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Supplementary Table 1: A comparison of estimates of variance explained by all 
autosomal SNPs with two relatedness thresholds 
 GRM < 0.025 GRM < 0.1 

cortical phenotype  h2 s.e. p h2  s.e. p 
motor_premotor 0.16 0.132 0.117 0.17 0.116 0.072 

dorsolateral prefrontal 0.26 0.133 0.025* 0.28 0.116 7.6e-03* 
dorsomedial frontal 0.15 0.130 0.119 0.20 0.115 0.039* 
orbitofrontal  0.22 0.130 0.042 0.25 0.114 0.015* 
pars opercularis & subcentral  0.31 0.131 9.2e-03* 0.27 0.114 8.5e-03* 

superior temporal 0.42 0.131 3.4e-04** 0.44 0.114 3.8e-05** 
posterolateral temporal 0.21 0.132 0.060 0.23 0.114 0.018* 
anteromedial temporal 0.40 0.130 8.9e-04** 0.37 0.114 4.5e-04** 
inferior parietal 0.28 0.129 0.014* 0.34 0.114 9.9e-04** 
superior parietal 0.23 0.129 0.033* 0.24 0.114 0.014* 
precuneus 0.05 0.131 0.348 0.06 0.117 0.309 
occipital  0.45 0.132 2.9e-04** 0.44 0.116 8.3e-05** 
Estimates of variance explained by all autosomal SNPs from genetic relationships less 
than 0.025 or 0.1 (GRM<0.025) or (GRM<0.1), respectively. s.e.: standard error. 
Estimates were tested for significantly different from zero by likelihood ratio test. 
 
 
 
 
 
 
 
Supplementary Table 2: A comparison of estimates of variance explained by all 
autosomal SNPs with and without LD adjusted genetic relationships 
 GRM < 0.025 LD-Adjusted GRM < 0.025 
cortical phenotype  h2 s.e. p h2 s.e. p 
motor_premotor 0.16 0.132 0.117 0.12 0.212 0.293 

dorsolateral prefrontal 0.26 0.133 0.025* 0.20 0.204 0.158 
dorsomedial frontal 0.15 0.130 0.119 0.05 0.205 0.406 
orbitofrontal  0.22 0.130 0.042* 0.02 0.201 0.456 
pars opercularis & subcentral  0.31 0.131 9.2e-03* 0.25 0.210 0.121 
superior temporal 0.42 0.131 3.4e-04** 0.51 0.209 8.1e-03* 
posterolateral temporal 0.21 0.132 0.060 0.19 0.210 0.187 
anteromedial temporal 0.40 0.130 8.9e-04** 0.60 0.210 2.6e-03** 
inferior parietal 0.28 0.129 0.014* 0.28 0.207 0.086 
superior parietal 0.23 0.129 0.033* 0.18 0.205 0.187 
precuneus 0.05 0.131 0.348 0.00 0.209 0.5 
occipital  0.45 0.132 2.9e-04** 0.60 0.209 2.3e-03** 
Estimates of variance explained by all autosomal SNPs from GRM < 0.025 with and 
without adjusting the genetic relationships by the linkage disequilibrium structure. The 
adjustment was implemented in LDAK (Linkage-Disequilibrium Adjusted Kinships). 
Estimates were tested for significantly different from zero by likelihood ratio test. 
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Supplementary Table 3: Twin heritability estimates 
cortical phenotype rMZ rDZ Variance components p-values 

