

∂ỹ2
1

2M2

)(
P − ∂P

∂ỹ

1

M
+
∂2P

∂2ỹ

1

2M2

)
+

(
T−x̃ +

∂ T−x̃
∂x̃

1

M
+
∂2 T−x̃
∂x̃2

1

2M2

)(
P +

∂P

∂x̃

1

M
+
∂2P

∂2x̃

1

2M2

)
+

(
T−ỹ +

∂ T−ỹ
∂ỹ

1

M
+
∂2 T−ỹ
∂ỹ2

1

2M2

)(
P +

∂P

∂ỹ

1

M
+
∂2P

∂2ỹ

1

2M2

)
−

(
T+
x̃ + T+

ỹ + T−x̃ + T−ỹ

)
P . (9)

If we consider only the terms of the first order M−1 and the second order M−2 in Eq. (9), we

obtain the Fokker-Planck equation

∂P

∂t̃
= − 1

M

(
∂

∂x̃

((
T+
x̃ − T

−
x̃

)
P
)

+
∂

∂ỹ

((
T+
ỹ − T

−
ỹ

)
P
))

+
1

2M2

(
∂2

∂2x̃

((
T+
x̃ + T−x̃

)
P
)

+
∂2

∂2ỹ

((
T+
ỹ + T−ỹ

)
P
))

.

(10)

From Eqs. (7), we have T+
x̃ − T

−
x̃ = M((λx→xx − λx→0)x̃− x̃2

aM −
x̃ỹ
bM ), T+

ỹ − T
−
ỹ = M((λy→yy −

λy→0)ỹ− ỹ2

dM −
x̃ỹ
cM ), T+

x̃ +T−x̃ = M((λx→xx +λx→0)x̃+ x̃2

aM + x̃ỹ
bM ), and T+

ỹ +T−ỹ = M((λy→yy +

λy→0)ỹ + ỹ2

dM + x̃ỹ
cM ). Putting these into Eq. (10), we can rewrite the Fokker-Planck equation as

∂P (x̃, ỹ, t̃)

∂t̃
= − ∂

∂x̃

(
(λx→xx − λx→0)x̃−

x̃2

aM
− x̃ỹ

bM

)
P (x̃, ỹ, t̃ )

− ∂

∂ỹ

(
(λy→yy − λy→0)ỹ −

ỹ2

dM
− x̃ỹ

cM

)
P (x̃, ỹ, t̃ )

+
1

2M

∂2

∂2x̃

(
(λx→xx + λx→0)x̃+

x̃2

aM
+

x̃ỹ

bM

)
P (x̃, ỹ, t̃ )

+
1

2M

∂2

∂2ỹ

(
(λy→yy + λy→0)ỹ +

ỹ2

dM
+

x̃ỹ

cM

)
P (x̃, ỹ, t̃ ) . (11)

The equivalent stochastic differential equations [4], which can often be handled in a numerically
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more efficient way, are

∂x̃

∂t̃
= (λx→xx − λx→0)x̃−

x̃2

aM
− x̃ỹ

bM
+

√
x̃

M

(
λx→xx + λx→0 +

x̃

aM
+

ỹ

bM

)
ξ ,

∂ỹ

∂t̃
= (λy→yy − λy→0)ỹ −

ỹ2

dM
− x̃ỹ

cM
+

√
ỹ

M

(
λy→yy + λy→0 +

ỹ

dM
+

x̃

cM

)
ξ , (12)

where ξ is Gaussian white noise with mean 0 and variance 1. Note that the noise term vanishes

when the population is close to extinction, but increases approximately linearly in the population

density.

3 The stability of the equilibria

The deterministic rate equations for two types are

ẋ = x

(
r − 1

a

x

M
− 1

b

y

M

)
(13a)

ẏ = y

(
r − 1

c

x

M
− 1

d

y

M

)
, (13b)

where x and y denote the densities of individuals of type X and Y , and r refers to the same

intrinsic growth rate for both types. For ẋ = 0 and ẏ = 0, we have four equilibria, E1 = (0, 0),

E2 = (0, dMr), E3 = (aMr, 0), E4 = (ac(b−d)bc−ad Mr, bd(c−a)bc−ad Mr). In the following, we perform a

linear stability analysis of the four equilibria. The Jacobian matrix at the equilibrium (x∗, y∗) is

J(x∗, y∗) =

r − 2x∗

aM −
y∗

bM − x∗

bM

− y∗

cM r − x∗

cM −
2y∗

dM

 . (14)

(i) For E1 = (0, 0), J(0, 0) =

r 0

0 r

 . Thus, for any r > 0, the two eigenvalues are positive

and this equilibrium is unstable.

