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Computing weighted predictions and corresponding weights

To obtain a prediction via weighted averages over all simulations for a given vaccine delivery schedule
or vaccinated cohort for a given country or trial site and vaccine profile, for a certain outcome O, the
following formula is used,

HO (C7 Z) = Z weir(j)weff(k)whalfflife(l)wdecSh(m)wacCU(n)waCCS (p)O(Ca i? jv kv lv m,n, P) (]-)
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where puo(c, ) represents a weighted average of outcome O for a particular coverage level ¢ and model
1. Output O(c, 1,4, k,1,m, n,p) represents the predicted outcome from a scenario (calculated separately
for a number of seeds (used to initialise the random number stream)) corresponding to coverage level ¢,
model i, EIR j, efficacy k, half-life [, decay shape m, access to uncomplicated care n and access for severe
care p. The weights are represented via vectors wpame where name refers to variables model (mod), EIR
(eir), efficacy (eff), half-life (halflife), decay shape (decSh), access for uncomplicated (accU), access for
severe (accS). The summation subscripts j, k, 1, m, n, p correspond to level of each variable, for example j
=1, ..., 8 for EIR levels. The number of levels in each variable depends on the final simulation structure
(see Table 1 (main text))

For all predictions we present mean weighted averages and report the range via minimum and maxi-
mum limits over the weighted averages for all models and seeds, without model weighting. We do this to
reflect the full structural and stochastic uncertainty in the mode.

Pre-erthrocytic vaccine efficacy and decay

The action of a pre-erythrocytic vaccine like RTS,S is input to the models as vaccine efficacy in preventing
a new infection. This corresponds to the proportion of blood stage infections averted, and hence is similar
to the efficacy measured in a sporozoite challenge trial. This is different from the efficacy in averting
clinical episodes as reported in the Phase III clinical trials, which differs from the simulated efficacy
both in average value and in the way in which it evolves over time, with factors including transmission
heterogeneity and age-shifting of susceptibility leading to greater decays over time in field-measurable
quantities than in the underlying efficacy against infection assumed in the models [1].



OpenMalaria allows different rates of decay [2] in underlying efficacy over time and different shapes
of the decay. For fitting, decay was assumed to follow a Weibull curve described by the initial value of
the efficacy, the half-life, and a shape parameter, k. Simulations were carried out with shape parameter
k with values of 0.5,1 or 2, where k& = 1 corresponds to exponential decay. The Weibull decay function

takes the form )
—(log(2)) %t
€(t) = egexp 7( i(k ) ] . (2)

Here €(t) is the efficacy against infection at time ¢, ¢y the initial efficacy against infection of the vaccine
at last given dose of vaccine, and L (years) is the half-life of efficacy. Decay shapes for different values of
shape parameter k£ and half-life L are illustrated in Figure SM2. When k = 1, an exponential decay of
efficacy against infection is obtained. For k less than 1, the initial decay is faster than exponential and
then slower than exponential after the time equivalent to half-life is reached, this is similar to a bi-phasic
like decay [3,4], with a sharp decline (quick decay) in efficacy followed by longer decay. For k greater
than 1 we observe slow decay of efficacy against infection until the time equivalent to half-life L, and
then a much faster decay.

Methodology associated with parameterising vaccine properties
Calculating disease rates and clinical efficacy

The disease rate, the number of events per person in a given period is given by

_ Eu(t)
T — Hz(t) (3)

Here, D, represents the disease rate for group x (control ¢ or vaccinated v) for 6-month period ¢, E, the
number of events recorded in the corresponding six month period and H, the number of individuals at
risk.

The simulation model results were fitted to the disease rates from the trial, not the clinical efficacy.
The clinical efficacy predicted by the models can be calculated as

(4)
which is 1 minus the vaccinated disease rate divided by the control disease rate.

Malaria Exposure in the trial sites

The estimates of vaccine properties were made conditional on estimates of the exposure to malaria in each
of the 11 trial sites. Malaria exposure as a model input is the EIR and we use two different approaches
to estimating site-specific EIR distributions:

i. Estimates based on the MAP 2010 prevalence surfaces [5] for the district in which the trial site is
located. For this method MAP prevalence and the OpenMalaria model relationship between EIR
and prevalence along with site-specific access to effective care was used to derive distributions of

exposure [6]. The access to effective care assumed for each trial site was a scaled estimate from
DHS admin-1 [7].

ii. Estimates adjusted to account for differences between MAP-based prevalence and observed trial
site prevalence calculated from Phase III trial data [8]. We estimated a relationship between Open-
Malaria model estimates of infant prevalence versus predicted 2-10 years prevalence (the age group
represented by MAP data). And using relationship between OpenMalaria model input EIR vs



predicted 2-10 years prevalence. These two relationships were then combined to estimate a func-
tional dependence between infant prevalence and EIR. Using the site-specific estimates of prevalence
(recorded as parasite positivity in the trial control group), transformations were calculated on a
per-model basis and applied to each of the EIR distributions calculated in (i). The net effect for
all sites and all models was a reduction in effective EIR.

Estimate (i) is likely to over-estimate of exposure in the trial sites given that it does not allow for the
fact these intensively studied sites generally have higher intervention coverages (especially of bednets)
than neighbouring areas. All analysis in this paper was completed with both transmission assumptions
(i) and (ii), but for the majority of the time we present results for assumption (ii).

Determining best fitted model

To compare the different fitted models and determine the most appropriate fitted model for final vaccine
parameters, the Deviance Information Criterion (DIC) was calculated. The DIC is comprised of two
terms, the posterior mean of the deviance, D, and the effective number of parameters, pp. The deviance,
D is given by,

D = —2log (p(yl0)) , (5)

where, p(y|f) is the likelihood, and the lower this value the easier the model. The effective number
of parameters penalises the DIC when more parameters are being fit and is the difference between the
posterior mean of the deviance and the deviance of the posterior means. The DIC is given by

DIC =D + Pp. (6)

In general, when comparing two models fitted to the same data set, differences in DIC greater than 10
would favour the model with the lower DIC. For differences between DIC that are less than 10, it would
be difficult to completely rule out the model with the higher DIC.

Methodology associated with country-specific predictions of public health im-
pact of RTS,S

Country specific vaccine coverage and implementation

For purposes of comparison across countries we assume vaccine introduction is at the beginning of 2017
for all countries and that country specific immunisation coverage levels for RTS,S delivered via routine
EPI are based on the third dose of DTP reported by UNICEF/WHO for EPI in 2012 [9]. No scale up is
assumed for simplicity and to avoid erroneous assumptions 2012 levels are assumed at 2017 up to 2030.

EPI coverage levels are scaled by 75% for expanded routine (6-9 months) delivery. Table SM2 sum-
marises the coverage levels for vaccination via EPI and via expanded routine (6-9 months) for each of
the 43 countries, respectively. In addition, boosting schedules for EPI and expanded routine assume 80%
coverage of the third dose for that schedule. We note that these coverage values are controversial [10] and
that the WHO-UNICEF values for DTP3 may slightly be optimistic. An overestimation of the coverage
achieved will lead to overestimation of the public health impact of the vaccine program.

Vaccine coverage is simulated by treating a vaccinated population with coverage c¢ as a weighted
average of ¢ times a population with coverage 100% and (1 — ¢) times a population with coverage 0%.
This linearization is justified by the result from previous analyses that herd immunity effects are negligible
in EPI and EPI with booster simulations using these models [1,11], so the vaccine effects on populations
can be treated linear functions of the contributions of individuals with different ages and vaccination
histories to the population.

To make weighted predictions for the boosting schedule for with EPI or expanded routine, the simu-
lation databases for both the boosting and 3 dose schedule are used where 80%c of the boosting schedule



is used, and 20%¢c of the appropriate 3 dose schedule and (1 — ¢) times a population with 0% coverage,
where c is the country specific coverage level for that routine without booster.