 95% CI  95% CI  95% CI -2LL no A no C no AC 

motor premotor 0.74 0.36 0.74 (0.45, 0.80) 0.00 (0, 0.27) 0.26 (0.20, 0.34) 1203.81 < 0.0001 1.00 < 0.0001 
dorsolateral PFC 0.57 0.36 0.45 (0.08, 0.66) 0.12 (0, 0.44) 0.43 (0.34, 0.55) 1255.81 0.02 0.51 < 0.0001 
dorsomedial frontal 0.63 0.39 0.58 (0.25, 0.73) 0.07 (0, 0.36) 0.35 (0.27, 0.46) 1238.54 0.0006 0.68 < 0.0001 
orbitofrontal 0.59 0.36 0.43 (0.07, 0.67) 0.15 (0, 0.46) 0.42 (0.33, 0.54) 1250.33 0.02 0.43 < 0.0001 
pars oper. & subcentral 0.61 0.33 0.57 (0.20, 0.70) 0.04 (0, 0.36) 0.39 (0.30, 0.51) 1249.67 0.02 0.81 < 0.0001 
superior temporal 0.57 0.21 0.58 (0.36, 0.68) 0.00 (0, 0.18) 0.42 (0.32, 0.54) 1265.48 < 0.0001 1.00 < 0.0001 
posterolateral temporal 0.51 0.38 0.21 (0, 0.58) 0.29 (0, 0.54) 0.51 (0.40, 0.63) 1266.15 0.30 0.14 < 0.0001 
anteromedial temporal 0.61 0.28 0.58 (0.20, 0.67) 0.00 (0, 0.34) 0.42 (0.33, 0.53) 1253.37 0.003 1.00 < 0.0001 
inferior parietal 0.67 0.29 0.67 (0.44, 0.75) 0.00 (0, 0.20) 0.33 (0.25, 0.43) 1235.95 < 0.0001 1.00 < 0.0001 
superior parietal 0.66 0.17 0.63 (0.45, 0.72) 0.00 (0, 0.15) 0.37 (0.28, 0.48) 1246.76 < 0.0001 1.00 < 0.0001 
precunues 0.55 0.29 0.51 (0.12, 0.65) 0.04 (0, 0.37) 0.45 (0.35, 0.58) 1264.47 0.01 0.85 < 0.0001 
occipital 0.70 0.43 0.59 (0.29, 0.78) 0.12 (0, 0.39) 0.29 (0.22, 0.38) 1209.62 < 0.0001 0.46 < 0.0001 

rMZ: monozyotic correlation, rDZ: dizygotic correlation, a2  = additive genetic variance (heritability estimates), 
c2 = shared environmental variance, e2 = unique, unshared environmental variance, CI: confidence interval, 
−2LL = Negative 2 log-likelihood for the ACE model, no A: test of CE model, i.e., hypothesis of no additive 
genetic effect; no C: test of AE model, i.e., hypothesis of no shared environmental effects; no AC: test of E-only 
model, i.e., hypothesis of no additive genetic and common environmental effects. The analyses were adjusted for 
age, MRI scanners, and total surface area. 

  

2a 2c 2e
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Supplementary Table 4: Partitioning of genomic variation by genic annotation 
(±20kb)(GRM < 0.025) 
 genic (±20kb) intergenic 

cortical phenotype  ࢍࢎ૛  s.e. p ࢏ࢎ
૛ s.e. p 

motor_premotor 0.07 0.107 0.225 0.08 0.097 0.212 

dorsolateral prefrontal 0.12 0.108 0.125 0.14 0.097 0.074 
dorsomedial frontal 0.11 0.108 0.134 0.06 0.094 0.341 
orbitofrontal  0.00 0.106 0.339 0.17 0.099 0.035* 

pars opercularis & subcentral  0.26 0.112 0.012* 0.06 0.096 0.261 
superior temporal 0.32 0.108 4.8e-04** 0.10 0.096 0.161 
posterolateral temporal 0.20 0.113 7.7e-03* 0.00 0.093 0.5 
anteromedial temporal 0.20 0.110 1.5e-03** 0.08 0.094 0.172 
inferior parietal 0.06 0.109 0.239 0.19 0.096 0.021* 
superior parietal 0.14 0.109 0.066 0.10 0.095 0.212 
precuneus 0.08 0.107 0.204 0.00 0.094 0.5 
occipital  0.19 0.111 0.022* 0.27 0.097 9.7e-03* 
Estimates of variance explained by genic and intergenic regions (GRM <0.025). The 
genic region is defined as ±20kb from the 3’ and 5’ UTRs. s.e.: standard error. Estimates 
were tested for significantly different from zero by likelihood ratio test. 
 
 
 
 
 
 
Supplementary Table 5: Partitioning of genomic variation by LD-weighted genic 
annotation (GRM < 0.025) 
 LD-weighted genic LD-weighted intergenic  

cortical phenotype  ࢍࢎ૛  s.e. p ࢏ࢎ
૛ s.e. p 

motor_premotor 0.11 0.091 0.100 0.03 0.107 0.403 

dorsolateral prefrontal 0.14 0.092 0.061 0.12 0.107 0.131 
dorsomedial frontal 0.09 0.092 0.151 0.05 0.105 0.303 
orbitofrontal  0.00 0.088 0.5 0.28 0.110 6.1-e03* 
pars opercularis & subcentral  0.25 0.094 3.2-e03** 0.03 0.105 0.399 
superior temporal 0.29 0.093 8.6e-04** 0.13 0.107 0.109 
posterolateral temporal 0.19 0.093 0.014* 0.00 0.105 0.5 
anteromedial temporal 0.27 0.093 1.3-e03** 0.11 0.103 0.139 
inferior parietal 0.07 0.090 0.230 0.23 0.107 0.013* 
superior parietal 0.14 0.092 0.057 0.08 0.107 0.229 
precuneus 0.05 0.091 0.241 0.00 0.106 0.5 
occipital  0.21 0.094 0.012* 0.25 0.111 0.015* 
Estimates of variance explained by genic and intergenic regions. The genic region is 
defined by the LD-weighted genic annotation scheme. s.e.: standard error. Estimates were 
tested for significantly different from zero by likelihood ratio test. 
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Supplementary Table 6: Partitioning of genomic variation by conservation annotation 
(GRM < 0.025) 
 less conserved more conserved 
cortical phenotype  ࢎ૚

૛ s.e. p ࢎ૛
૛ s.e. p 

motor_premotor 0.00 0.152 0.5 0.09 0.083 0.048* 

dorsolateral prefrontal 0.24 0.149 0.050* 0.09 0.084 0.141 

dorsomedial frontal 0.00 0.149 0.5 0.09 0.084 0.097 
orbitofrontal  0.12 0.143 0.198 0.10 0.083 0.105 
pars opercularis & subcentral  0.00 0.149 0.489 0.20 0.085 8.9e-03* 

superior temporal 0.00 0.148 0.5 0.30 0.083 8.7e-05** 
posterolateral temporal 0.00 0.152 0.5 0.12 0.085 0.064 
anteromedial temporal 0.00 0.149 0.5 0.27 0.084 3.0e-04** 
inferior parietal 0.17 0.149 0.128 0.12 0.081 0.065 
superior parietal 0.18 0.145 0.097 0.08 0.083 0.160 
precuneus 0.00 0.154 0.5 0.08 0.087 0.5 
occipital  0.46 0.150 1.1e-03** 0.13 0.083 0.060 
Estimates of variance explained by less conserved and more conserved regions. s.e.: 
standard error. Estimates were tested for significantly different from zero by likelihood 
ratio test. 
 
 
 
 
 
 
Supplementary Table 7: Partitioning of genomic variation by genic annotation 
(±20kb)(GRM < 0.1) 
 genic (±20kb) intergenic 

cortical phenotype  ࢍࢎ૛  s.e. p ࢏ࢎ
૛ s.e. p 

motor_premotor 0.04 0.094 0.349 0.13 0.086 0.062 

dorsolateral prefrontal 0.15 0.095 0.054 0.14 0.086 0.055 
dorsomedial frontal 0.16 0.095 0.039* 0.04 0.084 0.322 
orbitofrontal  0.14 0.095 0.060 0.10 0.087 0.129 
pars opercularis & subcentral  0.23 0.097 8.6e-03* 0.04 0.084 0.302 

superior temporal 0.38 0.095 2.0e-05** 0.06 0.084 0.244 
posterolateral temporal 0.26 0.097 2.8e-03** 0.00 0.082 0.5 
anteromedial temporal 0.32 0.097 5.5e-04** 0.07 0.082 0.191 
inferior parietal 0.16 0.097 0.051 0.18 0.084 0.013* 
superior parietal 0.12 0.094 0.092 0.12 0.085 0.074 
precuneus 0.09 0.096 0.132 0.00 0.083 0.5 
occipital  0.24 0.097 5.8e-03* 0.19 0.086 0.012* 
Estimates of variance explained by genic and intergenic regions (GRM <0.1). The genic 
region is defined as ±20kb from the 3’ and 5’ UTRs. s.e.: standard error. Estimates were 
tested for significantly different from zero by likelihood ratio test. 
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Supplementary Table 8: Partitioning of genomic variation by LD-weighted genic 
annotation (GRM < 0.1) 
 LD-weighted genic LD-weighted intergenic 

