Expanding the Described Metabolome of the Marine Cyanobacterium Moorea

producens JHB through Orthogonal Natural Products Workflows

Paul D. Boudreau¹, Emily A. Monroe², Suneet Mehrotra³, Shane Desfor^{1,4}, Anton Korobeynikov^{5,6,7}, David H. Sherman⁸, Thomas F. Murray³, Lena Gerwick¹, Pieter C. Dorrestein^{9,10}, and William H. Gerwick^{1,10*}

¹Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States

² Department of Biology, William Paterson University, Wayne, New Jersey, 07470, United States of America

³Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska 68178, United States of America

⁴Department of Biology, California State University, San Marcos, San Marcos, California, 92078, United States of America

⁵Algorithmic Biology Laboratory, St. Petersburg Academic University, Russian Academy of Sciences, St. Petersburg, Russia

⁶Department of Mathematics and Mechanics, St. Petersburg State University, St. Petersburg, Russia

⁷Center for Algorithmic Biotechnology, St. Petersburg State University, St. Petersburg, Russia

⁸Life Sciences Institute and Department of Medical Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America

⁹Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States of America

¹⁰Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States of America

* Corresponding author

E-mail: <u>wgerwick@ucsd.edu</u>

The *M. producens* JHB Molecular Network

Figure A	Full JHB molecular network from LTQ-FT data.
Figure B	Jamaicamides cluster within the JHB molecular network from LTQ-FT data.
Figure C	IT-MS ² fragment spectra for the jamaicamides from LTQ-FT data.
Figure D	Hectochlorins cluster within the JHB molecular network from LTQ-FT data.
Figure E	IT-MS ² fragment spectra for the hectochlorins from LTQ-FT data.
Table F	HRMS ¹ Masses of observed for the hectochlorins and jamaicamides from LTQ-
FT data.	
Figure G	Full JHB molecular network, iodide rich media, from LCQ data.
Figure H	Jamaicamides cluster within the JHB molecular network, iodide rich media, from
LCQ data.	
Figure I	IT-MS ² fragment spectra for the jamaicamides, iodide rich media, from LCQ data.

Spectroscopic Data for Hectochlorin (1)

Table J	NMR data summary for hectochlorin (1).
Figure K	¹ H-NMR (600 MHz, CDCl ₃) spectrum of hectochlorin (1).
Figure L	¹³ C-NMR (125 MHz, CDCl ₃) spectrum of hectochlorin (1).
Figure M	HSQC-NMR (600 MHz, CDCl ₃) spectrum of hectochlorin (1).
Figure N	HMBC-NMR (600 MHz, CDCl ₃) spectrum of hectochlorin (1).
Figure O	TOCSY-NMR (600 MHz, CDCl ₃) spectrum of hectochlorin (1)
Figure P	$FT-MS^2$ Fragment spectrum of hectochlorin (1).
	$\mathbf{T} = \mathbf{M} (\mathbf{r}^2) \mathbf{T} $

Figure Q FT-MS² Fragment summary for hectochlorin (1).

Spectroscopic Data for Hectochlorin B (5)

- **Table R**NMR data summary for hectochlorin B (5).
- **Figure S** 1 H-NMR (600 MHz, CDCl₃) spectrum of hectochlorin B (5).
- **Figure T** ¹³C-NMR (125 MHz, CDCl₃) spectrum of hectochlorin B (**5**).
- Figure U HSQC-NMR (600 MHz, CDCl₃) spectrum of hectochlorin B (5).
- **Figure V** HMBC-NMR (600 MHz, CDCl₃) spectrum of hectochlorin B (**5**).
- **Figure W** TOCSY-NMR (600 MHz, CDCl₃) spectrum of hectochlorin B (**5**).
- **Figure X** FT-MS² Fragment spectrum of hectochlorin B (5).
- **Figure Y** $FT-MS^2$ Fragment summary for hectochlorin B (5).

Spectroscopic Data for Hectochlorin C (6)

- **Figure Z** FT-MS² Fragment spectrum of hectochlorin C (6).
- **Figure AA** $FT-MS^2$ Fragment summary for hectochlorin C (6).

Spectroscopic Data for Hectochlorin D (7)

Figure AB FT-MS² Fragment spectrum of hectochlorin D (7).

