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SUPPLEMENTARY EXPERIMENTAL PROCEDURES 

 

Animals and diets 

CGI-58-floxed mice [1,2] and Fab4-Cre transgenic mice [3] have been previously 

described and used for the generation of mice with AT-selective disruption of CGI-58 

(CGI-58ATko). Littermates homozygous for the floxed CGI-58 allele (flox/flox) were used 

as controls. Atgl-floxed mice [4] and AdipoQ-Cre transgenic mice [5] have been used for 

the generation of mice with AT-selective disruption of ATGL (ATGL-ATko). Mice were 

housed in a pathogen-free animal facility on a regular 12-h light/dark cycle and had free 

access to food and water. 14- to 16-week-old controls and CGI-58ATko mice were fed a 

standard chow diet (Ssniff) or subjected to a high fat diet containing 45% calories from 

fat (Ssniff) starting at 5 weeks of age for the duration of 10 weeks. Animals were 

subjected to 6-h-fasting or overnight-fasting (16-h-fasting) and then sacrificed.  

For the administration of the PPARα agonist Wy14643 (Cayman Chemical), 12-h-fasted 

control and CGI-58ATko mice were i.p. injected either the Wy14643 compound (50 µg/g 

body weight in 50% DMSO) or equivalent amounts of vehicle (50% DMSO in 0.9% 

NaCl). After another 2-h-fasting period, mice were sacrificed and tissues were excised.  

Animal care and study protocols were approved by the Austrian ethics committee and 

were in accordance with the Council of Europe Conventions.  

For raising plasma FA levels, mice were fasted for 12 h and were then administered an 

intragastric olive oil gavage (200 µl/mouse). To release lipoprotein lipase (LPL) from the 

luminal site of capillaries and to hydrolyze TG-rich lipoproteins, heparin was 

administered i.p. (10 IU/mouse). 2 h after oil-gavage/heparin, mice were anaesthetized 
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and blood was collected from the retro-orbital sinus for subsequent plasma analysis. 

Thereafter, mice were euthanized by cervical dislocation and tissues were harvested 

and snap-frozen until further qRT-PCR analysis. 

 

Gene expression analysis by quantitative real-time PCR 

Total RNA was isolated with TRIzol reagent (Invitrogen) and treated with DNase I 

(Invitrogen). One µg total RNA was reverse transcribed using the MultiScribe High 

Capacity Reverse Transcription kit (Applied Biosystems) at 37°C for 2 hours. 

Quantitation of relative expression was performed using StepOnePlus Real-time PCR 

system (Applied Biosystems) with denaturation at 95°C and annealing/extension at 60°C 

over 40 cycles. PCR reactions (20 µl) contained 8 ng cDNA, 10 pmol of each primer and 

10 µl Maxima SYBR Green/ROX Master Mix (Thermo Fisher Scientific). Relative mRNA 

levels were quantified using the ΔΔCt method with ß-actin (non-AT) or 36B4 (AT) as 

reference gene. Primer sequences are listed in Table S1.  

 

Xbp1-PCR 

1µl of liver cDNA was used as template and the PCR was performed applying 3 min 

94°C, 30 cycle of 30 sec at 94°C, 30 sec at 58°C, 30 sec at 72°C and finally 3 min at 

72°C. PCR products were run on a 3% agarose gel. 

 

Plasma parameters and HOMA-IR 

Blood samples were collected from shortly anesthetized non-fasted, 6-h- and 16-h-

fasted mice by retro-orbital puncture. Plasma TG, FA, glycerol, hormone and cytokine 

levels were determined using commercially available kits. The homeostasis model for 
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insulin resistance (HOMA-IR) was calculated from 6-h-fasting glucose (mmol/L) x fasting 

plasma insulin (µU/ml) divided by 22.5.Plasma levels for insulin, FGF21, leptin, ketone 

bodies and levels of plasma growth hormone were analyzed using ELISA or Colorimetric 

Assay kits from Crystal Chem. (Rat Insulin ELISA kit), Cayman Chemical (ß-

Hydroxybutyrate), Millipore/Merk (Rat/Mouse FGF-21 ELISA). Adiponectin levels were 

determined using the Mouse/Rat Adiponectin ELISA Kit (B-Bridge International, Inc.,CA, 

USA). Mouse TNF alpha and IL-6 were measured using the ELISAs “Ready-SET-Go!” 

from eBioscience. 