Country specific transmission, population levels and health systems parameters and weights

Population numbers of surviving infants after first year of life and the total population over all ages are
projected from UN statistics [12].

The level of malaria transmission, via distributions of EIR, for a particular country was estimated
based on the MAP 2010 prevalence surfaces [5] for geographic area in question. For this method MAP
prevalence and the OpenMalaria model relationship between EIR and prevalence, along with country
specific access to effective care, was used to derive distributions of exposure [6]. The percentage of the
population in each EIR simulated level for this approach, as well as summary statistics arithmetic and
geometric mean (and interquartile ranges), are given in [6] and Table SM2.

For purposes of our predictions we use a simplification of the full functionality of the OpenMalaria case-
management model for uncomplicated malaria [13], namely we capture all variations in case management
effectiveness (including imperfect efficacy of treatment) in the parameter denoting access. Country specific
access to uncomplicated malaria case management is the probability of accessing effective treatment of
case management, during any 5-day period. This is dependent on country specific estimates of access to
100% effective care given a malaria fever [7] and a conversion to 5-day probability detailed in [14]. These
estimates are detailed in Table SM2.

Access to health care for severe cases was as assumed for previously published work [15]. This assumes
a 5 day probability of 48% from [16]. Respective weights for the simulated levels of severe access were
calculated to achieve 48%.

DALY calculations

Health outcomes are expressed in terms of disability adjusted life years(DALYs) on the basis of the
duration of disability and respective disability weights. Years of life lived with disability (YLDs) are
calculated using standard methods [17] on the basis of the duration of disability, and respective disability
weights. These weights for different malaria-attributable disease conditions were obtained from the Global
Burden of Disease (GBD) study. [13, 18]

Years of life lost (YLLs) and DALYs are calculated assuming age-specific life expectancies, based on
the life-table from Butajira, Ethiopia, with an average life expectancy of 46.6 years at birth [19]. This
life-table was chosen because it represents a sub-Saharan African setting that is characterized by low
malaria transmission, so that the survival may be close to what we would expect without malaria. For
example, it is very similar to that for Hai district, a high altitude site in Tanzania [20]. In the light of
recent recommendations [21] DALYs are presented without age-weighting and undiscounted, being the
current recommendation [21].

PHI calculation details

The simulations of the dynamics of malaria were carried out using approximately stable and stationary
simulated human populations, with age distributions based on those in malaria endemic areas. To
maintain these age distributions, age-specific out-migrations (as well as deaths) were also simulated [22].
Given that our predictions are a weighted average from a large number of simulations and that vaccination
coverage is changing in time we must allow for events recorded for different age groups to be associated
with the coverage levels of the time in which they would have been vaccinated. To project effects of
national level scale up of vaccination for specific years and real growing populations, the results were
post-processed as follows:

The number of events averted, E; (t,7), in year ¢, among individuals of age 7 years in a simulated
stable and stationary population of 100,000 people in country i is obtained by weighting each simulation



j, summing over all the simulations, and multiplying by the coverage applicable in the year that these
individuals were originally vaccinated, i.e.: ,

Ei(t,T) :Ci(t_7—>zwi,jEj<T>7 (7)

where E;(7) is the events averted in vaccination simulation j at coverage 100% in individuals of age
T years obtained by matching with a corresponding non-vaccination simulation, both with population
100,000; w; ; is the weight corresponding to simulation j (a multiplication of many weights); ¢;(t — 1) is
the vaccine coverage in country ¢ in year (¢t — 7). Our recorded age-groups were not evenly spaced and
for ages greater than 6 years, events were recorded in age categories greater than 1 year. In this case the
¢i(t — 7) is a weighted average over the coverages when that age category would have been vaccinated,

namely
-

clt—m) =3 clt—7)/(r =1+ 1), (8)
k=l
where [ is the lower bound of the age group 7 , and when 7 = t all coverage in that age category are used
in the weighting and the denominator is the size of the age category. Summing over all age groups, 7 ,
and allowing for population growth, the total number of events averted during each calendar year, ¢, in
country ¢ was estimated as:

Ei(t) = Bi(t) ) _ Ei(t,7)/S(t), (9)

where P;(t) is the total population of country ¢ and S(t) the simulated population size of 100,000. The
cumulative number of events averted, F; cum(t) at time ¢ is thus

t

Eicum(t) =Y Pi(v) > Ei(v,7)/S(t). (10)

v=1

The corresponding number of vaccine doses, and the number of fully vaccinated each year, was obtained
from the expected coverage in real programs, rather than by counting the vaccinations internal to the
simulation. The number of vaccine doses, for a three dose schedule vaccination campaign, in a given year
tis

Vi(t) = 3ci(t) Bi(?), (11)

., where B;(t) is the expected size of the cohort being vaccinated in country i at year ¢.
To calculate the total number of events averted per 100,000 fully vaccinated in year t, namely,
F; cum(t), the following formulation is required

Fycum(t) = Pi(t) Y Eit,7)/(ci(0)Bi(1)), (12)

where B;(t)) is the expected size of the cohort being vaccinated in country i at year ¢. The cumulative
number of events averted per 100,000 fully vaccinated, Fj cum (t) at time ¢ is thus

t

Ficum(t) =) (Pi(v) ZE(%T)) / (Z Ci('U)Bi(U)> : (13)

v=1 v=1
Finally, cumulative effectiveness, €; cum (t), in year ¢ for an outcome is given by
t
een) =3 (S Eem)) /(S 2000, )
v=1 T v=1

where E?(t) is the number of events observed in the no-vaccination scenario for country i.
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Tables

Additional file 1: Table SM1. Additional sensitivity analysis and reference levels of inputs

name | initial efficacy® | half-life® Vaccine cover- | effective treat- | transmission
age ment coverage assumptions

Reference scenario

Ref EPI: 62.5%, 6- | EPI:1.12 year, | EPI: DTP3, 6- | country- country-

9mth: 79.2% 6-9mth:  1.12 | 9mth: 75% of | specific [7] specific [6]
year DTP3

Country specific implementation

H reference reference decrease (25%) | reference reference

I reference reference reference reference increase (50%)

J reference reference reference reference decrease (50%)

K reference reference reference increase (25%) | reference

L reference reference reference decrease (25%) | reference

M reference reference decrease (25%) | decrease (25%) | reference

%vaccine efficacy against infection and vaccine half-life of decay against infection.




lllustrative diagram of cohort analysis vs population predictions

a) Cohort analysis of RTS,S clinical trial vaccination
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b) Population health impact predictions of RTS,S implementation
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Additional file 1: Figure SM1. Lexis diagram illustrating the approaches to calculating
events averted in clinical trial vs population vaccine program. a) events averted are calculating
by tracking a vaccinated age group in time and comparing the burden (clinical cases, severe and death)
experienced by this cohort (indicated by red boxes in left panel) compared to the same cohort with no
vaccination (uncoloured boxes in the right panel). b) In a vaccination campaign with continuous
coverage, the total events averted in the population is the total burden over all ages in time (uncoloured
boxes in the right panel) minus the sum of the vaccine modified burden in the vaccinated population
plus the burden in the non-vaccinated ages over time (coloured and non-coloured boxes in the left
panel). Colours indicate vaccine modified burden.
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Additional file 1: Figure SM2. Weibull decay function. Decay of efficacy in time for different
Weibull decay functional forms for different initial efficacy and half-life. Red indicates bi-phasic decay
(shape parameter less than 1), orange exponential decay, blue more sigmoidal like decay (shape
parameter greater than 1)
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country Effective coverage DTP3 coverage weighted mean EIR  weighted median EIR  EIR 25% quartile EIR 75% quartile.

