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A Blocked Gibbs Sampler

To implement the blocked Gibbs sampler, followingIshwaran and James (2001) we in-

troduce a latent variable Ci with Ci = k if observation i belongs to the kth class of the

mixture distribution and proceed by blocked Gibbs sampling. We alter their scheme

slightly by introducing additional latent variables representing Ymis,i for each observa-

tion, which is blocked with Ci. This yields the following algorithm.

1. Conditional for θ(k): Simulate θ(k) from

p(θ(k)|C,Y ) ∝ H(dθ(k))
∏
i:Ci=k

f(Yi|θ(k)1 )g(Si|Y ,θ(k)2 ).

2. Conditional for β: Let Mk denote the number of Ci equal to k, and M>k denote
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the number of Ci strictly greater than k. First, for k = 1, ..., K − 1, simulate

β′k
ind∼ Beta(1 +Mk, α +M>k),

and set β′K ≡ 1. Then set βk = β′k
∏

j<k(1− β′j).

3. Conditional for (Ci,Ymis,i): First, simulate Ci according to

P (Ci = k) ∝ βkf(Yobs,i|θ(k))g(Si|Yobs,i,θ(k)2 ),

then simulate Ymis,i according to

p(Ymis,i|Yobs,i, Ci,θ(Ci)
1 ) = f(Ymis,i|Yobs,i,θ(Ci)

1 ).

Sampling Ci at this point involves calculating the observed data likelihood

Lobs,i =
K∑
k=1

βkf(Yobs,i|θk)g(Si|Yobs,i, ζk)

which may be retained if desired for model evaluation purposes.

If hyperpriors are placed on α and H, we can easily add steps corresponding to updating

these parameters. The relevant likelihood of α is given by

L(α|β1, ..., βk) = αK−1eα
∑

k log(1−β′
k),
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which can be given a conjugate gamma prior, and the relevant likelihood for any param-

eters in H is given by

L(H|θ(1), ...,θ(K)) =
K∏
k=1

H(dθ(k)).

Any updates which cannot be done in closed form may be replaced by appropriate

updates which leave these conditional distributions invariant, such as slice sampling

updates Neal (2003).

B Prior Specification

B.1 Parametric Priors and the Modified Cholesky Decomposi-

tion

Parameters in parametric models in the main text are given “noninformative” priors on

mean components, which we take to be a just-proper N(0, 106) prior, and priors based on

the modified Cholesky decomposition on covariance matrices (Daniels and Pourahmadi,

2002). For convenience, we review the modified Cholesky decomposition here.

The modified Cholesky decomposition of a precision matrix Σ−1 is

Σ−1 = LTDL

where L is a lower-triangular matrix consisting of ones on the main diagonal and the

negative of the generalized autoregressive parameters off the diagonal and D is diagonal

with elements corresponding to the inverse of the innovation variances. Noting that we
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can write

E(Yj|Ȳj−1) = µj +

j−1∑
k=1

φjk(Yk − µk),

Var(Yj|Ȳj−1) = σ2
j ,

the elements of L correspond to {−φjk : j = 1, ..., J, k = 1, ..., j − 1} and the elements

of D correspond to σ−2j . In all parametric models where this decomposition is used, we

set φjk ∼ N(0, 106) and σj ∼ Uniform(0, 100).

B.2 Nonparametric Default Priors

We use default hierarchical priors borrowing ideas from Rasmussen (2000) and Taddy

(2008). We first discuss the prior on g(s | y,θ2). As a preprocessing step, we standardize

the data so the grand observed mean (across all treatments and times) is 0 and grand

observed variance is 0.5.

For the simulation in Section 4.1 we assume g(s | y, θ2) = g(s | θ2) = θ2s, i.e. Y

and S are independent within cluster. We take θ(k)2 ∼ D(ζ) where ζ is chosen so that

a priori E[θ2s] = ζs/
∑

j ζj is equal to the empirical probability of S = s.
∑J

j=1 ζj is a

smoothing parameter, analogous to α in the Dirichlet process. If
∑J

j=1 ζj is very large

then the dropout distribution is essentially the same across classes, making dropout and

outcome approximately independent. Conversely if
∑J

j=1 ζj is very small then only one

dropout pattern will typically be represented in a given class.
∑J

j=1 ζj = 3 was chosen.

In Sections 4.2 and 5 we choose g(s | y,θ2) so that

logit {g(S = s | Y , S ≥ s, ζ,γ)} = ζs + γs1Ys + γs2Ys−1.
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where θ2 = (ζ,γ). All ζ and γ terms are given independent N(µζ , σ
2
ζ ) and N(µγ, σ

2
γ)

distributions. µζ and µγ are given Cauchy priors with location 0 and scales 5 and 2.5

respectively. σ2
ζ and σ2

γ are given Γ−1(1, 1) priors.

