1 Supplemental Material for Publication

- 2
- 3 Table S1. Single nucleotide variations (SNV's) and gene duplication identified in MG
- 4 genome.

Single nucleotide variations (SNV's)				
Systematic name	Name	Туре	Amino acid change	
YER001W	MNN1	MisSense	L322F	
YBR163W	EXO5	MisSense	A195E	
YML007W	YAP1	MisSense	Q171K	
YMR115W	MGR3	MisSense	N89D	
YLR233C	EST1	MisSense	A275V	
YLR249W	YEF3	MisSense	А99Т	
YKL073W	LHS1	MisSense	E287K	
YJL019W	MPS3	MisSense	Q201E	
YPL097W	MSY1	MisSense	A311V	
YNR075W	COS10	MisSense	V70L	
YLL040C	VPS13	Sense	119441	
	G	ene duplications		
Systematic name	Name		Function	
Chromosome III				
YCR019w	МАК32	Protein necessary for struc con	tural stability of L-A double-stranded RNA- taining particles (1)	
YCR020C	PET18	Protei	n of unknown function	
YCR020C-A	MAK31	Non-catalytic subunit of N-	terminal acetyltransferase of the NatC type	
YCR021CHSP30Hydrophobic plasma membrane localized, stress-responsive protein that negatively regulates the H(+)-ATPase Pma1p; induced by heat shock, ethanol treatment, weak organic acid, glucose limitation, and entry into stationary phase				

YCR022C		Dubious open reading frame unlikely to encode a protein, based on available experimental and comparative sequence data; YCR022C is not an essential gene
YCR023C		Vacuolar membrane protein of unknown function; member of the multidrug resistance family; YCR023C is not an essential gene
YCR024C	SLM5	Mitochondrial asparaginyl-tRNA synthetase
YCR024C-A	PMP1	Regulatory subunit for the plasma membrane H(+)-ATPase Pma1p
YCR024C-B		Putative protein of unknown function
YCR025C		Dubious open reading frame unlikely to encode a protein, based on available experimental and comparative sequence data; YCR025C is not an essential gene
YCR026C	NPP1	Nucleotide pyrophosphatase/phosphodiesterase; mediates extracellular nucleotide phosphate hydrolysis along with Npp2p and Pho5p; activity and expression enhanced during conditions of phosphate starvation; NPP1 has a paralog, NPP2, that arose from the whole genome duplication
YCR027C	RHB1	Putative Rheb-related GTPase involved in regulating canavanine resistance and arginine uptake; member of the Ras superfamily of G- proteins
Chromosome V		
YER093C-A	AIM11	Protein of unknown function
YER094C	PUP3	Beta 3 subunit of the 20S proteasome involved in ubiquitin- dependent catabolism; human homolog is subunit C10
YER095W	RAD51	Strand exchange protein, forms a helical filament with DNA that searches for homology; involved in the recombinational repair of double-strand breaks in DNA during vegetative growth and meiosis; homolog of Dmc1p and bacterial RecA protein
YER096W	SHC1	Sporulation-specific activator of Chs3p (chitin synthase III); required for the synthesis of the chitosan layer of ascospores; transcriptionally induced at alkaline pH; <i>SHC1</i> has a paralog, <i>SKT5</i> , that arose from the whole genome duplication
YER097W		Dubious open reading frame unlikely to encode a functional protein, based on available experimental and comparative sequence data
YER098W	UBP9	Ubiquitin-specific protease that cleaves ubiquitin-protein fusions; UBP9 has a paralog, UBP13, that arose from the whole genome duplication
YER099C	PRS2	5-phospho-ribosyl-1(alpha)-pyrophosphate synthetase, synthesizes PRPP, which is required for nucleotide, histidine, and tryptophan biosynthesis; one of five related enzymes, which are active as heteromultimeric complexes; <i>PRS2</i> has a paralog, <i>PRS4</i> , that arose from the whole genome duplication
YER100W	UBC6	Ubiquitin-conjugating enzyme involved in ER-associated protein degradation; located at the cytosolic side of the ER membrane; tail region contains a transmembrane segment at the C-terminus; substrate of the ubiquitin-proteasome pathway
YER101C	AST2	Lipid raft associated protein; overexpression restores Pma1p localization to lipid rafts which is required for targeting of Pma1p to the plasma membrane; sometimes classified in the medium-chain dehydrogenase/reductases (MDRs) superfamily; <i>AST2</i> has a paralog, <i>AST1</i> , that arose from the whole genome duplication
YER102W	RPS8B	Protein component of the small (40S) ribosomal subunit; homologous to mammalian ribosomal protein S8, no bacterial homolog; <i>RPS8B</i> has a paralog, <i>RPS8A</i> , that arose from the whole genome duplication
YER103W	SSA4	Heat shock protein that is highly induced upon stress; plays a role in SRP-dependent cotranslational protein-membrane targeting and translocation; member of the HSP70 family; cytoplasmic protein that concentrates in nuclei upon starvation; <i>SSA4</i> has a paralog, <i>SSA3</i> , that arose from the whole genome duplication
YER104W	RTT105	Protein with a role in regulation of Ty1 transposition (1)

6	Table S2. Differentiall	y expressed MG's ge	nes under aerobic conditions.
		, , , , , , , , , , , , , , , , , , , ,	

Up-regulated				
Systematic name	Name	Fold-change		
YCR019W	MAK32	2.1		
YCR020C	PET18	2.1		
YCR020C-A	MAK31	2.2		
YCR020W-B	HTL1	2.3		
YCR021C	HSP30	2.0		
YCR026C	NPP1	2.1		
YDR046C	BAP3	2.2		
YER094C	PUP3	2.2		
YER095W	RAD51	2.3		
YER099C	PRS2	2.3		
YER100W	UBC6	2.1		
YER101C	AST2	2.0		
YER104W	RTT105	2.8		
Down-	regulate	ed		
Systematic name	Name	Fold-change		
YLR159W		-4.3		
YCL018W	LEU2	-3.6		
YLR155C	ASP3-1	-2.6		
YOR383C	FIT3	-2.4		

9 Table S3. Strains used in this study.

Strain name	Relevant genotype	Reference
CEN.PK102-12A	MATa ura3-52 his3-1 leu2-3,112 MAL2-8c SUC2	(1-3)
CEN.PK113-7D	MATa MAL2-8c SUC2	(1-3)
IMX076	MATa ura3-52 his3-1 leu2-3,112 MAL2-8c SUC2 glk1::SpHis5	This study
IMX080	MATa ura3-52 his3-1 leu2-3,112 MAL2-8c SUC2 glk1::SpHis5, hxk1::KlLEU2	This study
IMX096	MATa ura3-52 his3-1 leu2-3,112 MAL2-8c SUC2 glk1::SpHis5, hxk1::KlLEU2, tdh1::KanMX	This study
IMX098	MATa ura3-52 his3-1 leu2-3,112 MAL2-8c SUC2 glk1::SpHis5, hxk1::KlLEU2, tdh1::KanMX, tdh2::Hygr	This study
IMI175	MATa ura3-52 his3-1 leu2-3,112 MAL2-8c SUC2 glk1::SpHis5, hxk1::KlLEU2, tdh1::KanMX, tdh2::Hygr, gpm2::KlURA3	This study
IMX126	MATa ura3-52 his3-1 leu2-3,112 MAL2-8c SUC2 glk1::SpHis5, hxk1::KLLEU2, tdh1::KanMX, tdh2::Hygr, gpm2, gpm3::KlURA3	This study
IMX135	MATa ura3-52 his3-1 leu2-3,112 MAL2-8c SUC2 glk1::SpHis5, hxk1::KLLEU2, tdh1::KanMX, tdh2::Hygr, gpm2, gpm3, eno1::KlURA3	This study
IMX142	MATa ura3-52 his3-1 leu2-3,112 MAL2-8c SUC2 glk1::SpHis5, hxk1::KlLEU2, tdh1::KanMX, tdh2::Hygr, gpm2, gpm3, eno1, pyk2::KlURA3	This study
IMX151	MATa ura3-52 his3-1 leu2-3,112 MAL2-8c SUC2 glk1::SpHis5, hxk1::KlLEU2, tdh1::KanMX, tdh2::Hygr, gpm2, gpm3, eno1, pyk2, pdc5::KlURA3	This study

IMX158	MATa ura3-52 his3-1 leu2-3,112 MAL2-8c SUC2 glk1::SpHis5, hxk1::KILEU2, tdh1::KanMX, tdh2::Hygr, gpm2, gpm3, eno1, pyk2, pdc5, pdc6::KIURA3	This study
IMX163	MATa ura3-52 his3-1 leu2-3,112 MAL2-8c SUC2 glk1::SpHis5, hxk1::KILEU2, tdh1::KanMX, tdh2::Hygr, gpm2, gpm3, eno1, pyk2, pdc5, pdc6, adh2::KIURA3	This study
IMX175	MATa ura3-52 his3-1 leu2-3,112 MAL2-8c SUC2 glk1::SpHis5, hxk1::KlLEU2, tdh1::KanMX, tdh2::Hygr, gpm2, gpm3, eno1, pyk2, pdc5, pdc6, adh2, adh5::KlURA3	This study
IMX208	MATa ura3-52 his3-1 leu2-3,112 MAL2-8c SUC2 glk1::SpHis5, hxk1::KlLEU2, tdh1::KanMX, tdh2::Hygr, gpm2, gpm3, eno1, pyk2, pdc5, pdc6, adh2, adh5, adh4::KlURA3	This study
IMX343	MATa ura3-52 his3-1 leu2-3,112 MAL2-8c SUC2 glk1::SpHis5, hxk1::KILEU2, tdh1::KIURA3, tdh2::Hygr, gpm2, gpm3, eno1, pyk2, pdc5, pdc6, adh2, adh5, adh4	This study
IMX346	MATa ura3-52 his3-1 leu2-3,112 MAL2-8c SUC2 glk1::SpHis5, hxk1::KILEU2, tdh1::KIURA3, tdh2::amdSYM, gpm2, gpm3, eno1, pyk2, pdc5, pdc6, adh2, adh5, adh4	This study
IMX370	MATa ura3-52 his3-1 leu2-3,112 MAL2-8c SUC2 glk1::SpHis5, hxk1::KlLEU2, tdh1, tdh2, gpm2, gpm3, eno1, pyk2, pdc5, pdc6, adh2, adh5, adh4	This study
IMX372 - Minimal Glycolysis (MG)	MATa ura3-52 his3-1 leu2-3,112 MAL2-8c SUC2 glk1::SpHis5, hxk1::KILEU2, tdh1::KIURA3, tdh2, gpm2, gpm3, eno1, pyk2, pdc5, pdc6, adh2, adh5, adh4	This study

12 Table S4. Primers used in this study.

Nama	Securence $5^2 > 3^2$	Targeted
Name	Sequence 5 -> 5	gene/plasmid

Deletion cassette construction

glk1dFW/1712	AAACCACAACACCACCACTAATACAACTCTATCATACAC AAGATGCCGCCAAGCGAATTGAAGGACAGCTGAAGCTTC GTACGC	GLK1/pUG27
glk1dRV/1713	GTACGGTGGGATACGTACACAAACCAAAAAAAATGTAAAA AGATCACCGTGCGTAGAATGAAGAACGCATAGGCCACTA GTGGATCTG	GLK1/pUG27
hxk1dFW/1710	AAACTCACCCAAACAACTCAATTAGAATACTGAAAAAAAT AAGATGATGACAAGAGGGTCGAACTCCAGCTGAAGCTTC GTACGC	HXK1/pUG73
hxk1dRV/1711	AGGGAGGGAAAAACACATTTATATTTCATTACATTTTT TCATTAGCCTAAGTCGTAATTGAGTCGCATAGGCCACTA GTGGATCTG	HXK1/pUG73
TDH1 FW deletion/1800	ACACAAAAAACAGTACTTCACTAAATTTACACACAAAAC AAAATGTATGCCAGCTACCTAGTGCGCAGCTGAAGCTTC GTACGC	<i>TDH1</i> /pUG6 or pDS2 or pDS3
TDH1 RV deletion/1801	ATATTCAAAAAAAAATCATTATCCTCATCAAGATTGCTT TATTTAGGCCATATCACATTAACTGCGCATAGGCCACTA GTGGATCTG	<i>TDH1</i> /pUG6 or pDS2 or pDS3
TDH2 FW deletion/1802	TTAGTTTCAAATTAAATTCATCACCAAACAAACAAAAC AAAATGCCGCTTCATCAAGACTGTTACAGCTGAAGCTTC GTACGC	<i>TDH2</i> /pUG-hphN or pDS2 or pDS3
TDH2 Rv deletion/1803	ATAATAAAAACTAAATCATTAAAGTAACTTAAGGAGTTA AATTTATAGCAGCCGTGCATACGCAT <i>GCATAGGCCACTA</i> GTGGATCTG	<i>TDH2</i> /pUG-hphN or pDS2 or pDS3
GPM2DcsmlFW/2478	TTAAACCCAAGAATACATAAAAAAAAATATAGATATATTA ACTTAGTAAACAATGCAGCTGAAGCTTCGTACGC	GPM2/pUG72
GPM2DcsmlRV/2479	TGGTTTTCATTATACTTCGGAAAATACACAATTATATTA TATACTTACCCCCCTTAATTGAACAACCTCGTATTTGGA TGTGTGTCTCGAAACACTGCATAGGCCACTAGTGGATCT G	GPM2/pUG72
GPM3DcsmlFW/2480	ATTGAGAAATAGTGCAAAAAGATCTACTAATAACGAATA GTTATGAACATCGAGCTGAGCATCAACACCTTTGACGAG CTGTTCACCTCGAGAGCTCGTTTTATTTAGGTTC	GPM3/pUG72
GPM3DcsmlRV/2481	AGGAAACCATGAAAAAAATGGCGCTAATTTTTTATTTT AAAAACTATTCAAGAGACTTTTATTGTAAATCCTCGATT GCAGGTTGTTTTAGCATAGGCCACTAGTGGATCTG	GPM3/pUG72
ENO1DUFW/2411	AAACCAAGCAACTGCTTATCAACACCAAAACACTAAATC AAAATGTCGAGAGCTCGTTTTATTTAGGTTC	ENO1/pUG72
ENO1DURV/2412	AAAAAAACGTGTTTTTTTGGACTAGAAGGCTTAATCAAAA GCTTTATTTATGAAAAATAGCTAGAAGGAATAAGGGATT ACAAGAGAGATGTTACAAGAGATCCCAATACAACAGATC AC	ENO1/pUG72
PYK2smlFW/7420	CTATATTTTACTTTCATCCTCTACGTCCATTGTAAGATT ACAACAAAAGCACTATCGATGTCGAGAGCTCGTTTTATT TAGGTTC	PYK2/pUG72
PYK2smlRV/7421	GACAATTAAATAAAATTAAGTAAAAAAAAAAAAGGACTTT AATTTTTACTATTTCACCGCTCTGCTTCAAAATGTTTTA TGTTCTTTGTTTTCTTTAGAGAGATCCCAATACAACAGATC AC	PYK2/pUG72
PDC5DCFW-1/2802	TTACACTTATTTCACATAATCAATCTCAAAGAGAACAAC ACAATACAAT	PDC5/pUG72
PDC5DCRV-1/2760	GTAAAAAAATACACAAACGTTGAATCATGAGTTTTATGT TAATTAGCTTATAAGAAAGAGAGGGAAAGGACTTACTACA GTATATTGATCGAGAGATCCCAATACAACAGATCAC	PDC5/pUG72
pdc6DcRV/2459	TATTTGCAACAATAATTCGTTTTTGAGTACACTACTAAT GGCTTATACTGTATATAAAAGAGGACTGCAATAGCACAA GATTAAGGCATAGGCCACTAGTGGATCTG	PDC6/pUG72

pdc6DcFW/2458	TAAAAAACCCAAGTAATATAGCAAAAACATATTGCCAAC AAAATGCAGCTGAAGCTTCGTACGC	PDC6/pUG72
ADH2DCFW/2804	ATCAAGCTACAAAAAGCATACAATCAACTATCAACTATT AACTATATCGTAATACACAATTCGAGAGCTCGTTTTATT TAGGTTC	ADH2/pUG72
ADH2DCRV/2761	ATGCTTGATAATGAAAACTATAAATCGTAAAGACATAAG AGATCCGCTTAATTCTATTTACCAAGAAGAAACAAGAAG TGATAAAAAACAA <i>AGAGATCCCCAATACAACAGATCAC</i>	ADH2/pUG72
ADH5DCFW/2808	CTGATTGGAAGATACCTAAGAAAATTATTTAACTACATA TCTACAAAATCAAAGCATCATTCGAGAGCTCGTTTTATT TAGGTTC	ADH5/pUG72
ADH5DCRV/2763	GCTTATATAAAAAGTAAAAATATATTCATCAAAATTCGTT ACAAAAGATCAAGACATTGTGAGACAGTAAAGCAGTAGT TTGCGCTAGAAAAGAGATCCCAATACAACAGATCAC	ADH5/pUG72
ADH4DCFW/2806	AAAAAAAAAAAAGAACTAGTTTTTAGTTCGCGCATCACGAGG TACGTGTTTAATATGTCAGAATCCGAGAGCTCGTTTTATT TAGGTTC	ADH4/pUG72
ADH4DCRV/2762	AAATAAGGCACACGCATAATTGACGTTTATGAGTTCGTT CGATTTTTTATTTCTATAGCTAATCCACTGCGGTGAT ACTACAGCCATCAGAGATCCCAATACAACAGATCAC	ADH4/pUG72

Deletion confirmation

GLK1FW2/1524	ATCAGTGCCCAACTCAGCTTCC	GLK1
GLK1RV2/1525	AACCAAAGGCCCGTTTCCGATG	GLK1
KanB r/114	CGACCAGCATTCACATACGA	TEF2
KanA f/113	CTTGACAGTCTTGACGTGCG	TEF2
HXK1FW/1716	GACCGCAAAAAAAACATAAGGG	HXK1
HXK1RV/1717	CCGTTCCTTCATCTTGTATTCTTC	HXK1
iLEU2RV/1721	GTTAGTGTCAGGTAGGGAAGC	LEU2
iLEU2FW/1720	CAATTCAGCGCAGTCACG	LEU2
Ctdh1FW/1989	CCACGTGCAGAACAACATAG	TDH1
Ctdh1RV/1990	ATAGTCACATATTGTGGGTATGTG	TDH1
KanA/9	CGCACGTCAAGACTGTCAAG	TEF2
Kan B/10	TCGTATGTGAATGCTGGTCG	TEF2
TDH2CFW/2350	TCAAGTTCCCATTTGGCAATC	TDH2
TDH2RV/2351	TGGGTCGGCCTGTTGTTTC	TDH2
hygroFW/1993	GGACGCTCGAAGGCTTTAAC	Nph
gpm2confFW/2482	GTTATCACCCCACGACGAAG	GPM2
gpm2confRV/2483	TCTGCATTCAGGAATGTTCTTATAAATATC	GPM2

UB/2300	GAAATGCTGGATGGGAAGCG	URA3
UA/2299	GGCCCAATCACAACCACATC	URA3
gpm3confFW/2484	TGCGAGATTTCATTGACAAGTTCG	GPM3
gmp3confRV/2485	TACGAGTAGATAAGATGGCTTATGC	GPM3
ENO1ConFW/2305	TTCTGGCACACATGATCTCC	ENO1
ENO1ConRV/2306	ACATGGGTGACCAAAAGAGC	ENO1
PYK2ConFW/2307	CGCAGTTTGCGAACATTACC	РҮК2
PYK2ConRV/2308	TTTATTTAGCGACGCAGCATAG	РҮК2
pdc5DconfFW/2805	ATGAGACTTGAATAATGCAGCG	PDC5
pdc5DconfRV/2807	GGTTAAAGATCACACCACCC	PDC5
pdc6confFW/2460	AGAGACGCGCAGTACGTAAC	PDC6
pdc6confRV/2461	TATGCAGATCGGCTGTGGC	PDC6
adh2DconfFW/2765	GAACACCGGGCATCTCCAAC	ADH2
adh2DconfRV/2766	CGAACACTGCTGAAGCTACC	ADH2
adh5DconfFW/2769	TTCTCCTTTCGCGGAAGGATG	ADH5
adh5DconfRV/2770	CCAAATGTCCACCGGTTCTC	ADH5
adh4DconfFW/2767	TGTGTTCAGAAGGATCCCCG	ADH4
adh4DconfRV/2768	AAGGCACACGCATAATTGAC	ADH4

Bold: Sequence for targeted integration

14 <u>Underlined</u>: Sequence for seamless marker removal

Italic: Sequence for plasmid binding

Table S5. Plasmids used in this study.

	Plasmid	Marker	Reference
	pUG27	Sphis5	(4)
	pUG73	KILEU2	(4)
	pUG72	KIURA3	(4)
	pUG6	KanMX	(5)
	pUG-hphNT1	AgTEF2 _{pr} -hphNT1-AgTEF2 _{ter}	(6)
	pDS2	amdSYM	(7)
	pDS3	KIURA3	(7)
-			

- 18 Table S6. Experimental conditions used for expression data of glycolytic genes of S.
- 19 cerevisiae according to (8). The transcript data are searchable at Genome Expression

20	Omnibus	(www.ncbi.nlm.nih.gov/geo) under the accession number GSE11452

Experiment No.	Conditions
1	Aerobic glucose limited 1
2	Aerobic glucose limited 2
3	Aerobic glucose limited 3
4	Aerobic nitrogen limited 1
5	Aerobic nitrogen limited 3
6	Aerobic phosphorus limited 1
7	Aerobic phosphorus limited 2
8	Aerobic phosphorus limited 3
9	Aerobic sulfur limited 1
10	Aerobic sulfur limited 2
11	Aerobic sulfur limited 3
12	Anaerobic carbon limited 1
13	Anaerobic nitrogen limited 1
14	Anaerobic nitrogen limited 2
15	Anaerobic nitrogen limited 3
16	Anaerobic phosphorus limited 1
17	Anaerobic phosphorus limited 2
18	Anaerobic phosphorus limited 3
19	Anaerobic sulfur limited 1
20	Anaerobic sulfur limited 2
21	Anaerobic sulfur limited 3
22	Anaerobic carbon limited 4
23	Anaerobic carbon limited 5
24	Anaerobic carbon limited 6
25	Aerobic glucose limited 4
26	Aerobic glucose limited 5
27	Aerobic glucose limited 6
28	C-lim Anaerobic reference (pH 5) #1
29	C-lim Anaerobic reference (pH 5) #2
30	C-lim Anaerobic reference (pH 5) #3
31	C-lim Anaerobic Acetate 1
32	C-lim Anaerobic Acetate 2
33	C-lim Anaerobic Acetate 3
34	C-lim Anaerobic Benzoate 1
35	C-lim Anaerobic Benzoate 2
36	C-lim Anaerobic Benzoate 3
37	C-lim Anaerobic Propionate 1
38	C-lim Anaerobic Propionate 2
39	C-lim Anaerobic Propionate 3

40	C-lim Anaerbic Sorbate 1
41	C-lim Anaerobic Sorbate 2
42	C-lim Anaerobic Sorbate 3
43	12C Chemostat anaerobic C-lim 0.03h-1 (1)
44	12C C-im anaerobic chemostat 0.03h-1 (2)
45	12C anaerobic C-lim chemostat 0.03h-1 (3)
46	30C Anaerobic C-lim chemostat 0.03h-1 (1)
47	30C anaerobic C-lim chemostat 0.03h-1 (2)
48	30C anaerobic C-lim chemostat 0.03 h-1 (3)
49	12C anaerobic N-limitation chemostat 0.03h-1 (1)
50	12C anaerobic N-lim chemostat 0.03h-1 (2)
51	12C anaerobic N-lim chemostat 0.03h-1 (3)
52	30C anaerobic N-lim chemostat 0.03h-1 (1)
53	30C anaerobic N-lim chemostat 0.03h-1 (2)
54	30C anaerobic N-lim chemostat 0.03h-1 (3)
55	C-lim aerobic chemostat with ASN as N-source 1
56	C-lim aerobic chemostat with ASN as N-source 2
57	C-lim aerobic chemostat with ASN as N-source 3
58	C-lim aerobic chemostat with Proline as N-source 1
59	C-lim aerobic chemostat with proline as N-source 2
60	C-lim aerobic chemostat with proline as N-source 3
61	C-lim aerobic chemostat with leucine as N-source 1
62	C-lim aerobic chemostat with leucine as N-source 2
63	C-lim aerobic chemostat with leucine as N-source 3
64	C-lim aerobic chemostat with phenylalanine as N-source 2
65	C-lim aerobic chemostat with phenylalanine as N-source 3
66	C-lim aerobic chemostat with methionine as N-source 1
67	C-lim aerobic chemostat with methionine as N-source 2
68	C-lim aerobic chemostat with methionine as N-source 3
69	Zinc limited Aerobic chemostat culture -1
70	Zinc-limited aerobic chemostat culture-2
71	Zinc-limited Aerobic chemostat culture -3
72	Zinc-limited Anaerobic chemostat culture-1
73	Zinc-limited Anaerobic chemostat culture-2
74	Zinc-limited Anaerobic chemostat culture-3
75	Carbon-limited Aerobic chemostat culture -1
76	Carbon-limited Aerobic chemostat culture-2
77	Carbon-limited Aerobic chemostat culture-3
78	Nitrogen-limited Aerobic chemostat culture-1
79	Nitrogen-limited Aerobic chemostat culture-2
80	Nitrogen-limited Aerobic chemostat culture-3
81	Nitorgen-limited Anaerobic chemostat culture-1
82	Nitrogen-limited Anaerobic chemostat culture-3
83	Nitrogen-limited Anaerobic chemostat culture-2
84	CENPK113-7D glucose/ethanol limited chemostat -1
85	CENPK113-7D glucose/ethanol limited chemostat -2

86	CENPK-113-7D glucose/ethanol limited chemostat -3
87	CENPK113-7D glucose/ethanol limited chemostat -4
88	Ethanol limited chemostat D=0.1/h -1
89	Ethanol limited chemostat D= 0.1 /h -2
90	Ethanol limited chemostat D=0.1/h -3
91	Acetate limited chemostat culture D=0.1/h -1
92	Acetate limited chemostat culture D=0.1/h -2
93	Acetate limited chemostat D=0.1/h -3
94	Maltose limited chemostat culture D=0.1/h -3
95	Anaerobic glucose limited chemostat culture with 100%CO2
96	Anaerobic glucose limited chemostat culture with 100% CO2 D=0.1/h -2
97	Anaerobic glucose limited chemostat culture with 100% CO2 D=0.1/h -3
98	Aerobic glucose limited chemostat culture with 79% CO2 D=0.1/h -1
99	Aerobic glucose limited chemostat culture with 79% CO2 D=0.1/h -2
100	Aerobic glucose limited chemostat culture with 79% CO2 D=0.1/h -3
101	Aerobic nitrogen limited chemostat culture with 79% CO2 D=0.1/h -1
102	Aerobic nitrogen limited chemostat culture with 79% CO2 D=0.1/h -2
103	Aerobic nitrogen limited chemostat culture with 79% CO2 D=0.1/h -3
104	Carbon-limited anaerobic chemostat with benzoate -1
105	Carbon-limited anaerobic chemostat with benzoate -2
106	Carbon-limited anaerobic chemostat with benzoate -3
107	C-lim Anaerobic chemostat dilution rate 0.05h-1 - 1
108	C-lim Anaerobic chemostat dilution rate 0.05h-1 - 2
109	C-lim Anaerobic chemostat dilution rate 0.05h-1 - 3
110	Aerobic galactose C-lim chemostat culture-1
111	Aerobic galactose C-lim chemostat culture-2
112	Aerobic galactose C-lim chemostat culture-3
113	Aerobic galactose C-lim chemostat culture-4
114	Aerobic galactose C-lim chemostat culture-5
115	Aerobic galactose C-lim chemostat culture-6
116	Aerobic S-lim chemostat culture-1
117	Aerobic S-lim chemostat culture-2
118	C-lim Anaerobic chemostat dilution rate 0.03h-1 - 1
119	N-lim Anaerobic chemostat dilution rate 0.03h-1 - 2
120	C-lim Anaerobic chemostat dilution rate 0.2h-1 - 1
121	C-lim Anaerobic chemostat dilution rate 0.2h-1 - 2
122	Aerobic pH3.5 C-lim chemostat culture-1
123	Aerobic pH3.5 C-lim chemostat culture-2
124	Aerobic pH3.5 C-lim chemostat culture-3
125	Aerobic pH6.5 C-lim chemostat culture-1
126	Aerobic pH6.5 C-lim chemostat culture-2
127	Aerobic pH6.5 C-lim chemostat culture-3
128	N-lim Anaerobic chemostat dilution rate 0.2h-1 - 1
129	N-lim Anaerobic chemostat dilution rate 0.2h-1 - 2
130	C-lim Anaerobic chemostat dilution rate 0.03h-1 - 2
131	C-lim Anaerobic chemostat dilution rate 0.03h-1 - 3

132	Acetate limited chemostat culture D=0.1/h -4
133	Ethanol limited chemostat culture D=0.1/h -4
134	N-lim Anaerobic chemostat dilution rate 0.2h-1 - 3
135	N-lim Anaerobic chemostat dilution rate 0.03h-1 - 3
136	N-lim Anaerobic chemostat dilution rate 0.2h-1 - 4
137	Anaerobic carbon limited with methionine as N-source
138	Anaerobic carbon limited with methionine as N-source -2
139	Anaerobic carbon limited with methionine as N-source -3
140	Aerobic glucose limited chemostat with anaerobic factors (tween and ergosterol) -1
141	Aerobic glucose limited chemostat with anaerobic factors (tween and ergosterol) -2
142	Aerobic glucose limited chemostat with anaerobic factors (tween and ergosterol) -3
143	Aerobic phosphorus limited chemostat with anaerobic factors (tween and ergosterol) - 1
144	Aerobic phosphorus limited chemostat with anaerobic factors (tween and ergosterol) - 2
145	Aerobic phosphorus limited chemostat with anaerobic factors (tween and ergosterol) - 3
146	Anaerobic glucose limited chemostat with methionine as sulfur source-1
147	Anaerobic glucose limited chemostat with methionine as sulfur source-2
148	Anaerobic glucose limited chemostat with methionine as sulfur source-3
149	Anaerobic nitrogen limited chemostat with methionine as nitrogen source-1
150	Anaerobic nitrogen limited chemostat with methionine as nitrogen source-2
151	Anaerobic nitrogen limited chemostat with methionine as nitrogen source-3
152	Anaerobic nitrogen limited chemostat with methionine as nitrogen and sulfur source-1
153	Anaerobic nitrogen limited chemostat with methionine as nitrogen and sulfur source-2
154	Anaerobic nitrogen limited chemostat with methionine as nitrogen and sulfur source-3
155	Anaerobic sulfur limited chemostat -1
156	Aerobic glucose limited chemostat with Phenylalanine as N-source-1
157	Aerobic glucose limited chemostat with Phenylalanine as N-source-2
158	Aerobic glucose limited chemostat with leucine as nitrogen source-1
159	Aerobic glucose limited chemostat with leucine as nitrogen source-2
160	Iron limited chemostat cultures with ethanol as a carbon source
161	Iron limited chemostat cultures with ethanol as a carbon source-2
162	Anaerobic nitrogen limited chemostat 0.03h-1 -1
163	Anaerobic glucose limited chemostat
164	Aerobic glucose limited chemostat with 25 mM formate-1
165	Aerobic sulfur limited culture (cDNA from total RNA)-2
166	C-lim aerobic chemostat with 25mM formate
167	CENPK113-7D glucose/ethanol (19mM) limited chemostat -1
168	CENPK113-7D glucose/ethanol (19mM) limited chemostat -2
169	CENPK113-7D glucose/ethanol (19mM) limited chemostat -3
170	C-lim Aerobic chemostat with maltose as C-source 1

23 Figure S1. Growth reduction of *pfk2* mutants. Saccharomyces cerevisiae's *pfk2* mutants 24 were obtained by deletion of the PFK2 gene in the diploid strain CEN.PK122 using a cassette 25 obtained by PCR using Phusion polymerase (Thermo fisher) and the primers 5'-26 AGAACTAGATTTAGAGACTAGTTTAGCATTGGCCAAGAACTAACCATACGCAATGGATGTCCACGAG 27 CTCTCTACATTGCATGGAATCAGGGCCAGCTGAAGCTTCGTACGC-3' and 5'-28 TTAACATTAATTGACATTAATAATAGAAAGTGTAATAAAAGGTCATTTTCTTTTACGGTGTCGGTCTC 29 GTAGACGGCGAGTATATGTATGCTGCATAGGCCACTAGTGGATCTG-3' and the plasmid pUG6 as 30 template. CEN.PK112 cells were transformed with the obtained cassette using the lithium-31 acetate protocol (9). Mutants were then grown in sporulation media and spores were 32 dissected (A). The resulted *pfk2* mutant was termed IMX117 and used to inoculate shake 33 flask contained synthetic media or yeast extract and peptone liquid media with 2% glucose 34 as sole carbon source (SMG and YPD respectively). The changes in optical density at 660 nm 35 (OD660) of the culture was followed for 9 h **(B)**. The strain CEN.PK113-7D was used as 36 reference strain. The growth of *pfk2* mutants was significantly reduced (ca. 70% of the 37 growth of the reference strain). Data showed is the average of two independent culture 38 replicates, error bars represent the standard deviation.

40

Figure S2. Karyotype of the minimal glycolysis strain (MG), its parental strain CEN.PK102-12A (P) and the reference strain CEN.PK113-7D (C). Chromosomes of the different strains (MG, P and C) were separated using CHEF electrophoresis. Size and chromosome order were identified using the ladder (L) of *S. cerevisiae* YNN295. The size increase of the chromosomes V and III in MG perfectly correlate with the duplication of 12 genes in chromosome V and 12 genes in chromosome III. Agarose Plugs for the different strains were prepared using the

47 CHEF yeast genomic DNA plugs Kit (Bio-Rad, Richmond, CA), following manufacturer's
48 recommendations, and used for CHEF electrophoresis. CHEF electrophoresis was performed
49 as previously described (7).

51 Figure S3. Minimal glycolysis strain (MG) and CEN.PK113-7D (C) growth on media 52 containing glycerol as sole carbon source. A) Serial dilutions of MG (bottom) and 53 CEN.PK113-7D (top) suspensions were inoculated in agarose plates containing synthetic media with 6% (v/v) glycerol as sole carbon source (SMGlyc). B) MG (open circles) and 54 55 CEN.PK113-7D (C, closed circles) were inoculated in shake flasks containing synthetic media 56 with 6% (v/v) glycerol (G, red) and G enriched with 0.2% (v/v) glucose (G&G, blue) or 1% 57 yeast extract and peptone (G&YP, green). Optical density (OD,) measured at 660 nm, of the 58 different cultures was followed as an indication of biomass formation. The data in the plot show the average values of two independent culture replicates for each cultivation 59 60 condition, the error bar represent the standard deviation.

Figure S4. Minimal glycolysis strain (MG) and CEN.PK113-7D vacuoles. MG and CEN.PK113-7D vacuoles were stained with the red fluorescent dye FM4-64 (Excitation/emission ~515/640 nm) (Thermo Fisher Scientific) following manufacturer's recommendations. Yeast cells and vacuoles were visualized with an Imager-Z1 microscope equipped with an AxioCam MR camera, an EC Plan-Neofluar 100x/1.3 Oil Ph 3 M27 objective and the filter set: BP 535/25, FT 580, LP 590 (Carl-Zeiss, Oberkochen, Germany).

68 **References**

69	1. Entian KD & Kotter P. 2007. 25 Yeast genetic strain and plasmid collections, p 629-666. In
70	Stansfield I & Stark J (ed), Methods in Microbiology, Academic Press, Amsterdam,
71	The Netherlands.

Nijkamp JF, van den Broek M, Datema E, de Kok S, Bosman L, Luttik MA, Daran-Lapujade
 P, Vongsangnak W, Nielsen J, Heijne WHM, Klaassen P, Paddon CJ, Platt D,
 Kotter P, van Ham RC, Reinders MJT, Pronk JT, de Ridder D & Daran JM. 2012. *De novo* sequencing, assembly and analysis of the genome of the laboratory strain
 Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial
 biotechnology. Microb Cell Fact 11(36):doi:10.1186/1475-2859-11-36.

3. van Dijken JP, Bauer J, Brambilla L, Duboc P, Francois JM, Gancedo C, Giuseppin MLF,
 Heijnen JJ, Hoare M, Lange HC, Madden EA, Niederberger P, Nielsen J, