
 

 

 
Supplementary Figure 1 | Level structure of a doubly charged QDM (a) PL bias map 

acquired under 90 nW non-resonant excitation at 860 nm. Charging steps are labeled by the 

vertical dashed lines. Intensity is plotted on a linear scale in counts s
-1

 and has been allowed to 

saturate to bring out weak features. (b) Transition spectrum calculation of the two-electron 

system. Model parameters are derived from the data in (a). (c) Energy levels of a QDM charged 

with two electrons as a function of applied bias used to calculate the transition spectrum in (b).  



 

 

 

Supplementary Figure 2 | Cavity-QDM coupling measurement (a) The cavity was shifted 

through the aS-Raman as well as the triplet transition by a gas adsorption technique. Intensity is 

plotted on a linear scale in kilocounts s
-1

. (b) Magnified view of the cavity-triplet anticrossing 

where the dashed black lines are guides to the eye. 

 

 

Supplementary Figure 3 | Bias dependence of the Raman linewidth (a) PL scans extracted 

from Fig. 3a at 520 mV (black circles) and 550 mV (blue squares). Example one and two 

Lorentzian fits to the data are shown as solid red lines and were used to extract the FWHM 

linewidth of the transitions. (b) FWHM linewidth of the singlet (black circles), triplet (red 

squares), and anti-Stokes Raman (blue triangles) as a function of bias extracted from the data in 

Fig. 3a. The solid green line is a fit of the aS-Raman linewidth to the model described in the text. 

  



 

 

 
Supplementary Figure 4 | Power dependence of the Raman process (a) Power dependence of 

the anti-Stokes Raman peak intensity when the emission is resonant with the singlet (solid 

markers) and the cavity (open markers) at 510 mV for three detunings. (b) Power dependence of 

the anti-Stokes Raman linewidth for the same experimental parameters as in (a). (c) Integrated 

intensity of the anti-Stokes Raman versus laser power for the same experimental parameters as in 

(a). All figures share the legend in (a). 

  



 

 

 

Supplementary Figure 5 | Polarization dependence of the calculated cavity-QDM spectra 

Two-dimensional spectral maps calculated from the experimental parameters in Fig. 5a where 

Δ
CS

 = -980 μeV and the laser is co-polarized with the cavity mode. (a) Map including both V and 

H emission with equal magnitudes. (b) Pure H emission map, corresponding to recombination 

via diagonal transitions 2 and 3. Additional contributions from T+/T- (transition 5) are also 

present. (c) Pure V emission map, corresponding to recombination via vertical transitions 1 and 

4. Additional contributions from T+/T- (transition 5) are also present. (d) Level diagram 

illustrating the unique AC Stark shifts experienced by each transition. Polarization selection rules 

are labeled and defined in the legend. Solid (dashed) horizontal lines denote the modified 

(original) state energies. The blue solid arrows represent excitation and emission processes with 

the cavity polarization (V) while the red dashed arrows indicate H polarized emission. The 

curved lines represent the cavity mode at the detuning in (a).  



 

 

 

Supplementary Figure 6 | Control of the spin exchange energy (a) Two-dimensional spectral 

map taken in a (V, H) polarization configuration demonstrating cavity-enhanced AC Stark shifts 

and Autler Townes splittings at Δ
CS

 = -1920 μeV. The intensity is plotted on a logarithmic scale 

in kilocounts s
-1

 and the numbered features correspond to the transitions in (d). (b) Theoretical 

spectral map calculated from the experimental values in (a). Both vertically polarized and 

horizontally polarized emission components (V,V+H) are required to reproduce the experimental 

data. The Mollow triplet structure near the laser line is observed in the simulation but not 

resolved in our experiments due to the substantial laser scatter. (c,d) Energy level diagrams 

illustrating the origin of the (c) Autler-Townes splitting and (d) the AC Stark shifts. Solid 

(dashed) horizontal lines denote the modified (original) state energies. The blue solid arrows 

represent excitation and emission processes with the cavity polarization (V) while the red dashed 

arrows indicate H polarized emission. The curved lines represent the cavity mode at the detuning 

in (a). 

  



 

 

Supplementary Note 1. QDM energy level structure 

Charged QDMs exhibit bias-dependent photoluminescence spectra that are considerably more 

complicated than single QDs, but are well understood.
1
 This is apparent in Supplementary Fig. 

1a, where we present a PL bias map obtained under nonresonant excitation with a Ti-sapphire 

laser at 860 nm. In this particular set of data we have red detuned the cavity by gas adsorption in 

order to prevent the bright cavity emission from obscuring spectral features. Charging steps are 

observed which we assign to the 0e, 1e, 2e, and 3e charge states. Direct calculations of the 

doubly charged QDM transition spectrum following the methods of Refs. 1 and 2 using a tunnel 

coupling t ~ 1.75 meV agree with the experiment over the range where the two electron state is 

stable, reproducing the singlet, triplet, and other weak transitions in the data (Supplementary Fig. 

1b). Additional features such as the “x-patterns” common in QDM spectra appear in the 

calculation but are absent from experiment due to the fact that they lie outside the bias region 

where the two electron state is stable. In Supplementary Fig. 1c we plot the energies of the 

singlet, triplet, and the excited states in a doubly charged QDM from which the spectrum in 

Supplementary Fig. 1b can be obtained by taking the difference between the excited and ground 

states to obtain the transition energies and then using the state vectors to determine the intensity. 

 

Supplementary Note 2. Cavity-QDM coupling 

We extract the cavity-QDM coupling constant,  , by sweeping the cavity through the triplet 

transition via a gas adsorption technique. The resulting time-photoluminescence map in 

Supplementary Fig. 2 exhibits a clear anticrossing. The minimum separation between the peaks 

(  ) at the anticrossing is ~80 μeV and is related to   by
3
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where    = 190 μeV is the cavity linewidth and    = 28 μeV is the triplet linewidth estimated 

from Supplementary Fig. 3b. Using this equation we find that    ≈ 57 μeV and therefore our 

cavity-QDM system is just in the strong coupling regime (   > κ/4 ≈ 47.5 μeV). In addition, note 

the enhancement of the anti-Stokes Raman as the cavity is swept through it. 

 

Supplementary Note 3. Bias-dependent Raman linewidth 

A single photon source based on a Raman process has many advantages over other schemes, one 

of which is that the linewidth of the photon is determined by the spin-dephasing time, not the 

spontaneous emission lifetime. However, utilizing a scanning Fabry-Perot interferometer we 

observe relatively broad Raman photons (~11 μeV) compared to earlier work with a single spin 

(3 μeV).
4
 There are number of processes which could cause this effect, one of which is fast spin-

relaxation due to the large exchange energy.
5
 The Raman linewidth can also be increased by 

electric field fluctuations in either the voltage source or the local environment that cause jitter in 

the singlet, triplet, and excited state energy levels. Such spectral wandering effects can be 

significant in QDMs as the transition energies strongly depend on bias. 



 

 

 

To test this, we extract the singlet, triplet, and anti-Stokes Raman full width at half maximum 

(FWHM) linewidths from the data in Fig. 3a as a function of bias. Example one Lorentzian (used 

for the singlet and triplet) and two Lorentzian (used for the cavity-stimulated Raman) fits to the 

data are shown in Supplementary Fig. 3a, clearly demonstrating that the Raman linewidth can 

vary with sample bias. The full dependence of the Raman linewidth on bias is shown in 

Supplementary Fig. 3b and the variation is significant, reaching a minimum value at the “sweet 

spot” (
    

  
  ). The singlet and triplet transitions also exhibit variations, although they are less 

severe. We find that we can fit the bias-dependent Raman linewidth with the following model 

that accounts for voltage fluctuations of the exchange energy: 

    
      (  |

    

  
|  

 

 
   |

     

   |)
 

   
            

 .                        (2) 

     is the experimentally measured anti-Stokes Raman linewidth,    is the amplitude of the 

voltage fluctuations experienced by the sample,     is the bias-dependent exchange energy,    is 

the spectrometer resolution, and            is the intrinsic Raman linewidth. The fit to the data is 

excellent (Supplementary Fig. 3b) when we use values of     4.5 mV (a value consistent with 

observations on past QDM samples),     15 μeV (the spectrometer resolution), and             

8 μeV. The extracted value of            agrees well with our Fabry Perot measurements 

suggesting that while electric field fluctuations do play a role, there are additional mechanisms 

broadening the Raman linewidth. It may be possible to reduce Raman linewidth by decreasing 

the exchange splitting. This will both extend the voltage range over which 
    

  
   and also 

reduce the spin dephasing rate arising from cotunneling to the electron reservoir. 

 

Supplementary Note 4. Raman power dependence 

In Fig. 4b of the manuscript we plot the integrated intensity of the cavity-stimulated and resonant 

anti-Stokes Raman at a single laser power. In Supplementary Fig. 4 we present a complete 

characterization of the effect of laser power on the peak intensity, linewidth, and integrated 

intensity of the anti-Stokes Raman. These values are extracted by fitting a sum of three 

Lorentzians to the data. Supplementary Fig. 4a shows the Raman peak intensity for the resonant 

case (solid markers) and the cavity-stimulated case (open markers) at three detunings. Signs of 

saturation are evident in the resonant condition but less-so for the cavity-assisted process. We 

observe that at high powers the peak intensity of the cavity-assisted Raman can actually become 

comparable to resonant Raman, even at a cavity detuning of Δ
CS

 = -400 μeV. Finally, we note 

that the Raman intensities in Fig. 3 and Supplementary Fig. 4 differ slightly. We attribute this to 

variations in the collection efficiency as these data were acquired on different days. 

 



 

 

The Raman linewidth exhibits a surprising dependence on the laser power (Supplementary Fig. 

4b). This is particularly pronounced for the resonant cases where the linewidth increases as the 

laser power exceeds ~10 μW for all cavity detunings. In addition, Raman photons for the doubly 

resonant case (Δ
CS

  = 0 μeV) appear to have a larger linewidth than the detuned cases. The 

linewidth of cavity-stimulated Raman photons increases only marginally. 

 

Finally, while the peak intensity saturates for the resonant Raman, the integrated intensity does 

not (Supplementary Fig. 4c). This occurs because of the substantial broadening of the resonant 

Raman photons. Why this broadening is not compensated for by a concomitant reduction in peak 

intensity remains an open question. 

 

Supplementary Note 5. Expressions for the Autler-Townes and AC Stark effects 

The Autler-Townes effect can most easily be described in a strongly-driven two-level system. If 

the drive field is made sufficiently strong, the levels become “dressed” by the laser field and 

form polariton-like states. As a result both the ground (  ) and excited (  ) states split, forming 

a pair levels separated by the generalized Rabi frequency,  
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   is the Rabi frequency of the laser,   is the laser detuning from the transition, and       
   

 

corresponds to the unperturbed state energies. This splitting can be directly resolved in a three-

level system by observing emission or absorption between the dressed excited states and a 

spectator state. The spectral signature is a doublet spilt by    on resonance (=0). 

 

In the limit of large detuning (       ) the eigenstates are well described by the bare states, 

which are weakly dressed and experience small energy shifts. The magnitude of this shift can be 

found by expanding Eqs. (3,4) to second order in      and keeping only the solution close to 
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and is known as the AC Stark shift. Note that the amplitude of the shift scales linearly with the 

laser intensity, in contrast to the Autler-Townes splitting. 

 

Since the cavity is strongly driven, we anticipate that a good approximation is to ignore the effect 

of the QDM on the cavity which is weak compared to the laser. The steady state of the cavity can 

then be modeled as an effective field driving the QDM. Following this process we find that the 

Rabi frequency appearing in Eqs. (3-6) is replaced by a cavity-enhanced Rabi frequency:  
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Here,    is the coupling of the laser to the cavity and    is the detuning of the laser from the 

cavity (Fig. 2b). We find that these laser-cavity interactions cause remarkable modifications of 

the Autler-Townes and AC Stark effects as shown in Fig. 5 and Fig. 6 of the manuscript. 

 

Supplementary Note 6. Cavity-QDM modeling 

When the system is driven by vertically polarized light the cavity is driven very strongly. The 

interaction of the cavity with the external field is much stronger than the interaction of the cavity 

with the quantum dot, which to first approximation we can ignore. Our strategy is therefore to 

solve the equation of motion of the cavity annihilation/creation operator for the driven and lossy 

cavity in the absence of the quantum dot. This leads to a steady state solution for the cavity 

operators which can then be plugged into the equation of motion for the quantum dot degrees of 

freedom, allowing us to obtain an effective Hamiltonian for the QDM alone. This approximation 

is justified because there is an asymmetry in how strongly the QDM affects the cavity versus 

how much the cavity affects the QDM. It should be a valid approximation in the limit where the 

cavity is populated with a large number of photons,    . Following this process we derive an 

effective cavity-induced driving of the QDM, effectively amplifying the driving field the 

quantum dots experience.  

 

The Hamiltonian of the system is 

                     ,                                                 (8) 

where the terms respectively describe the QDM and cavity system in the absence of interactions, 

the interaction between the QDM and the laser, the interaction between QDM and cavity, and the 

interaction between the cavity and the laser. The first three terms of the Hamiltonian contain 

contributions from the 4-level singlet-triplet subspace as well as the 2-level    and    transitions 

(Fig. 2b):  
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The   ,  , and – subscripts indicate the singlet-triplet subspace, the    transition, and the    

transition,    is the cavity frequency, and      are the annihilation and creation operators for 

the cavity. The specific form of each of these terms is as follows: 
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All the energies in the Hamiltonian are measured from the singlet, which defines the zero of 

energy. In these expressions,    is the energy of the        and    triplets,    is the energy of the 

trion state |   ⟩,    is the energy of the trion state |   ⟩,    is the energy of the trion state 

|   ⟩,    is the energy of the trion state |   ⟩,      is the Rabi frequency of vertically (J=V) and 

horizontally (J=H) polarized transitions of the QDM,   is the coupling to the cavity, and       is 

the Rabi frequency of the cavity.  

 

Moving to the rotating frame of the pulse and defining the detuning of the cavity from the laser 

  , the equation of motion for the annihilation operator is  ̇         
 

 
       where   is 

the cavity loss rate. The steady state solution is then 
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Moving to the lab frame and plugging Eq. (22) into the term       we finally find for the 

effective Hamiltonian of the QDM: 
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The last three terms in brackets corresponds to the cavity-enhanced drive of the quantum dot 

system. Grouping the terms describing vertically polarized transitions and dropping the phase, 

we find an effective Rabi frequency for all vertically polarized QDM transitions in the singlet-

triplet subspace which equals 
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A similar expression can be obtained for the     and    transitions: 
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We can thus view the cavity as amplifying the Rabi frequency that the vertically polarized 

transitions of the QDM feel by a term equal to the quantity in the bracket. This model captures 

the cavity-enhanced excitation of the QDM very well, but does not include any cavity-enhanced 

emission processes. 

We use the effective Hamiltonian derived above, as well as the standard Lindblad operators 

     √ | ⟩⟨  |         √ | ⟩⟨  |           √ |  ⟩⟨  |  and        √ |  ⟩⟨  | for the 

optical relaxation, and       √ | ⟩⟨  | for the relaxation between singlet and triplet states. 

      √ |  ⟩⟨  | and       √ |  ⟩⟨  | similarly describe optical relaxation of the     and 

   transitions. We also include a pure dephasing term for the optical transitions, with rate      . 

 

We solve for the resonance fluorescence signal for the system using the standard expressions 
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for horizontally polarized detection and 
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for vertically polarized detection. In these equations the symbol     

  denotes the raising operator 

between state | ⟩  | ⟩ |  ⟩ |  ⟩ |  ⟩   and trion |  ⟩          . The expectation value is 

taken with respect to the steady state and the quantum regression theorem is used to facilitate the 

calculation.  

 

All parameters are taken from the experiment, with the exception of       and   , which are not 

known. These are adjusted so that the theoretical plots match the experimental data. Below we 

include a list of all the numbers used in our simulations.  

    6.75 μeV,    10 μeV,        24 μeV,    57 μeV,    186 μeV,    7.02 meV, and 

     1.455 meV. 

 

Supplementary Note 7. Polarization dependence 

We discuss in the text the leak-through of cavity polarized light in Fig. 5a and Fig. 6d This 

necessitates that our calculations include both V and H emission of comparable magnitude to 

capture all the spectral lines seen in the experiment. In Supplementary Fig. 5 we isolate the 

individual contributions of V and H emission. Supplementary Fig. 5a is identical to Fig. 5b, 

containing V and H contributions. Supplementary Fig. 5b contains only H emission, which 

includes contributions from the cross transitions 2 and 3. Supplementary Fig. 5c contains purely 

V emission, which contains contributions from transitions 1 and 4, and resembles the AC Stark 

shifts expected for a pair of two-level systems. An additional point we wish to address is the role 

of the T+/T- transitions. While these transitions do not show Autler-Townes splittings as they are 

not part of the Λ-configuration, they do experience AC Stark shifts of decreased magnitude since 

they are circularly polarized (Supplementary Fig. 5d). Therefore, there is the appearance of a 

third AC Stark shifted line around the triplet for both H and V polarized emissive components 

which is labeled as transition 5. This is not visible experimentally due to the broadening of the 

emission lines. 

 

Supplementary Note 8. Control of the exchange energy 

In the manuscript we discuss our ability to control the magnitude of the exchange energy through 

the cavity-enhanced AC Stark effect. This is well summarized by the data in Fig. 5e in the main 

text where we show Eex as a function of laser energy for two detunings: Δ
CS

 = -980 μeV and Δ
CS

 

= -1920 μeV. Here, we show the full spectral map for the second detuning, Δ
CS

 = -1920 μeV, in 

Supplementary Fig. 6a for the (V,H) polarization configuration. The cavity is red detuned from 

all transitions, forcing the singlet and triplet to blueshift as the laser is swept over the cavity 

mode. Since the cavity is closer to the triplet than the singlet, the triplet experiences a larger AC 

Stark shift and the exchange energy decreases. We have calculated the energies and emission 

intensities of the cavity-QDM system under these conditions and find good agreement between 



 

 

theory (Supplementary Fig. 6b) and experiment (Supplementary Fig. 6a). We again note that 

while the agreement between the experimental and theoretical energies is excellent, there are 

additional variations in the measured emission intensity and linewidth not captured by our 

model. 
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