We now address the prior on f(y | θ1). Here θ1 = (µ,Σ). We use the modified

Cholesky specification for (µ,Σ). Within mixture component k we can write

Yj = a
(k)
j +

j−1∑
k=1

φ
(k)
`j (Yk − a(k)` ) + εj,

εj ∼ N(0, σ
(k)
j ).

We set a(k)j ∼ N(µj, σ
2
aj

), and φj ∼ N(0, σ2
φj
I). We took µj ∼ N(0, 0.5). The variance

components were specified as follows.

σ
2(k)
j ∼ Γ−1(s1, s1wj), s1 − 2 ∼ Γ−1(1, 1),

wj ∼ Γ

(
1,

2

gj

)
, σ2

aj
∼ Γ−1(s2, s2λgj),

s2 − 2 ∼ Γ−1(1, 1), λ2 ∼ Γ(1, 1),

σ2
φj
∼ Γ−1(s3, s3λ3), s3 − 2 ∼ Γ−1(1, 1),

λ3 ∼ Γ(1, 1),

where gj is the MLE of the conditional variance of Yj given Ȳj−1 under normality and

MAR. The sp’s represent the shape parameters of the underlying Γ distributions, which

we give Γ−1(1, 1) priors. λ2gj and λ3 represent a random scaling component for σ2
aj

and

σ2
φj
.
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C Simulation Study Details

C.1 Section 4.1

In the first simulation setting in Section 4.1 data was generated according to Y ∼

N (µ,Σ) with µ = (0, 0, 0) and Σ an AR-1 covariance matrix with Var(Y1) = 1 and

Cov(Yj, Yj+1) = 0.7. Missingness is MAR with discrete hazard at times j = 1 and j = 2

given by λj(Y ) = P (S = j | S ≥ j,Y ) = σ(aj + bjYj−1) where σ(x) = [1 + e−x]
−1. The

values of a1 and b1 were chosen so that λ1(−2) = 0.5 and P (S = 1) = 0.2. a2 and b2

were chosen so that λ2(−2) = 0.5 and P (S = 2 | S ≥ 1) = .25.

In the second simulation setting in Section 4.1, Y was drawn from a 50-50 mixture

of normal distributions with means µ1 = (2, 0,−2), µ2 = (6, 1.5, 0) and covariance

matrices Σ1 = diag(2, .1, .2) and Σ2 exchangeable with variance 1 and covariance 0.8.

This was chosen to make the distributions of (Y1, Y2) and (Y1, Y3) roughly shaped like

an “L” rotated by 90 degrees while (Y2, Y3) is roughly linear. Missingness is MAR with

λ1(Y ) = 0.4I(Y1 ≤ 2) + 0.18I(2 < Y1 ≤ 5) + 0.1I(Y1 > 5),

λ2(Y ) = 0.45I(Y2 ≤ 0) + 0.2I(0 < Y2 ≤ 2) + 0.1I(Y2 > 2).

I(Y ∈ A) here denotes the indicator function. The hazards were chosen so that P (S =

1) ≈ P (S = 2) ≈ 0.2.
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C.2 Section 4.2

Parameters under M1 are

µ = (95.5, 94.1, 91.6, 89.0, 86.2, 81.3)T

Σ =



114.0

98.5 143.2

101.5 149.0 222.7

115.3 156.6 225.0 335.1

119.8 145.6 220.6 355.8 444.3

118.3 142.1 210.9 337.0 420.2 441.6


ζ = (−16.4, 0.7,−11.5,−9.9,−27.6)T ,

γ1 = (−0.1,−0.0, 0.2, 0.4, 0.4)T ,

γ2 = (Not Applicable,−0.0,−0.1,−0.4,−0.1).

These parameters come from fitting the selection model to the data and taking the poste-

rior mean of each parameter. M2 is a 5 component mixture that was obtained by fitting

a Dirichlet mixture of lag-1 selection models and taking the parameters corresponding

to the 5 components of highest posterior probability (we do not take posterior means

7



because the likelihood is invariant under permutations of component labels).

β = (0.119, 0.578, 0.001, 0.115, 0.186)T ,

ζ =



−9.58 −10.65 −9.25 −9.86 −9.42

−9.45 −10.31 −9.55 −9.08 −9.72

−9.61 −9.46 −9.77 −8.79 −9.80

−9.51 −9.08 −10.45 −9.33 −9.44

−9.03 −8.91 −10.19 −9.21 −9.58


,

γ =



−0.18 −0.56 −0.09 −0.54 0.10

−0.45 −0.77 −0.63 −0.25 −0.34

−1.02 −0.16 −0.41 −0.28 −0.57

−0.90 0.11 −0.11 −0.39 0.11

−0.67 −0.16 0.11 0.13 0.09


,

µ =



98.11 95.94 91.85 91.68 100.94 75.71

95.58 93.09 89.34 82.97 78.82 76.86

75.95 64.27 63.69 59.69 57.83 34.60

85.11 83.13 72.67 67.32 64.35 61.12

97.49 99.48 101.83 107.23 94.34 104.05


.
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Each row of a given matrix corresponds to a mixture component. The covariance ma-