Figure AC FT-MS² Fragment summary for hectochlorin D (7).

Biosynthetic Pathway Divergence for Jamaiacmide A and D (2 and 8)

Figure AD Proposed Biosynthetic Pathway Divergence for Jamaicamide A and D (2 and 8).

Spectroscopic Data for Jamaicamide D (8)

- **Table AE**NMR data summary for jamaicamide D (8).
- **Figure AF** ¹H-NMR (500 MHz, $CDCl_3$) spectrum of jamaicamide D (8).
- **Figure AG** HMBC-NMR (500 MHz, CDCl₃) spectrum of jamaicamide D (8).
- **Figure AH** TOCSY-NMR (500 MHz, CDCl₃) spectrum of jamaicamide D (8).

Spectroscopic Data for Jamaicamide F (12)

Table AI	NMR data summary for jamaicamide F (12).
Figure AJ	¹ H-NMR (600 MHz, CDCl ₃) spectrum of jamaicamide F (12).
Figure AK	¹³ C-NMR (125 MHz, CDCl ₃) spectrum of jamaicamide F (12).
Figure AL	HSQC-NMR (600 MHz, CDCl ₃) spectrum of jamaicamide F (12).
Figure AM	HMBC-NMR (600 MHz, CDCl ₃) spectrum of jamaicamide F (12).
Figure AN	TOCSY-NMR (600 MHz, CDCl ₃) spectrum of jamaicamide F (12).
Figure AO	MS^2 fragment spectra of jamaicamide F (12).

Bioassay Data for Jamaicamides A, B, and F (2,3, and 12)

Figure AP Effect of the jamaicamides on the veratridine-induced Ca^{2+} influx in murine neocortical neurons.

Figure AQ Effect of the jamaicamides on the veratridine-induced Na⁺ influx in murine neocortical neurons.

Spectroscopic Data for Hectoramide (4)

- **Figure AR** ¹H-NMR (600 MHz, $CDCl_3$) spectrum of hectoramide (4).
- **Figure AS** ¹³C-NMR (600 MHz, CDCl₃) spectrum of hectoramide (4).
- **Figure AT** Predicted ¹³C-NMR shifts for potential structures of hectoramide (4).
- Figure AU HSQC (600 MHz, CDCl₃) spectrum of hectoramide (4).
- **Figure AV** HMBC (600 MHz, CDCl₃) spectrum of hectoramide (4), long duration.
- Figure AW HMBC (600 MHz, CDCl₃) spectrum of hectoramide (4), short duration.
- **Figure AX** TOCSY (600 MHz, CDCl₃) spectrum of hectoramide (4).
- **Figure AY** GC-MS analysis of 2-S-octonol ester standards.
- **Figure AZ** GC-MS analysis of 2-S-octonol ester derivatized hydrolysate of hectoramide (4).
- Figure AAA Marfey's analysis of D-FDAA derivatized hydrolysate of hectoramide (4).

Figure B. Hectochlorin Cluster within the JHB Molecular Network, from LTQ-FT Data.

Figure C. IT-MS² Fragment Spectra for the Hectochlorins, from LTQ-FT Data.

Parent Mass 665 m/z Hectochlorin (1) $[M^{37}Cl + H]^+$, Parent Mass 667 m/zHectochlorin (1) $[M^{37}Cl_2 + H]^+$, Parent Mass 669 m/z Hectochlorin B (5) $[M + H]^+$, Parent Mass 623 m/z

Hectochlorin D (7) $[M + H]^+$,

Parent Mass 679 m/z

Figure D. Jamaicamide Cluster within the JHB Molecular Network, from LTQ-FT Data.

Figure E. IT-MS² Fragment Spectra for the Jamaicamides, from LTQ-FT Data.