(ii) For E2 = (0, dMr), J(0, dMr) =

r − d
b r 0

−d
c r −r

 with eigenvalues −r and −(d − b)r/b. If

d > b, the equilibrium is stable. Otherwise, it is unstable.

(iii) For E2 = (aMr, 0), J(aMr, 0) =

−r −a
b r

0 r − a
c r

 with eigenvalues −r and −(a − c)r/c. If
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a > c, the equilibrium is stable. Otherwise, it is unstable.

(iv) For E4 = (ac(b−d)bc−ad Mr, bd(c−a)bc−ad Mr), the Jacobian matrix in this equilibrium is

JE4 =

r − 2(b−d)c
bc−ad r −

d(c−a)
bc−ad r − ac(b−d)

b(bc−ad)r

− bd(c−a)
c(bc−ad)r r − a(b−d)

bc−ad r −
2b(c−a)
bc−ad r


= r

 − c(b−d)
bc−ad − ac(b−d)

b(bc−ad)

− bd(c−a)
c(bc−ad) − b(c−a)

bc−ad

 . (15)

Thus the eigenvalues λ can be obtained given

(
−c(b− d)

bc− ad︸ ︷︷ ︸
A

−λ
)(
−b(c− a)

bc− ad︸ ︷︷ ︸
B

−λ
)
− ad(b− d)(c− a)

(bc− ad)2︸ ︷︷ ︸
C

= 0. (16)

We can write Eq.(16) as λ2 − (A+B)λ+AB − C = 0, thus λ = A+B
2 ±

√
(A−B)2

4 + C.

This equilibrium exists only if the densities of both types are positive, i.e. ac(b−d)
bc−ad > 0 and

bd(c−a)
bc−ad > 0. This yields two cases: b > d & c > a and b < d & c < a, which both result in

C > 0 and A+B < 0.

Thus, the first eigenvalue λ1 = A+B
2 −

√
(A−B)2

4 + C, is always negative. The second

eigenvalue λ2 = A+B
2 +

√
(A−B)2

4 + C is negative if (A+B)2

4 > (A−B)2

4 + C, which can be

simplified to AB − C > 0. From Eq. (16), we have

AB − C =
c(b− d)

bc− ad
b(c− a)

bc− ad
− ad(b− d)(c− a)

(bc− ad)2

=
(bc− ad)(b− d)(c− a)

(bc− ad)2

=
(b− d)(c− a)

bc− ad
. (17)

Thus, if b > d & c > a, then AB − C > 0 and the equilibrium is stable; if b < d & c < a,

the equilibrium is unstable.

In general, although the equilibria in the deterministic limit are different from those in the

replicator dynamics, their stability remains the same.
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4 Ranking of equilibria in a coexistence game

In a coexistence game where a < c and b > d, two types stably coexist with each other

in the deterministic system. Here, we list all possible rankings of the carrying capacities in

two homogenous populations and the equilibrium densities in a heterogeneous population,

see Tab. 1. One particularly interesting ranking is Kx > Ky > Ky
cox > Kx

cox: a homogenous

population of type X reaches higher densities than type Y but in the mixed equilibrium type X

is maintained at lower densities than type Y . In stochastic processes this becomes particularly

important because smaller carrying capacities result in a higher risk of extinction. For this

particular ranking, a mutant Y has an increased chance to take over the entire population

because in the mixed equilibrium X is outnumbered and hence is more likely to go extinct due

to stochastic fluctuations. If this happens, the density of type Y individuals will increase until it

reaches Ky. Over the course of this invasion, the total density of individuals changes from Kx

to Kcox and ends at Ky.