trices for each class are given by

Σ1 =



245 222 207 199 195 183

222 268 250 240 235 220

207 250 270 259 254 237

199 240 259 295 288 269

195 235 254 288 374 349

183 220 237 269 349 354


, Σ2=



72 68 64 61 56 55

68 117 110 105 98 94

64 110 174 166 155 147

61 105 166 194 182 172

56 98 155 182 199 187

55 94 147 172 187 212


,

Σ3 =



120 111 104 98 97 89

111 156 146 138 136 125

104 146 194 184 179 165

98 138 184 239 231 211

97 136 179 231 274 250

89 125 165 211 250 251


, Σ4=



73 69 65 63 59 52

69 122 115 112 105 94

65 115 188 182 171 153

63 112 182 227 214 191

59 105 171 214 220 197

52 94 153 191 197 221


,

Σ5 =



106 100 96 91 83 84

100 125 119 113 104 105

96 119 167 159 147 148

91 113 159 360 335 336

83 104 147 335 337 339

84 105 148 336 339 367


.

To generate from model M3 we first generate data under M1 and apply the appro-

priate normal distribution function to each component to get data which is marginally

uniform. Next we apply the skew-t quantile function to each component to get data
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Figure 1: Dataset generated under M2.
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Figure 2: Dataset generated under M3.
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Normal Lag-2 Selection Model

95% CI Width Coverage Probability Root Mean Squared Error
ξ Normal Dirichlet Normal Dirichlet Normal Dirichlet

0 6.80(0.46) 6.54(0.41) 93.7(1.4) 92.0(1.6) 1.73(0.07) 1.71(0.07)
0.5 7.55(0.53) 7.24(0.48) 94.3(1.3) 93.0(1.3) 1.93(0.08) 1.92(0.07)

1 8.54(0.61) 8.18(0.58) 94.3(1.3) 93.3(1.5) 2.19(0.09) 2.16(0.08)
1.5 9.70(0.69) 9.34(0.66) 93.7(1.4) 93.7(1.4) 2.50(0.10) 2.55(0.09)

2 10.99(0.78) 10.62(0.73) 94.0(1.4) 93.7(1.4) 2.83(0.12) 2.86(0.11)

Mixture of Lag-1 Selection Models

95% CI Width Coverage Probability Root Mean Squared Error
ξ Normal Dirichlet Normal Dirichlet Normal Dirichlet

0 5.8(0.4) 5.9(0.4) 91.3(1.6) 95.3(1.2) 1.65(0.07) 1.40(0.064)
0.5 6.2(0.4) 6.3(0.4) 92.0(1.6) 95.3(1.2) 1.76(0.07) 1.51(0.068)

1 6.8(0.5) 6.8(0.5) 90.7(1.7) 95.3(1.2) 2.00(0.08) 1.67(0.076)
1.5 7.6(0.6) 7.6(0.7) 90.3(1.7) 95.3(1.2) 2.28(0.09) 1.86(0.085)

2 8.6(0.7) 8.5(0.8) 91.7(1.6) 95.3(1.2) 2.51(0.10) 2.10(0.095)

Skew-T Copula Lag-2 Selection Model

95% CI Width Coverage Probability Root Mean Squared Error
ξ Normal Dirichlet Normal Dirichlet Normal Dirichlet

0 5.4(0.4) 5.5(0.9) 89.9(1.7) 95.6(1.2) 1.62(0.07) 1.35(0.06)
0.5 5.9(0.5) 6.0(1.1) 91.2(1.6) 96.6(1.0) 1.69(0.07) 1.51(0.06)

1 6.5(0.6) 6.7(1.3) 88.9(1.8) 95.3(1.2) 2.03(0.09) 1.65(0.07)
1.5 7.3(0.7) 7.6(1.6) 88.6(1.8) 94.9(1.3) 2.34(0.10) 1.86(0.08)

2 8.4(0.8) 8.9(1.9) 86.9(2.0) 96.0(1.1) 2.35(0.12) 2.10(0.06)

Table 1: Results from the simulation study in Section 4.2. Normal refers to M1, Mixture
to M2, and Skew-T to M3.
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which is marginally skew-t. Recall the density of the skew-t distribution (Azzalini,

2013) with location 0, scale 1, degrees of freedom ν, and shape ω is

f(z | ν, ω) = 2tν(z)Tν+1

(
ωz

√
ν + 1

z2 + ν

)
,

where tν is the students-t density with ν degrees of freedom and Tν+1 is the students-t

distribution function with ν + 1 degrees of freedom. We set ν = 15 for each component

and ω = (10, 0, 10, 0, 10, 0) to induce a nonlinear relationship between components. The

data were then returned approximately to their original scale by multiplying by 15.

Sample datasets of data generated under M2 and M3 are given in Figures 1 and 2.

Detailed simulation results are given in Table 1.
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