 

Plasma ALT   

ALT activity was determined in plasma of mice using the Infinity ALT(GPT) Liquid stable 

reagent according to the manufacturer’s protocol. Briefly, 20 µl of plasma were 

incubated with 200 µl of ALT reagent for a total time of 10 min at 37°C in a Beckman 

DU640 spectrophotometer. The reaction is monitored by measuring the rate of the 

decrease in absorbance at 340 nm per minute. 

 

Plasma non-saturated and saturated FA species 

Analysis of plasma FA species from overnight fasted control and CGI-58ATko mice was 

performed as previously described [6].  

 

Measurement of tissue TG hydrolytic activities 

Tissue neutral TG hydrolase activity in the absence and presence of recombinant CGI-

58 was performed as previously described [7,8]. Briefly, tissue of 16-h-fasted animals 

was homogenized in Solution A (0.25 M sucrose, 1 mM EDTA, 1 mM DTT, 1 µg/ml 
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pepstatin, 2 µg/ml antipain, 20 µg/ml leupeptin, pH 7.0) on ice using an Ultra Turrax 

(IKA) and the infranatant after centrifugation at 20,000 x g and 4°C for 30 min was 

assayed for TG hydrolase activity. A micellar substrate of phospholipid-emulsified triolein 

(1.67 mM) containing [9,10-3H]-labeled triolein (Perking Elmer) was used. Tissue lysates 

in a total volume of 100 µl solution A were incubated with 100 µl substrate in a shaking 

water bath at 37°C for 60 min in the absence or presence of the ATGL-specific inhibitor 

ATGListatin (20 µM) [9]. The reaction was terminated by the addition of 3.25 ml 

methanol/chloroform/n-heptane (10/9/7, v/v/v) and 1 ml 0.1 M potassium carbonate/0.1 

M boric acid, pH 10.5. After centrifugation, radioactivity in the upper phase was 

determined by liquid scintillation counting. 

 

Measurement of tissue TG levels 

Tissue lipids were extracted according to the method of Folch et al [10]. Tissue lipid 

extracts were dried using a SpeedVac (Heto) and re-solubilized by brief sonication in 2 

% Triton X-100 (Misonix Ultrasonic Liquid Processor, QSonica). TG concentrations were 

measured with the Infinity triglycerides kit (Thermo Electron Corporation) using a 

glycerol standard solution (Sigma). Total cholesterol was measured using cholesterol 

CHOD-PAP reagent (Roche Diagnostics, Mannheim, Germany) with either the Glycerol 

Standard Solution (Sigma, St. Louis, MO) or a 2mg/ml cholesterol solution as standard. 

Remaining tissue pieces were lysed in lysis buffer (0.3 N NaOH/0.1 % SDS) and protein 

concentration was determined using the BCA Protein Assay Kit (Pierce, Thermo 

Scientific). 
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Measurement of glycogen in liver tissue 

Snap-frozen tissue was homogenized in 0.03M HCl (20 µl 0.03 M HCl/mg tissue). For 

the determination of total glucose concentration an aliquot of the tissue homogenate 

was incubated with equal volumes of 2 M HCl for 2 hours at 90°C. Subsequently, the 

homogenate was neutralized with 2 M NaOH. For the measurement of free glucose 

concentration an aliquot of the tissue homogenate was mixed with equal volumes of 2 M 

HCl and immediately neutralized with 2 M NaOH. After centrifugation of samples for 5 

minutes at 10,000 x rpm an aliquot of the supernatant was used for the measurement of 

glucose concentrations using the D-Glucose-HK Kit (Megazyme, Wicklow, Ireland). The 

difference between total and free glucose concentrations represented the tissue 

glycogen content. 

 

Pyruvate tolerance tests 

After an overnight fast (16 h), mice were injected with sodium-pyruvate (2g/kg body 

weight) dissolved in saline and glucose blood glucose levels were determined after 15, 

30, 60, 90 and 120 min.   

 

Western Blot analyses 

Tissues of 16-h-fasted mice were homogenized in Solution A (0.25 M sucrose, 1 mM 

EDTA, 1 mM DTT, 1 µg/ml pepstatin, 2 µg/ml antipain, 20 µg/ml leupeptin, pH 7.0) on 

ice using an Ultra Turrax (IKA). Tissue lysates were centrifuged at 20,000 x g and 4°C 

for 30 min and the infranatants were assayed for protein concentration using the Bio-

Rad protein assay (Bio-Rad Laboratories) and BSA as standard. 

7 
 



Nuclear extracts were prepared from frozen liver samples either by the use of the NE-

PER Nuclear and Cytoplasmic Extraction Reagents following the manufacturer’s 

instructions (Pierce, Thermo Scientific) or by using a protocol modified from Lamond Lab 

Protocol. Briefly, tissue pieces were homogenized in Buffer A (10 mM HEPES pH 7.9, 

1.5 mM MgCl2, 10 mM KCl, 0.5 mM DTT, 1 µg/ml pepstatin, 2 µg/ml antipain, 20 µg/ml 

leupeptin) using a Wheaton tissue grinder (Thermo Scientific). The homogenate was 

filtered through a cell strainer (70 µm, Corning) and centrifuged at 228 x g and 4°C for 

10 min. The supernatant was withdrawn containing cytosolic proteins. Subsequently, the 

pellet was resuspended in Buffer A containing 1 % NP-40 using a tissue grinder and 

centrifuged at1,000 x g and 4°C for 10 min. After rinsing in Buffer A, the pellet was 

resuspended in sucrose solution S1 (0.25 M sucrose, 10 mM MgCl2) and layered over 

sucrose solution S3 (0.88 M sucrose, 0.5 mM MgCl2). After centrifugation at 2,800 x g 

and 4°C for 10 min, the nuclear pellets were sonicated twice for 10 seconds in RIPA 

buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1 % NP-40, 0.5 % deoxycholate, 1 µg/ml 

pepstatin, 2 µg/ml antipain, 20 µg/ml leupeptin) using a Misonix Ultrasonic Liquid 

Processor (QSonica). The supernatant obtained after centrifugation at 2,800 x g and 

4°C for 10 min was collected as nuclear extract and assayed for protein concentration 

using the BCA Protein Assay Kit (Pierce, Thermo Scientific) and BSA as standard. 

Equivalent amounts of protein homogenates and nuclear extracts were separated by 

SDS-PAGE according to standard protocols and blotted onto a polyvinylidene fluoride 

membrane (Carl Roth GmbH). Blots were probed with antibodies raised against CGI-58 

(designated as ABHD5, Abnova), GAPDH (Cell Signaling), ATGL (Cell Signaling), G0S2 

(kindly provided byS. Kersten) [11], CREBH (kindly provided by A.-H. Lee) [12], Lamin 

A/C (Santa Cruz Biotechnology), BiP (Cell Signaling), Pdi (Cell Signaling), HNF-4α 
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(Santa Cruz Biotechnology), HDAC2 (Invitrogen, Life technologies), PGC-1α 

(Calbiochem, Millipore), Total FoxO1 (Cell Signaling), ATF6 (NBP1-40256, Novus 

Biologicals, Littleton, CO), eIF2α and phosphorylated-eIF2 α (Cell Signaling Technology, 

Danvers, MA), JNK and phosphorylated-JNK (Cell Signaling), IRE1α (Cell Signaling), 

PERK and phosphorylated PERK (Cell Signaling Technology), and mouse monoclonal 

antibody raised against β-actin (Santa Cruz Biotechnology, Dallas, TX). Specifically 

bound immunoglobulins were detected in a second reaction using horseradish 

peroxidase-conjugated anti-rabbit or anti-mouse IgG antibodies (1:10,000 dilution) and 

visualized by enhanced chemiluminescence detection (ECL, Pierce/Thermo Scientific, 

Waltham, MA). 

For analysis of hepatic insulin sensitivity, 6-h fasted mice were injected with insulin 

(1U/kg body weight) and after 10 min livers were dissected for determination of 

phosphorylated (pSer473) and total Akt using antibodies from EMD Millipore. Levels 

were normalized to ß-Actin and pAkt/Akt ratios were calculated.  

Bound immunoglobulins were detected using horseradish peroxidase-conjugated anti-

rabbit, anti-mouse or anti-goat IgG antibody (Vector laboratories, GE Healthcare, 

Millipore) and visualized by enhanced chemiluminescence detection (ECL Plus Western 

blotting substrate, Pierce, Thermo Fisher Scientific). Quantification of signal intensities 

was performed using the ImageJ software. 

 

Acute cold exposure 

For acute cold exposure experiments, non-fasted and 10 hours fasted mice were single-

housed and exposed to 4°C. Before the start of the experiment and at indicated time 

points rectal body temperature was measured by the usage of a Temp10T 
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Thermocouple thermometer (Thermo Scientific, Waltham, MA) and a Ret-3 rectal probe 

for mice (Physitemp, Clifton, NJ).  
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SUPPLEMENTARY FIGURES 

 
 

 
 

Supplementary Fig. 1: (A) CGI-58 mRNA expression, body analyses, liver total cholesterol 

and LD analysis in fasted CGI-58ATko compared to flox/flox mice. (A) In line with CGI-58 protein 

expression (Fig. 1A), CGI-58 mRNA levels were markedly and exclusively reduced in gonadal 

white and brown AT (WAT and BAT) of fasted CGI-58ATko compared to flox/flox mice. (B) 

Bodyweight monitored over a period of 18 weeks starting at the age of 6 weeks. (C) Lean body 
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mass and fat mass of 15-week old mice. (D) Organ weights indicated as % of body weight of 15-

week old mice. (E) Total cholesterol levels in the liver of non-fasted compared to fasted mice. (F) 

LD size and numbers were determined from a total area of 18478 µm2 derived from sections of 

three mice and genotype. In total, 1019 LDs were counted for flox/flox and 111 LDs for CGI-

58ATko mice, respectively. (G) Hepatic G0S2 and ATGL protein expression in fasted ATGL-

ATko mice compared to controls. Values are mean ± SD from at least 5 mice per genotype. *p 

<0.05; **p <0.01; ***p <0.001.  
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Supplementary Fig. 2: Hepatic nuclear PGC-1α and HNF4α protein level, PPARα-regulated 

gene expression in muscle of CGI-58ATko mice and hepatic expression of PPARα-regulated 

genes in mice lacking ATGL exclusively in AT. Western blot analysis of (A) PGC-1α and (B) 

HNF4α protein content in nuclear extracts obtained from liver tissue of fasted mice. For 

quantitation (lower panels) blots were scanned and bands were analyzed with ImageJ software. 

(C) Cardiac and (D) skeletal muscle (m. quadriceps) mRNA levels of PPARα-regulated genes in 
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fasted flox/flox and CGI-58ATko mice. mRNA expression of (E) PPARα-regulated genes, (F) 

PPARα and PGC-1α in the liver of fasted flox/flox mice compared to levels in mice lacking ATGL 

exclusively in AT (ATGL-ATko). Values are mean ± SD from at least 5 mice per genotype. **p 

<0.01; ***p <0.001. 
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Supplementary Fig. 3: Cold adaptation, gluconeogenic gene expression and pyruvate 

tolerance test in fasted mice. Measurement of body temperature of (A) non-fasted and (B) fasted 

mice maintained at 4°C. The rapid drop in body temperature of CGI-58ATko mice prompted us 

to terminate the experiment. (C) mRNA expression levels of phosphoenolpyruvate 

carboxykinase (PEPCK) and glucose-6-phosphatase (G6P) in the liver of fasted mice 

determined by qRT-PCR. (D) Pyruvate tolerance test in fasted mice. Glucose was measured 

before and after the injection of sodium-pyruvate at a dose of 2g/kg body weight. Values are 

mean ± SD from at least 5 mice per genotype. *p <0.05; ***p <0.001. 
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Supplementary Fig. 4: Liver mRNA expression of molecular chaperons, proteins from the 

UPR, nuclear co-repressors and protein levels of FoxO1 nuclear transcription factor. (A) mRNA 

expression of selected ER stress marker genes in the liver of non-fasted and overnight-fasted 

flox/flox and CGI-58ATko mice normalized to levels of non-fasted flox/flox mice. (B) Hepatic 

mRNA expression levels of the PPARα co-repressors Ncor1 and Nrip1 which are under the 

regulation of JNK. (C) Measurement of cytosolic FoxO1 protein levels compared to nuclear 

levels of the transcription factor. Blots were quantitated applying ImageJ software. Values are 

mean ± SD from at least 5 mice per genotype. #p <0.05; ##p <0.01  ###p <0.001 depicts non-

fasted versus fasted. **p <0.01 flox/flox versus CGI-58ATko. 

  

16 
 



 

 
 

Supplementary Fig. 5: Body and LD analyses, TG catabolism and protein levels related to 

the UPR pathway and insulin signaling on HFD feeding.  Body weight (A) and body mass 
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composition (B) of mice on HFD for 10 weeks.  (C) LD size and numbers were determined from 

at total area of 19418 µm2 and 18165 µm2 of three flox/flox and CGI-58ATko mice, respectively. 

In total, 836 LDs were counted for flox/flox and 519 LDs for CGI-58ATko mice, respectively. 

Hepatic ATGL mRNA (D) and protein (E) expression of fasted mice on HFD. (F) Hepatic protein 

levels of the ER stress regulators ATF6 and IRE1α normalized to β-actin.  (G) Hepatic protein 

levels of phosphorylated eIF2alpha and PERK versus total. (H) Hepatic protein levels of BiP and 

Pdi normalized to GAPDH. (I) Protein levels of Akt and phospho-Akt in liver tissue of flox/flox 

controls and CGI-58ATko mice kept on chow (left panel) or HFD (right panel). Ratio of 

phosphorylated Akt versus total Akt was calculated. Values are mean ± SD from at least 5 mice 

per genotype except for western blotting where n = 3 - 4. *p <0.05; ***p <0.001. 

  

18 
 



SUPPLEMENTARY TABLES 

 

Supplementary table 1 

 

Plasma cytokine and adiponectin levels in fasted flox/flox and CGI-58ATko mice 
on HFD.  
 

 

 

 

 

 

Values represent mean ± SD; *p< 0.05, **p< 0.01, ***p< 0.001 (n = 6). 
 

 

 

 

 

 

  

 flox/flox CGI-58ATko 

TNFα [pg/ml] 8.1 ± 2.2 3.4 ± 2.3* 

IL-6 [pg/ml] 5.1 ± 3.1 3.0 ± 1.9 

Adiponectin [µg/ml] 7.6 ± 0.9 7.2 ± 0.9 
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Supplementary table 2 

PCR primer sequences used for qRT-PCR.  

Gene forward primer (5’-3’) reverse primer (5’-3’) 

ß-actin AGCCATGTACGTAGCCATCCA TCTCCGGAGTCCATCACAATG 

36B4 GCTTCATTGTGGGAGCAGACA CATGGTGTTCTTGCCCATCAG 

CGI-58a GGTTAAGTCTAGTGCAGC AAGCTGTCTCACCACTTG 

ATGLb GAGACCAAGTGGAACATC GTAGATGTGAGTGGCGTT 

HSL GCTGGGCTGTCAAGCACTGT GTAACTGGGTAGGCTGCCAT 

PPARαc GTACCACTACGGAGTTCACGCAT CGCCGAAAGAAGCCCTTAC 

PGC-1αc CCCTGCCATTGTTAAGACC TGCTGCTGTTCCTGTTTTC 

CPT1α CACCAACGGGCTCATCTTCTA CAAAATGACCTAGCCTTCTATCGAA 

CPT1ß CGAGGATTCTCTGGAACTGC GGTCGCTTCTTCAAGGTCTG 

AOX1 AGATTGGTAGAAATTGCTGCAAAA ACGCCACTTCCTTGCTCTTC 

MCAD GCAACTGCCCGCAAGTTT TACTCCCCGCTTTTGTCATATTC 

LCADb TTTCCGGGAGAGTGTAAGGA ACTTCTCCAGCTTTCTCCCA 

FGF21 TCCAAATCCTGGGTGTCAAA CAGCAGCAGTTCTCTGAAGC 

G0S2 TAGTGAAGCTATACGTGCTGGGC CCGTGGCGGCTGTGAAAGGGT 

PEPCK CAT ATG CTG ATC CTG GGC ATA AC CAA ACT TCA TCC AGG CAA TGT C 

G6P CCT CCT CAG CCT ATG TCT GC AAC ATC GGA GTG ACC TTT GG 

CREBHd GGCCATTGACCTGGACATGT TTCACAGTGAGGTTGAAGCGG 

BiPe GTTTGCTGAGGAAGACAAAAAGCTC CACTTCCATAGAGTTTGCTGATAAT 

Chope GTCCAGCTGGGAGCTGGAAG CTGACTGGAATCTGGAGAG 

Pdie CAAGATCAAGCCCCACCTGAT AGTTCGCCCCAACCAGTACTT 

Erdj4f GTGGAGAAGCTGCGTCGGGG TGAGGCAGACTTTGGCACACCT 

Ncor1 AGAACTTCTGATGTTTCTTCCAG CTGGAGACTTGGCTGGTATA 

Nrip1 CCCCAGTACCAACAGGACTACC TGAACGTGGCGGAATTTTGT 

HMGCS2 AGAGAGCGATGCAGGAAACTT AAGGATGCCCACATCTTTTGG 

Xbp1 ACACGCTTGGGAATGGACAC CCATGGGAAGATGTTCTGGG 

Table footnotes: 

a Zierler, K.A., Jaeger, D., Pollak, N.M., Eder, S., Rechberger, G.N., Radner, F.P.W., Woelkart, 
G., Kolb, D., Schmidt, A., Kumari, M., et al. (2013). Functional cardiac lipolysis in mice critically 
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depends on comparative gene identification-58. The Journal of Biological Chemistry 288, 9892–
9904 

b Haemmerle, G., Moustafa, T., Woelkart, G., Büttner, S., Schmidt, A., Van de Weijer, T., 
Hesselink, M., Jaeger, D., Kienesberger, P.C., Zierler, K.A., et al. (2011). ATGL-mediated fat 
catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. Nature Medicine 
17, 1076-1085. 

c Murholm, M., Dixen, K., Qvortrup, K., Hansen, L.H., Amri, E.Z., Madsen, L., Barbatelli, G., 
Quistorff, B., and Hansen, J.B. (2009). Dynamic regulation of genes involved in mitochondrial 
DNA replication and transcription during mouse brown fat cell differentiation and recruitment. 
PLoS One 4, e8458. 

d Lee, J.H., Giannikopoulos, P., Duncan, S.A., Wang, J., Johansen, C.T., Brown, J.D., Plutzky, 
J., Hegele, R.A., Glimcher, L.H., and Lee, A.H. (2011). The transcription factor cyclic AMP-
responsive element-binding protein H regulates triglyceride metabolism. Nature Medicine 17, 
812-815. 

e Kawasaki, N., Asada, R., Saito, A., Kanemoto, S., and Imaizumi, K. (2012). Obesity-induced 
endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Scientific Reports 
2, 799. 

f Schaap, F.G., Kremer, A.E., Lamers, W.H., Jansen, P.L. and Gaemers, I.C. (2013). Fibroblast 
growth factor 21 is induced by endoplasmic reticulum stress. Biochimie 95 (4), 692-699. 
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