In co-existence games where b < a holds, the ranking is Ky < Kx < Kcox and the total

population size first increases and then decreases. In co-existence games where b > a holds,

the ranking is Ky < Kcox < Kx and hence the total population size continuously declines to the

carrying capacity of type Y in isolation. This implies that evolution is not a simple process of ac-

cumulating beneficial mutations, which have higher carrying capacities in isolation, but instead

the adaptive process can favour invasion and fixation of mutations that are disadvantageous for

the entire population [5]. Similar evolutionary patterns are apparent in the prisoner’s dilemma.

Conditions Ranking

a > d and ad(c− d) < bc(a− d) Kx > Kx
cox > Ky > Ky

cox
a > d and ad(c− d) > bc(a− d) and Kx > Ky > Kx

cox > Ky
cox

b > c or ad(c− b) < bc(a− d)
a > d and ad(c− b) > bc(a− d) Kx > Ky > Ky

cox > Kx
cox

a < d and ad(b− a) < bc(d− a) Ky > Ky
cox > Kx > Kx

cox
a < d and ad(b− a) > bc(d− a) and Ky > Kx > Ky

cox > Kx
cox

b < c or ad(c− b) > bc(a− d)
a < d and ad(c− b) < bc(a− d)) Ky > Kx > Kx

cox > Ky
cox

Table 1: In a coexistence game (a < c and d < b), different conditions on the payoffs lead to
certain rankings between the carrying capacities at homogenous and heterogenous equilibria.
Here we list all possible rankings assuming identical intrinsic growth rates rx = ry.
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5 Cyclic dynamics

In our stochastic model, cyclic oscillation can be observed in a population with three types.

Here, we show an example where the cycles spiral into an internal equilibrium according to

the deterministic equations, but periodic oscillations persist under the corresponding stochastic

process, see Fig. 1.

According to the payoff matrix (see inset in Fig. 1) in the deterministic dynamics, X can

invade a homogenous Y population, Y can invade a homogenous Z population, and Z can

invade a homogenous X population. The three types cycle into an internal equilibrium (see

Fig. 1). However, demographic stochasticity drives the population away from the deterministic

equilibrium and thus maintain the fluctuations over time. Note for small M , the population

size is so small that demographic stochasticity will quickly lead to the extinction of the whole

population.
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Figure 1: Cyclic dynamics of three types under competitive Lotka-Volterra dynamics. The in-
teractions are given by the payoff matrix in the inset. Saturated lines represent the deterministic
dynamics, pale lines show one stochastic realisation (parameters λx→xx = λy→yy = λz→zz =
0.6, λx→0 = λy→0 = λz→0 = 0.1, M = 10000, x0 = 90, y0 = z0 = 10).
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6 Fixed population size

Stochastic evolutionary dynamics under frequency dependent selection in populations of con-

stant size, N , has recently attracted considerable interest, see e.g. [6, 7]. The most popular ex-

amples are based on birth-death models in discrete time. This results in a reduced set of micro-

scopic interactions for two types, X+Y −→ X+X,X+Y −→ Y +Y . The deterministic rate equa-

tions are ẋ = (λxy→xx−λxx→xy)x y and ẏ = −ẋ. In this case, x and y can be rescaled to indicate

the frequencies due to constant population size. Constant reaction rates just lead to logistic

growth of both types. Instead, to accommodate frequency dependent interactions, frequency

dependent reaction rates are needed, e.g. λxy→xx = fx/N and λxy→yy = fy/N , where fx and

fy represent the frequency dependent fitness. This yields ẋ = x(1−x)(fx−fy), which is just the

replicator dynamics [8]. Alternatively, setting λxy→xx = fx/(f̄N) and λxy→yy = fy/(f̄N) where

f̄ = xfx + yfy denotes the average fitness of the population, leads to ẋ = x(1− x)(fx − fy)/f̄

and recovers the adjusted replicator equation [9], which describes the deterministic limit of the

frequency-dependent Moran process in discrete time [7]. Interpreting frequency dependent in-

teractions under fixed population size based on individual reactions is somewhat problematic.

First, it is unintuitive to define frequency dependent reaction rates on the microscopic level

because each reaction should occur independently. Second, for an evolving population we ex-

pect changes in the population size resulting by the changes of population composition rather

than merely due to stochastic effects, which questions the basic tenet of models with constant

population size.
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