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Here we report an essential account on basic characteristics of quaternions.
Further details on quaternion algebra can be found in [35]. Let us consider the
following extended concept of a complex number:

q = q0 + q1i+ q2j + q3k (1)

where q0, q1, q2 and q3 are real numbers, and the imaginary units i, j and k obey
the following fundamental formulas, which define the product of quaternions

i2 = j2 = k2 = −1
ij = −ji = k
jk = −kj = i
ki = −ik = j

(2)

If q0 = 0, q is called a pure quaternion, and is the analogous of an R3 vector
(q0, q1, q2)T . The conjugate, norm, and inverse of q, respectively, are defined as

q̄ = q0 − q1i− q2j − q3k (3)

||q|| =
√
q̄q =

√
q20 + q21 + q22 + q23 (4)

q−1 =
q̄

||q||2
(5)

Quaternions with ||q|| = 1 are called unit quaternions. Unlike real or complex
products, the product of quaternions is not commutative. The rotation of a
vector (vx, vy, vz)T , represented as the pure quaternion v = vxi + vyj + vzk,
of an angle θ around a direction identified by the unit pure quaternion u =
(ux, uy, uz)T , can be expressed through the map v→ Rq(v) = qvq̄, where q is
the unit quaternion

q = cos
θ

2
+ sin

θ

2
uxi+ sin

θ

2
uyj + sin

θ

2
uzk (6)

The composition of two rotations is simply obtained through the product of the
corresponding quaternions: Rp(Rq(v)) = Rpq(v). Note that, as the quaternion
product is non-commutative, it is Rpq 6= Rqp. Also, since quaternions q and
−q give the same rotation (changing the sign of q is increasing θ of 2π), it is
Rq = R−q.
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