Compound	Calculated Formula	LCMS Observed	Retention	Isolated Compound HRMS ¹ Mass
		HRMS ¹ Mass m/z	Time (min)	m/z
Hectochlorin (1)	C ₂₇ H ₃₅ Cl ₂ N ₂ O ₉ S ₂ [M+H] ⁺ , 665.1156	665.1182, 3.9 ppm, 2.6 mamu	23.8	665.1154, -0.3 ppm, -0.2 mamu
	$C_{27}H_{35}Cl^{37}ClN_2O_9S_2$ [M+H] ⁺ , 667.1126	667.1153, 4.0 ppm, 2.7 mamu		667.1126, 0 ppm, 0 mamu
	C ₂₇ H ₃₄ Cl ₂ N ₂ NaO ₉ S ₂ [M+Na] ⁺ , 687.0975	687.1070, 13.8 ppm, 9.5 mamu		687.0976, 0.1 ppm, 0.1 mamu
	$C_{27}H_{34}Cl^{37}ClN_2NaO_9S_2[M+Na]^+, 689.0945$	689.1057, 16.2 ppm, 11.2 mamu		689.0948, 0.4 ppm, 0.3 mamu
Hectochlorin B (5)	$C_{25}H_{33}Cl_2N_2O_8S_2$ [M+H] ⁺ , 623.1050	623.1041, -1.4 ppm, -0.9 mamu	20.3	623.1050, 0 ppm, 0 mamu
	C ₂₅ H ₃₃ Cl ³⁷ ClN ₂ O ₈ S ₂ [M+H] ⁺ , 625.1020	625.1019, -0.2 ppm, -0.1 mamu		625.1021, 0.2 ppm, 0.1 mamu
	$C_{25}H_{33}Cl_2N_2NaO_8S_2$ [M+Na] ⁺ , 645.0869	645.0884, 2.3 ppm, 1.5 mamu		645.0870, 0.2 ppm, 0.1 mamu
	$C_{25}H_{33}Cl^{37}ClN_2NaO_8S_2$ [M+Na] ⁺ , 647.0840	647.0856, 2.5 ppm, 1.6 mamu		647.0841, 0.2 ppm, 0.1 mamu
Hectochlorin C (6)	$C_{27}H_{36}ClN_2O_9S_2$ [M+H] ⁺ , 631.1545	631.1516, -4.6 ppm, -2.9 mamu	22.6	631.1545, 0.0 ppm, 0 mamu
	$C_{27}H_{36}^{37}ClN_2O_9S_2$ [M+H] ⁺ , 633.1516	633.1492, -3.8 ppm, -2.4 mamu		633.1519, 0.5 ppm, 0.3 mamu
	C ₂₇ H ₃₆ ClN ₂ NaO ₉ S ₂ [M+Na] ⁺ , 653.1365	653.1333, -4.9 ppm, -3.2 mamu		653.1360, -0.8 ppm, 0.5 mamu
	C ₂₇ H ₃₆ ³⁷ ClN ₂ NaO ₉ S ₂ [M+Na] ⁺ , 655.1335	655.1312, -3.5 ppm, -2.3 mamu		655.1337, 0.3 ppm, 0.2 mamu
Hectochlorin D (7)	$C_{28}H_{37}Cl_2N_2O_9S_2$ [M+H] ⁺ , 679.1312	679.1273, -5.7 ppm, -3.9 mamu	25.8	679.1306, -0.9 ppm, -0.6 mamu
	$C_{28}H_{37}Cl^{37}ClN_2O_9S_2$ [M+H] ⁺ , 681.1283	681.1245, -5.8 ppm, -3.8 mamu		681.1274, -1.3 ppm, -0.9 mamu
	C ₂₈ H ₃₇ Cl ₂ N ₂ NaO ₉ S ₂ [M+Na] ⁺ , 701.1131	701.1091, -5.7 ppm, -4.0 mamu		701.1129, -0.3 ppm, -0.2 mamu
	$C_{28}H_{37}Cl^{37}ClN_2NaO_9S_2$ [M+Na] ⁺ , 703.1102	703.1065, -5.3 ppm, -3.7 mamu		703.1097, -0.7 ppm, -0.5 mamu
Jamaicamide A (2)	C ₂₇ H ₃₇ BrClN ₂ O ₄ [M+H] ⁺ , 567.1620	567.1631, 1.9 ppm, 1.1 mamu	30.5	567.1621, 0.2 ppm, 0.1 mamu
	C ₂₇ H ₃₇ ⁸¹ BrClN ₂ O ₄ [M+H] ⁺ , 569.1599	569.1601, 0.3 ppm, 0.2 mamu		569.1597, -0.4 ppm, -0.2 mamu
	C ₂₇ H ₃₆ BrClN ₂ NaO ₄ [M+Na] ⁺ , 589.1439	589.1478, 6.6 ppm, 3.9 mamu		589.1442, 0.5 ppm, 0.3 mamu
	C ₂₇ H ₃₆ ⁸¹ BrClN ₂ NaO ₄ [M+Na] ⁺ , 591.1419	591.1450, 5.2 ppm, 3.1 mamu		591.1418, -0.2 ppm, -0.1 mamu
Jamaicamide B (3)	$C_{27}H_{38}ClN_2O_4 [M+H]^+, 489.2515$	489.2515, 0 ppm, 0 mamu	27.2	489.2513, -0.4 ppm, -0.2 mamu
	C ₂₇ H ₃₈ ³⁷ ClN ₂ O ₄ [M+H] ⁺ , 491.2485	491.2510, 5.1 ppm, 2.5 mamu		491.2487, 0.4 ppm, 0.2 mamu
	C ₂₇ H ₃₇ ClN ₂ NaO ₄ [M+Na] ⁺ , 511.2334	511.2358, 4.7 ppm, 2.4 mamu		511.2333, -0.2 ppm, 0.1 mamu
	C ₂₇ H ₃₇ ³⁷ ClN ₂ NaO ₄ [M+Na] ⁺ , 513.2305	513.2336, 6.0 ppm, 3.1 mamu		513.2306, 0.2 ppm, 0.1 mamu
Jamaicamide D (8)	C ₂₇ H ₃₈ BrN ₂ O ₄ [M+H] ⁺ , 533.2009	533.1983, -4.9 ppm, -2.6 mamu	29.9	533.2012, 0.6 ppm, 0.3 mamu
	C ₂₇ H ₃₈ ⁸¹ BrN ₂ O ₄ [M+H] ⁺ , 535.1989	535.1962, -5.0 ppm, -2.7 mamu		535.1991, 0.4 ppm, 0.2 mamu
	C ₂₇ H ₃₇ BrN ₂ NaO ₄ [M+Na] ⁺ , 555.1829	555.1799, -5.4 ppm, -3.0 mamu		555.1833, 0.7 ppm, 0.4 mamu
	C ₂₇ H ₃₇ ⁸¹ BrN ₂ NaO ₄ [M+Na] ⁺ , 557.1808	557.1778, -5.4 ppm, -3.0 mamu		557.1812, 0.7 ppm, 0.4 mamu
Jamaicamide E (9)	C ₂₇ H ₃₉ N ₂ O ₄ [M+H] ⁺ , 455.2904	455.2877, -5.9 ppm, -2.7 mamu	26.5	Not Isolated by HPLC
	C ₂₇ H ₃₈ N ₂ NaO ₄ [M+Na] ⁺ , 477.2724	477.2693, -6.5 ppm, -3.1 mamu		
Jamaicamide F (12)	C ₂₇ H ₃₇ ClIN ₂ O ₄ [M+H] ⁺ , 615.1481	615.1549, 11.1 ppm, 6.8 mamu	29.4	615.1471, -1.6 ppm, -1.0 mamu
	C ₂₇ H ₃₇ ³⁷ ClIN ₂ O ₄ [M+H] ⁺ , 617.1452	617.1516, 10.4 ppm, 6.4 mamu		617.1441, -1.8 ppm, -1.1 mamu
	C ₂₇ H ₃₆ ClIN ₂ NaO ₄ [M+Na] ⁺ , 637.1300	637.1363, 9.9 ppm, 6.3 mamu		637.1289, -1.7 ppm, -1.1 mamu
	$C_{27}H_{36}^{37}ClIN_2NaO_4$ [M+Na] ⁺ , 639.1271	639.1333, 9.7 ppm, 6.2 mamu		639.1259, -1.9 ppm, -1.2 mamu

Table F. HRMS¹ Masses of Observed for the Hectochlorins and Jamaicamides, from LTQ-FT Data.

Figure G. Full JHB Molecular Network, Iodide Rich Media, from LCQ Data.

Figure H. Jamaicamides Cluster within the JHB Molecular Network, Iodide Rich Media, from LCQ Data.

Figure I. IT-MS² Fragment Spectra for the Jamaicamides, Iodide Rich Media, from LCQ Data.

Position	δ_C , type ^a	$\delta_{\rm H} (J \text{ in Hz})^{\rm b}$	HMBC ^b	TOCSY ^b
1	172.9, C			
2	42.6, CH	3.16, quintet (7.4)	1, 3, 9	3-6, 9
3	75.2, CH	5.35, m		2, 4-6, 9
4a	30.9, CH ₂	1.71, m		2, 3, 4b, 5, 6, 9
4b	30.9, CH ₂	1.86, m		2, 3, 4a, 5, 6, 9
5	20.9, CH ₂	1.71, m		2-4, 6, 9
6a	49.3, CH ₂	2.26, m		2-5, 6b, 9
6b	$49.3,\mathrm{CH}_2$	2.15, m		2-5, 6a, 9
7	90.4, C			
8	37.2, CH ₃	2.11, s	6,7	
9	15.1, CH ₃	1.29, d (7.4)	1-3, self	2-6
10	161.1, C			
11	147.0, C			
12	128.6, CH	8.17, s	11, 13	14
13	166.3, C ^c			
14	74.7, CH	6.84, s	13, 15-17, 26	12
15	82.0, C			
16	24.4, CH ₃	1.84, s	14, 15, 17, self	
17	21.9, CH ₃	1.61, s	14-16, self	
18	160.4, C			
19	147.5, C			
20	127.7, CH	7.94, s	19, 21	
21	165.1, C			
22	77.8, CH	5.67, s	1, 21, 23, 25	
23	71.6, C			
24	26.7, CH ₃	1.31, s	22, 23, 25	
25	26.0, CH ₃	1.37, s	22, 24	
26	168.7, C			
27	20.9, CH ₃	2.19, s	26, self	

 Table J. NMR Data Summary for Hectochlorin (1).

All experiments in CDCl₃ with TMS standard, 1% v/v for 13C experiment, and 0.3% v/v for the rest. ^aSpectrum collected on a Varian VX 500 MHz with ¹³C-optimized cryoprobe. ^bSpectra collected on a Bruker 600 MHz (600 MHz and 150 MHz for the ¹H and ¹³C nuclei respectively) with 1.7 mm inverse cryo-probe. ^cSignal by projection from the HMBC experiment.

Figure K. ¹H-NMR (600 MHz, CDCl₃) Spectrum of Hectochlorin (1).

Figure L. ¹³C-NMR (125 MHz, CDCl₃) Spectrum of Hectochlorin (1).

Benzene contamination at 129.8 ppm.

Figure M. HSQC-NMR (600 MHz, CDCl₃) Spectrum of Hectochlorin (1).

Figure N. HMBC-NMR (600 MHz, CDCl₃) Spectrum of Hectochlorin (1).

Figure O. TOCSY-NMR (600 MHz, CDCl₃) Spectrum of Hectochlorin (1).

Figure P. FTMS² Fragment Spectrum of Hectochlorin (1).

Hectochlorin (1) $[M + H]^+$, Parent Mass 665 m/z

Figure Q. FT-MS² Fragment Summary for Hectochlorin (1).

Position	$\delta_{\rm C}$, type ^a	$\delta_{\rm H} (J \text{ in Hz})^{\rm b}$	HMBC ^b	TOCSY ^b
1	173.2, C			
2	42.4, CH	3.14, quintet (7.6)	1, 3, 4 weak, 9	3,9
3	74.2, CH ₂	5.32, m	2,4 weak	2, 4-6, 9
4a	30.8, CH ₂	1.74, m		3
4b	30.8, CH ₂	1.83, m		3
5	20.6, CH ₂	1.73, m		3, 6
6a	49.2, CH ₂	2.12, m	5, 7, <i>4, 8 weak</i>	3, 5, 6b
6b	49.2, CH ₂	2.25, m	5, 7, <i>4, 8 weak</i>	3, 5, 6a
7	90.3, C			
8	37.2, CH ₃	2.09, s	6, 7, self	
9	14.9, CH ₃	$1.28, d(7.2)^{c}$	1-3, self	2, 3
10	160.6, C			
11	146.3, C			
12	128.3, CH	8.11, s	10, 11, 13	
13	171.4, C			
14	76.3, CH	5.09, bs		
15	85.5, C			
16	26.7, CH ₃	1.84, s	14, 15, 17	
17	22.2, CH ₃	1.77, s	14-16	
18	162.3, C			
19	147.0, C			
20	128.5, CH	8.04, s	18, 19, 21	
21	164.9, C			
22	77.2, CH	5.58, s	1, 21, 23, 24	
23	71.6, C			
24	25.7, CH ₃	1.35, s	22, 23, 25	
25	26.9, CH ₃	1.28, s ^c	22-24	

Table R. NMR Data Summary for Hectochlorin B (5).

All experiments in CDCl₃ with TMS standard, 1% v/v for 13C experiment, and 0.3% v/v for the rest. ^aCarbon chemical shifts from 2D-NMR experiment extraction. ^bSpectra collected on a Bruker 600 MHz (600 MHz and 150 MHz for the ¹H and ¹³C nuclei, respectively) with 1.7 mm inverse cryoprobe. ^cProton species overlapped, shift and coupling extracted from the HSQC.

Figure S. ¹H-NMR (600 MHz, CDCl₃) Spectrum of Hectochlorin B (5).

Figure T. ¹³C-NMR (125 MHz, CDCl₃) Spectrum of Hectochlorin B (5).

Benzene contamination at 128.3 ppm.

Figure U. HSQC-NMR (600 MHz, CDCl₃) Spectrum of Hectochlorin B (5).

Figure V. HMBC-NMR (600 MHz, CDCl₃) Spectrum of Hectochlorin B (5).

Figure W. TOCSY-NMR (600 MHz, CDCl₃) Spectrum of Hectochlorin B (5).

Figure X. FTMS² Fragment Spectrum of Hectochlorin B (5).

Hectochlorin B (5) $[M + H]^+$, Parent Mass 623 m/z

Figure Y. FT-MS² Fragment Summary for Hectochlorin B (5).

Figure Z. FTMS² Fragment Spectrum for Hectochlorin C (6).

Hectochlorin C (6) $[M + H]^+$, Parent Mass 631 m/z

Figure AA. FTMS² Fragment Summary for Hectochlorin C (6).

Figure AB. FTMS² Fragment Spectrum for Hectochlorin D (7).

Hectochlorin D (7) $[M + H]^+$, Parent Mass 679 m/z

Figuve AC. FTMS² Fragment Summary for Hectochlorin D (7).

Figure AD. Proposed Biosynthetic Pathway Divergence for Jamaicamide A and D (2 and 8).

Position	$\delta_C{}^a$	$\delta_{\rm H}(J \text{ in Hz})$	HMBC	TOCSY
1		1.50 ^b		3
2				
3		2.20, t (7.1)		1, 4, 5
4		1.60-1.66, m		3, 5
5		2.06-2.10, m		3, 4
6				
7		2.01-2.05, m		8, 26
8	34.9	1.29-1.40, m		7, 9, 26
9	36.6	1.91-1.95, m		8, 26
10	137.1	5.26-5.39, m ^c		12, 13, 26
11		5.26-5.39, m ^c		12, 13, 26
12		2.26-2.30, m		10, 11, 13a
13a		2.17-2.20, m		10, 11, 12, 13b
13b		2.26-2.30, m		10, 11, 13a
14				
NH		6.69, bs		15
15		3.47-3.54, m		16, NH
16a		2.81-2.86, m		15, 16b
16b		2.98-3.51, m		15, 16a
17	175.6			
18		6.73, s		
19				
20				
21		6.08, dd (1.4, 6.0)		22
22	153.1	7.23, dd (2.0, 5.9)		21, 24
23	58.2	4.86, q (6.7)		24
24		1.46, d (6.7)	22, 23	22, 23
25		3.75, s	17	
26		0.95, d (6.7)	8-10	7-11
27		4.70, m		

Table AE. NMR Data Summary for Jamaicamide D (8).

All experiments in $CDCl_3$ with 0.3% v/v TMS standard, on a Varian Unity 500 MHz (500 MHz and 125 MHz for the ¹H and ¹³C nuclei respectively). ^aCarbon chemical shifts by projection from HMBC experiment. ^bOverlapping with water peak, shift determined by TOCY correlation. ^cProton species overlapped.

Figure AF. ¹H-NMR (500 MHz, CDCl₃) Spectrum of Jamaicamide D (8).

Figure AG. HMBC-NMR (500 MHz, CDCl₃) Spectrum of Jamaicamide D (8).

f1 (ppm)

Figure AH. TOCSY-NMR (500 MHz, CDCl₃) Spectrum of Jamaicamide D (8).

f1 (ppm)

Position	$\delta_{\rm C}$, type ^a	$\delta_{\rm H} (J \text{ in Hz})^{\rm b}$	HMBC ^b	TOCSY ^b
1	-6.6, C			
2	94.2, C			
3	20.7, CH ₂	2.36, t (7.2)	1, 2, 4, 5, self	4, 5
4	26.1, CH ₂	1.64, quin (7.1)	2, 3, 5, 6, self	3, 5
5	29.2, CH ₂	2.25, ^{ac} m	3, 4, 6, 7, 27	3, 4
6	141.8, C			
7	32.6, CH ₂	2.00, ^{bd} m	5, 6, 8, 9, 27	8, 26
8	34.7, CH ₂	1.34, ^{ce} m	6, 10, 9, 7, 26	7, 9, 26
9	36.3, CH	2.02, ^{bd} m	7, 10, 11, 26	8,26
10	136.6, CH	5.27, dd (7.7, 15.4)	8, 9, 11, 12, 26, self	9, 11, 12, 13a, 26
11	127.5, CH	5.36, td (6.5, 15.2)	9, 10, 12	9, 10, 12, 13a, 26
12	28.6, CH ₂	2.29, ^{ac} m		10, 11, 13a
13a	36.8, CH ₂	2.18, t (7.6)	11, 12, 14	10, 11, 12, 13b
13b	36.8, CH ₂	2.29 ^{, ac} m	10, 11, 14, self	13a
14	172.4, C			
NH		6.69, bs	14, 15	15, 16
15a	38.3, CH ₂	3.29, ^{ce} m	17, self	NH, 15b, 16
15b	38.3, CH ₂	3.54, ^{ce} m	17, self	NH, 15a, 16
16a	32.3, CH ₂	2.84, ^{ce} m	15, 17, 18	NH, 15, 16b
16b	32.3, CH ₂	3.00, ^{ce} m	15, 17, 18	NH, 15, 16a
17	175.4, C			
18	95.0, CH	6.73, s	16, 17, self	
19	166.1, C			
20	170.1, C			
21	125.9, CH	6.08, dd (6.0, 1.6)	20, 22, 23, 24, self	22-24
22	153.2, CH	7.23, dd (2.0, 6.1)	20, 21, 23, 24, self	21, 23, 24
23	58.1, CH	4.86, tq (1.4, 7.0)	19, 20 weak, 21, 22, 24	21, 22, 24
24	17.9, CH ₃	1.46, d (6.7)	22, 23, self	21-23
25	56.2, CH ₃	3.75, s	17, self	
26	20.9, CH ₃	0.95, d (6.7)	8-10, self	8-11
27	112.8, CH	5.79, s	5-7, self	

Table AI. NMR Data Summary for Jamaicamide F (12).

All experiments in CDCl₃ with TMS standard, 1% v/v for 13C experiment, and 0.3% v/v for the rest. ^aSpecturm collected on a Varian VX 500 MHz with ¹³C-optimized cryoprobe. ^bSpectra collected on a Bruker 600 MHz (600 MHz and 150 MHz for the ¹H and ¹³C nuclei, respectively) with 1.7 mm inverse cryo-probe. ^{c,d}Proton species overlapped, shift assigned by HSQC. ^eMultiplet shift assigned by HSQC

Figure AJ. ¹H-NMR (600 MHz, CDCl₃) Spectrum of Jamaicamide F (12).

Figure AK. ¹³C-NMR (125 MHz, CDCl₃) Spectrum of Jamaicamide F(12).

Figure AL. HSQC-NMR (600 MHz, CDCl₃) Spectrum of Jamaicamide F (12).

Figure AM. HMBC-NMR (600 MHz, CDCl₃) Spectrum of Jamaicamide F (12).