Angola 48.67% 91% 49.8207 6.24512 1.36697 50.43574
Benin 30.26% 85% 72.7978 13.34845 2.9218 130.34698
Botswana 71.25% 96% 5.3295 0 0 1.65285
BurkinaFaso 34.59% 90% 118.1262 73.73665 9.13031 407.32036
Burundi 42.60% 96% 13.5161 1.13055 0.24746 6.24512
Cameroon 25.92% 85% 67.4316 11.03972 1.99851 107.80241
Central Africa nRepublic 13.43% 4% 61.4501 7.55115 1.13055 89.1571
Chad 17.71% 45% 27.7761 1.65285 0.24746 11.03972
Comoros 37.61% 86% 46.5291 5.16497 0.77329 34.49795
Congo 42.88% 85% 49.0202 7.55115 1.65285 50.43574
Democratic Republic of Congo  26.87% 72% 47.4158 4.27165 0.63954 34.49795
Cote d’Ivoire 25.30% 94% 78.8227 19.51532 2.9218 157.60628
Djibouti 46.61% 81% 0.1781 0 0 0
Equatorial Guinea 19.37% 33% 76.8485 16.13999 2.41645 157.60628
Eritrea 24.71% 99% 1.058 0.07919 0.02534 0.24746
Ethiopia 15.83% 61% 0.9649 0.03705 0.00555 0.13999
Gabon 40.39% 82% 71.7469 16.13999 3.53283 130.34698
The Gambia 39.32% 98% 7.3258 1.36697 0.36179 5.16497
Ghana 39.87% 92% 52.2864 7.55115 1.65285 50.43574
Guinea 24.95% 59% 39.66 3.53283 0.63954 23.59654
Guinea Bissau 27.45% 80% 6.2679 0.77329 0.24746 2.9218
Kenya 35.69% 83% 7.6956 0.20466 0.03705 1.13055
Liberia 45.18% 7% 60.1899 16.13999 4.27165 73.73665
Madagascar 20.24% 86% 42.0316 1.99851 0.20466 23.59654
Malawi 39.05% 96% 54.5347 9.13031 1.65285 60.9833
Mali 27.51% 74% 75.9512 16.13999 2.41645 157.60628
Mauritania 22.43% 80% 5.3699 0.0655 0 0.43745
Mozambique 37.93% 76% 65.8036 11.03972 1.65285 107.80241
Namibia 37.96% 84% 11.3246 0.29921 0 2.41645
Niger 30.85% 4% 35.3448 3.53283 0.77329 19.51532
Nigeria 32.23% 41% 65.6763 11.03972 2.41645 107.80241
Rwanda 40.95% 98% 2.2015 0.24746 0.02534 0.93501
Sao Tome Principe 68.02% 96% 25.7633 6.24512 1.65285 23.59654
Senegal 32.33% 92% 5.8373 0.63954 0.16926 2.41645
Sierra Leone 36.77% 84% 61.046 11.03972 2.41645 73.73665
Somalia 7.49% 42% 1.0539 0.03705 0.00981 0.20466
NorthSudan 18.75% 92% 7.041 0.09575 0.02534 0.52893
South Sudan 8.72% 59% 16.9973 0.13999 0.02096 1.99851
Tanzania 44.46% 92% 25.1079 1.99851 0.43745 11.03972
Togo 18.09% 84% 58.9379 7.55115 1.36697 73.73665
Uganda 66.25% 78% 89.748 34.49795 7.55115 190.56627 "~
Zambia 51.51% 8% 26.8963 2.9218 0.63954 16.13999
Zimbabwe 25.70% 89% 2.8336 0.16926 0.05417 0.63954

Additional file 1: Table SM2. Summary of country specific effective coverage of uncomplicated care, vaccination coverage (DTP3),
mean and median transmission levels as described by Entomological Inoculation Rate from country levels of prevalence [6]