cortical phenotype  ࢍࢎ૛  s.e. p ࢏ࢎ
૛ s.e. p 

motor_premotor 0.10 0.081 0.109 0.07 0.095 0.245 

dorsolateral prefrontal 0.16 0.081 0.021* 0.12 0.095 0.107 
dorsomedial frontal 0.13 0.081 0.049* 0.06 0.093 0.262 
orbitofrontal  0.06 0.079 0.230 0.22 0.098 0.014* 
pars opercularis & subcentral  0.24 0.082 1.5e-0.3** 0.00 0.092 0.5 

superior temporal 0.30 0.081 5.7e-05** 0.10 0.094 0.138 
posterolateral temporal 0.21 0.081 3.4e-03** 0.00 0.091 0.5 
anteromedial temporal 0.28 0.082 2.1-e0.4** 0.07 0.090 0.212 
inferior parietal 0.13 0.081 0.048* 0.22 0.094 0.008* 
superior parietal 0.17 0.080 0.016* 0.06 0.095 0.282 
precuneus 0.07 0.081 0.143 0.00 0.094 0.5 
occipital  0.24 0.082 1.3e-03** 0.18 0.098 0.037* 
Estimates of variance explained by genic and intergenic regions. The genic region is 
defined by the LD-weighted genic annotation scheme. s.e.: standard error. Estimates were 
tested for significantly different from zero by likelihood ratio test. 
 
 
 
 
 
 
Supplementary Table 9: Partitioning of genomic variation by conservation annotation 
(GRM < 0.1) 
 less conserved more conserved 
cortical phenotype  ࢎ૚

૛ s.e. p ࢎ૛
૛ s.e. p 

motor_premotor 0.00 0.131 0.5 0.12 0.075 0.014* 

dorsolateral prefrontal 0.25 0.130 0.025* 0.10 0.074 0.090 
dorsomedial frontal 0.02 0.128 0.424 0.12 0.073 0.042* 
orbitofrontal  0.18 0.127 0.070 0.10 0.073 0.089 
pars opercularis & subcentral  0.12 0.129 0.167 0.12 0.073 0.044* 

superior temporal 0.12 0.129 0.170 0.25 0.073 1.5e-0.4** 
posterolateral temporal 0.00 0.132 0.5 0.15 0.075 0.021* 
anteromedial temporal 0.02 0.130 0.453 0.25 0.074 2.1e-0.4** 
inferior parietal 0.20 0.132 0.065 0.16 0.072 0.012* 
superior parietal 0.15 0.129 0.111 0.11 0.073 0.070 
precuneus 0.00 0.131 0.5 0.01 0.072 0.276 
occipital  0.46 0.131 2.5e-0.4** 0.11 0.073 0.057 
Estimates of variance explained by less conserved and more conserved regions. s.e.: 
standard error. Estimates were tested for significantly different from zero by likelihood 
ratio test. 
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Supplemental Methods 
Participants 
Thematically Organized Psychosis (TOP) Subjects. Data from 1579 subjects from the 
TOP study were analyzed.  MRI data was available for 605 of the subjects, including 236 
controls, 144 subjects with schizophrenia (SCZ), 157 subjects with bipolar disorder 
(BIP), and 68 subjects diagnosed with other psychotic (OP) disorders not otherwise 
specified. Fifty percent of the subjects were women; the subjects were aged 35 ± 11 y 
(range = 17–70 y). Genotyping: DNA was genotyped on the Affymetrix 6.0 array. All 
subjects self-reported Norwegian ancestry. PCA of an allele-sharing distance matrix 
across all subjects suggested one non-European ancestry genetic outlier. Brain imaging: 
MRI scans were performed with a 1.5 T Siemens Magnetom Sonata scanner equipped 
with a standard head coil.  
 
Health Study of Nord-Trøndelag (HUNT) Subjects. Data from 905 subjects from the 
HUNT study were analyzed. Cortical MRI data was available for 842 of the subjects. 
Fifty-three percent of the subjects were women; the subjects were aged 58 ± 4 y (range = 
50–66 y). Genotyping: DNA was genotyped on the Illumina Omni 2.5M BeanChip array. 
All subjects were part of a general population based survey, the HUNT study and 
recruited from one country in Norway. PCA of an allele-sharing distance matrix across 
all subjects suggested 2 non-European ancestry genetic outliers. Brain imaging: MRI 
scans were performed with a General Electric Signa HDx 1.5 T scanner. 
 
Norwegian Cognitive NeuroGenetics (NCNG) Subjects. Data from 670 subjects from the 
NCNG study were analyzed. MRI and genetic data were available for 325 of the subjects. 
Sixty-nine percent of the subjects were women; the subjects were aged 52 ± 17 y (range = 
19–79 y). Genotyping: DNA was genotyped with the Illumina Human610-Quad 
BeadChip. All subjects self-reported Norwegian ancestry. PCA of an allele-sharing 
distance matrix across all subjects did not suggest any non-European ancestry genetic 
outliers. Brain imaging: Participants went through a standard structural MRI protocol 
optimized for morphometric analysis. Further details about MRI acquisition and MRI 
protocols are available in Espeseth et al., 2012.1  
 
Pediatric, Imaging, Neurocognition, and Genetics (PING) Subjects. Data from 1406 
subjects were obtained from the PING database (http://ping.chd.ucsd.edu/). MRI data 
from 1198 subjects were included. The subjects were aged 12 ± 5 y (range = 3-21 y) and 
48% of the subjects were female. Genotyping: DNA was genotyped with the Illumina 
Human660W-Quad BeadChip; Based on principal component analysis of an allele-
sharing distance matrix, 668 individuals were removed as non-European ancestry genetic 
outliers. Brain Imaging: T1-weighted MRI data were collected on 3-T scanners at nine 
study centers across the United States. Specific MRI scanner protocols are available at 
the PING study website (http://ping.chd.ucsd.edu/). 
 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) Subjects. Data from 793 subjects 
from the ADNI database were analyzed (http://adni.loni.usc.edu); Usable MRI data was 
available for 726 of the subjects. Subjects who self-reported as white and non-Hispanic 
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included 161 individuals with Alzheimer’s Disease (AD), 216 individuals with Mild 
Cognitive Impairment (MCI), and 216 subjects as controls. Forty-three percent of the 
subjects were women; the subjects were aged 75 ± 7 y (range = 55-92 y). Genotyping: 
DNA was genotyped with the Illumina Human610-Quad BeadChip. PCA of an allele-
sharing distance matrix was used to remove 85 individuals as non-European ancestry 
genetic outliers. Brain Imaging: MRI data were collected on 1.5-T scanners at many 
study centers across the United States. Raw MR images were downloaded from the 
ADNI data page of the public ADNI site at the LONI website published in 2007. 
 
We estimated the effects of scanners and study sites on our phenotypes. To estimate the 
percentage of phenotypic variation uniquely explained by scanner types and study sites, 
phenotype data were first residualized for other covariates (e.g., age and gender). The 
estimated adjusted R square for scanners and study sites are small (0.014 and 0 
respectively, averaged across all 12 cortical regions). 
 
Mixed linear model to estimate the variance explained by all autosomal SNPs 
The mixed linear model analysis in quantitative genetics partitions the phenotypic 
variance-covariance matrix between two (or more) specified matrices. One typical form 
is:  

Varሺ܇ሻ ൌ ௚ଶ۵ߪ ൅	ߪ௘ଶ۷																																		ሺ1ሻ 
where G is a matrix of kinship or genetic correlation coefficients and I is the n x n 
identity matrix, which assumes independence of environmental effects (i.e., no shared 
environment) and measurement error across individuals. Estimates ߪො௚ଶ  and ߪො௘ଶ  are 
typically obtained via restricted maximum likelihood (REML). Narrow-sense heritability, 
݄ଶ , the proportion of phenotypic variance explained by additive genetic effects, is 
estimated by  

෠݄ଶ	 ൌ
ො௚ଶߪ

ො௚ଶߪ ൅ ො௘ଶߪ
																																																ሺ2ሻ 

 
If we can genotype subjects at causal variants, we include all causal variants in the 
model2 

୨ܡ ൌ ૄ ൅ ୨܏ ൅ ܏ ୨  and܍ ൌ ∑ ሺ3ሻ								୧ܝ୨୧܈
୫
୧ୀଵ  

where g୨ is the total genetic effect of an individual j, m is the number of causal loci, and 
u୧ is the scaled additive genetic effect of the ith causal variant; Z୨୧ is the genotypic values 
standardized across all subjects. Genotypic values are 0,1, or 2 if the genotype of the jth 
individual at SNP i is bb, Bb, or BB. If Z were not column standardized, Equation 2 
might not hold.3 u୧  and e୨  are independently Gaussian with zero mean and variance 

௚ଶߪ m⁄  and 	ߪ௘ଶ , respectively. E(Y) = μ , and VarሺYሻ 	ൌ
ఙ೒మ

୫
ZZ୘ ൅ ଶI	௘ߪ . Thus, we have 

Equation 1 with 
୞୞౐

୫
 in place of G.  However, we know little about what the causal 

variants are, so 
୞୞౐

୫
 is unknown. Yang et al. developed a method with which to calculate 

the approximation of G from genome-wide SNP genotypes.2  Thus, we have Equation 1 

with A ൌ
ଡ଼ଡ଼౐

୫ᇱ
 in place of G, where X is defined in the same way as Z with the exception 

that SNP genotypes replace causal variant genotypes and m′ is the number of SNPs.2,3 
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The general mixed model has long been a foundation of both theory and application in 
the study of quantitative genetics.4,5 The term ‘mixed’ refers to the presence of both a 
random effect of total genetic variance (g), usually interpreted in terms of a polygenic 
contribution to the given trait, and fixed effects corresponding to covariates or individual 
SNPs.3,6,7 
 
Before dense genome-wide genetic markers became widely available in recent years, the 
elements of the matrix G were coefficients derived from the probabilities of identity-by-
descent on the basis of the recorded pedigree, representing expected genetic relatedness 
between relatives. For example, in the classical twin modeling, 1 represented 
monozygotic twin pairs and 0.5 dizygotic twin pairs. Therefore, both the SNP and twin 
heritability are rooted in variance component analysis and the mixed model to estimate 
genetic effects in the aggregate, providing the rationale for comparing them in this paper.  
 
Simulation  
We performed simulation studies based on the observed genotype data of our five sub-
study combined sample (~2.4 million imputed SNPs). We randomly sampled m SNPs as 
causal variants and generated the effect of each causal variant (b) from a standard normal 
distribution. We calculated the genetic value of each individual by g ൌ 	∑ x୧b୧	, where x 
is coded as 0, 1, or 2 for genotype bb, Bb, or BB, respectively, at the locus i. We 
generated residual effects (e) from N (0, var(g) (1−h2)/h2) and produced the simulated 
phenotype by y = g + e. We used nine predefined heritability values (h2= 0.1 - 0.9, with 
0.1 interval) and different parameter settings including: (1) different proportions of causal 
variants (e.g., 0.04%, 1%, and 3%); (2) allowing mixture distribution for causal variants 
with large and small effects (e.g., proportion of large effects = 1, 0.8, or 0.2); (3) 
randomly pruning SNPs at the threshold of r2 = 0.9 (i.e., randomly excluding one of each 
pair of SNPs with high linkage disequilibrium (LD)), and retaining 795,706 imputed 
genome-wide SNPs. The genome-wide LD values were calculated based on the 1000 
Genomes Project data.8 For each setting, we repeated the simulation 100 times, 
randomizing the positions of causal variants in each simulation replicate.  
 
We performed heritability estimation of the simulated phenotypic and observed genotype 
data in GCTA. In all scenarios, the simulation showed small differences between 
estimated and true/predefined h2. The average differences (across 100 simulations and 
across 9 heritability values) ranged from 0.037 to 0.046 for different parameter settings, 
suggesting that the method is reasonably robust to apply to our sample in various 
scenarios of genetic architecture. Our findings from the simulation are consistent with 
other studies confirming the reliability of the method.3,9 
 
Power Calculation 
Given sample size and heritability of cortical regions, power calculations were performed 
using the power calculator implemented in GCTA.10 We calculated the probability of 
detecting h2 > 0 for the Type 1 error at a threshold of 0.05. Because the true SNP 
heritability in the population was unknown, we used the heritability estimated from the 
twin sample (Supplementary Table 3). Note that twin heritability estimates are considered 
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as the upper bound of the SNP heritability, so the estimated power here is regarded as 
maximum. The variance of the SNP-derived genetic relationship was 2.35e-05 in our 
sample. We calculated the power to detect heritability for each cortical phenotype: 
Motor-premotor cortex (0.9928), occipital cortex (0.9979), posterolateral temporal cortex 
(0.2318), superior parietal cortex (0.9749), orbitofrontal cortex (0.9862), superior 
temporal cortex (0.9173), inferior parietal cortex (0.9487), dorsomedial frontal cortex 
(0.3122), anteromedial temporal cortex (0.7927), precuneus (0.0508), dorsolateral 
prefrontal cortex (0.7927), and subcentral region (0.8734). 

The effect of patient samples 
Although all of the phenotypes were adjusted for patient diagnosis prior to model fitting 
in all analyses, we examined any effect of patient samples on our results. Including 
individuals with diseases (all subjects) offered the advantage of a larger sample size and 
wider phenotype distribution, which may provide greater power for reliable estimation.11 
To examine the effects of patient samples on our results, we reanalyzed heritability 
estimation after we eliminated one disorder at a time (MCI, AD, SCZ, BIP, and OP). 
Each of these five secondary analyses gave us very similar results. The SNP heritability 
estimates were highly correlated between the full combined sample and the combined 
sample without one patient group. Here we listed the correlation coefficients for each 
comparison: without MCI: r = 0.92, p = 2.28e-05; without AD: r = 0.94, p = 5.77e-06; 
without SCZ: r = 0.95, p = 2.50e-06; without BIP: r = 0.93, p = 9.08e-06; without OP: r 
= 0.97, p = 2.30e-07. The analyses confirmed that the observed associations were not due 
to confounds related to any of the disorders.  
 
The effect of linkage disequilibrium (LD) structure 
While the method developed by Yang et al. is robust even when some assumptions are 
violated, the LD structure could generate biases in the estimation of SNP heritability.3 
Contributions to heritability from causal variants tend to be overestimated in regions of 
strong LD and underestimated in regions of low LD. Additionally, patterns of LD are 
strongly linked to minor allele frequency. Low-frequency variants are likely to have 
lower LD with common SNPs than high-frequency variants. Therefore, heritability can 
be underestimated for traits with predominantly low-frequency causal variants and can be 
overestimated for those with predominantly high-frequency causal variants.3 However, 
the standardization of genotypic values in the method (see the mixed linear model section 
above) implies that low-frequency variants have larger effects.3 Thus, depending on its 
genetic architecture, a trait’s heritability estimate could be unaffected or biased, or the 
biases could counteract each other. For example, underestimation of genetic effects in 
low-LD regions could be balanced by overestimation in high-LD regions.3 
 
To examine the effect of LD on our data, we calculated the LD-adjusted kinship or 
genetic relationship matrix (A*) implemented in LDAK (Linkage-Disequilibrium 
Adjusted Kinships).3 We found that heritability estimates for the majority of cortical 
regions were not evidently biased by uneven LD structure, because the estimates 
remained similar (within ± 0.1). Possible exceptions were the occipital, orbitofrontal, and 
anteromedial temporal cortices. Additionally, the sampling variance of the SNP 
heritability estimates from the LD-adjusted kinship matrix was large (s.e. = ~21%). For 
these two reasons, we used the unadjusted genetic relationship matrix estimated from 
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GCTA in our main analysis. Nevertheless, the effects of LD structure and allele 
frequencies on precise heritability estimates in these cortical regions warrant future 
investigation with a larger sample size. The results from the LD-adjusted genetic 
relationships are shown in Supplementary Fig. 1 and Supplementary Table 2.  
 
Twin based heritability estimation  
Heritability estimates for brain imaging phenotypes from a twin sample were calculated 
using an ACE model implemented in OpenMx software. The twins were obtained for 
men aged 51-60 years enrolled in the Vietnam Era Twin Study of Aging.12,13 In the 
classical twin design, the variance of each phenotype is decomposed into the proportion 
of total variance attributed to additive genetic (A) influences, common or shared 
environmental (C) influences, and unique environmental (E) influences.14,15 The name 
‘ACE model’ is derived from these three components of variance. Additive genetic 
influences are assumed to correlate 1.0 between MZ twins who generally share 100% of 
their genes and .5 between DZ twins who share an average of 50% of their segregating 
genes. Shared environment (environmental influences that make twins similar) is 
assumed to correlate 1.0 between both members of a twin pair, regardless of twin 
zygosity. Unique environmental influences (environmental influences that make twins 
different) are assumed to be uncorrelated between the members of a twin pair. 
Measurement error is also included in the E term because it is also assumed to be 
uncorrelated between twins. The proportion of a phenotype’s total variance attributable to 
additive genetic influences is considered the heritability of the phenotype. The results are 
shown in Fig. 1(c) and Supplementary Table 3. 

Partitioning of genomic variation by LD-weighted genic annotation 
We used an LD-weighted genic annotation scheme that takes into account the LD 
structure to select SNPs that are related to exon, intron, 3’UTR, 5’UTR, and 1kb 
upstream and downstream of genes (six genic categories). Because the position of causal 
variants in the genome is unknown, a genotyped SNP can be seen as a surrogate to 
capture the genetic effects of causal variants in LD with the given SNP. Thus, by 
incorporating LD information, the annotation of individual SNPs reflects the weighted 
annotation in the context of underlying linkage blocks. With the LD-weighted annotation, 
we have shown stronger and more consistent association signals.8 As previously 
described, we consistently found that SNPs capturing variants in coding and regulatory 
elements of genes are more enriched for association than other annotation categories 
across diverse phenotypes. It is worth noting that this pattern is not confounded by total 
LD.8 Thus, it is not the LD structure per se that contributes to enrichment association but 
the annotation incorporated with LD information.  
 
We used GWAS summary statistics for height to combine the LD-weighted annotation 
scores of the six genic categories into one score for each SNP. Height, considered as a 
generic trait of body size, is highly polygenic and heritable. SNP associations with height 
have been shown to have implications for patterns of trait-influencing loci in the genome 
for complex traits.16 To differentiate SNPs in the six genic categories from SNPs in other 
annotation categories, a multiple regression was performed with height GWAS summary 
values (log of zଶ after intergenic inflation control) as the dependent variable. The LD-
weighted genic annotation score of each SNP was pre-multiplied by the genotypic 
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variance (f * (1 - f)) of that SNP (f: minor allele frequency).8 These scores, from the six 
genic categories, were the predictors. Thus, the predicted zଶ values (zොଶ) represent the 
degree of enriched polygenic effects that are predicted by the genetic variance of a 
combination of the six genic categories. The zොଶ values were then used to partition the 
genome evenly into genic and intergenic regions. SNPs with zොଶ values higher than the 
median were assigned to the genic category. The results obtained from this type of 
genomic partitioning were very similar to those obtained with the first method (genic vs. 
intergenic [± 20kb]) but demonstrated more significant findings. The results are shown in 
Fig. 2(b), Supplementary Table 5 for the GRM < 0.025 sample and Supplementary Fig. 
2(b) and Supplementary Table 8 for the GRM < 0.1 sample. 
 

PING Methods: 

Data used in the preparation of this article were obtained from the Pediatric Imaging, 
Neurocognition and Genetics (PING) Study database (http://ping.chd.ucsd.edu/). PING was 
launched in 2009 by the National Institute on Drug Abuse (NIDA) and the Eunice Kennedy 
Shriver National Institute Of Child Health & Human Development (NICHD) as a 2-year project 
of the American Recovery and Reinvestment Act. The primary goal of PING has been to create a 
data resource of highly standardized and carefully curated magnetic resonance imaging (MRI) 
data, comprehensive genotyping data, and developmental and neuropsychological assessments for 
a large cohort of developing children aged 3 to 20 years. The scientific aim of the project is, by 
openly sharing these data, to amplify the power and productivity of investigations of healthy and 
disordered development in children, and to increase understanding of the origins of variation in 
neurobehavioral phenotypes. For up-to-date information, see http://ping.chd.ucsd.edu/. 

ADNI Methods:  

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 
by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and 
Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical 
companies and non-profit organizations, as a $60 million, 5-year public-private partnership. The 
primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 
positron emission tomography (PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure the progression of mild cognitive 
impairment (MCI) and early Alzheimer’s disease (AD). Determination of sensitive and specific 
markers of very early AD progression is intended to aid researchers and clinicians to develop new 
treatments and monitor their effectiveness, as well as lessen the time and cost of clinical trials.  

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center and 
University of California – San Francisco. ADNI is the result of efforts of many co-investigators 
from a broad range of academic institutions and private corporations, and subjects have been 
recruited from over 50 sites across the U.S. and Canada. The initial goal of ADNI was to recruit 
800 subjects but ADNI has been followed by ADNI-GO and ADNI-2. To date these three 
protocols have recruited over 1500 adults, ages 55 to 90, to participate in the research, consisting 
of cognitively normal older individuals, people with early or late MCI, and people with early AD. 
The follow up duration of each group is specified in the protocols for ADNI-1, ADNI-2 and 
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ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO had the option to be 
followed in ADNI-2. For up-to-date information, see www.adni-info.org.  
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