Figure AN. TOCSY-NMR (600 MHz, CDCl₃) Spectrum of Jamaicamide F (12).

f1 (ppm)

Figure AO. MS² Fragment Spectra of Jamaicamide F (12).

Figure AP. Effect of the jamaicamides on the veratridine-induced Ca²⁺ influx in murine neocortical neurons.

Panel A, C, E represents time response relationships for the decrease in veratridine-induced Ca^{2+} influx by jamaicamide A, B and F respectively. **Panel B, D, F** represents concentration-response relationships for the decrease of veratridine-induced Ca^{2+} influx by jamaicamide A, B and F (**2**, **3**, and **12**). This figure represents combined data from 5-6 experiments performed with 2-3 replicates each.

Figure AQ. Effect of the jamaicamides on the veratridine-induced Na⁺ influx in murine neocortical neurons.

Panel A, C, E represents time response relationships for the reduction in the veratridine-induced Na⁺ influx by jamaicamide A, B and F respectively. Panel B, D, F represents nonlinear regression analysis of the SBFI (340/380) responses to veratridine in the absence and presence of jamaicamide (A, B and F; 2, 3, and 12). This figure represents combined data from 4 experiments performed with 3 replicates each.

Figure AR. ¹H-NMR (600 MHz, CDCl₃) Spectrum of Hectoramide (4).

Figure AS. ¹³C-NMR (125 MHz, CDCl₃) Spectrum of Hectoramide (4).

Figure AT. Predicted ¹³C-NMR for Potential Structures of Hectoramide (4).

Postion, $\delta_{\rm C}$	Conjecture A	Conjecture B	Conjecture C
	ChemDraw δ_{C}	ChemDraw δ_C	ChemDraw δ_C
	Prediction, Difference	Prediction, Difference	Prediction, Difference
1, 171.3	175.7, -4.4	175.7, -4.4	176.7, -5.4
2, 62.2	80.4, -18.2	80.4, -18.2	72.5, -10.3
3, 25.4	27.7, -2.3	27.7, -2.3	26.7, -1.3
4, 18.2(8)	19.2, -0.9	19.2, -0.9	18.8, -0.5
5, 19.6	19.2, 0.4	19.2, 0.4	18.8, 0.8
6, 30.8	32.5, -1.7	32.5, -1.7	32.1, -1.3
7, 171.7	172.7, -1.0	172.7, -1.0	172.7, -1.0
8, 58.6	68.1, -9.5	67.8, -9.2	67.7, -9.1
9, 27.1	27.3, -0.2	27.3, -0.2	27.3, -0.2
10, 18.3(4)	18.8, -0.5	18.8, -0.5	18.8, -0.5
11, 19.4	18.8, 0.6	18.8, 0.6	18.8, 0.6
12, 29.7	32.4, -2.7	32.1, -2.4	32.4, -2.7
13, 174.8	168.9, 5.9	170.0, 4.8	168.9, 5.9
14, 69.9	70.4, -0.5	51.2, 18.7	70.4, -0.5
15, 40.5	41.5, -1.0	39, 1.5	41.5, -1.0
16, 129.1	128.3, 0.8	128.9, 0.2	128.3, 0.8
17, 130.1	129.8, 0.3	129.8, 0.3	129.8, 0.3
18, 114.0	114.2, -0.2	114.2, -0.2	114.2, -0.2
19, 158.5	157.8, 0.7	157.8, 0.7	157.8, 0.7
20, 55.3	55.8, -0.5	55.8, -0.5	55.8, -0.5

Figure AU. HSQC (600 MHz, CDCl₃) Spectrum of Hectoramide (4).

Figure AV. HMBC (600 MHz, CDCl₃) Spectrum of Hectoramide (4), Long Duration.

Figure AW. HMBC (600 MHz, CDCl₃) Spectrum of Hectoramide (4), Short Duration.

Figure AX. TOCSY (600 MHz, CDCl₃) Spectrum of Hectoramide (4).

f1 (ppm)

Figure AY. GC-MS Analysis of 2-S-Octonol Ester Standards.

Figure AZ. GC-MS Analysis of 2-S-Octonol Ester Derivatized Hydrolysate of Hectoramide (4).

Figure AAA. Marfey's Analysis of D-FDAA Derivatized Hydrolysate of Hectoramide (4).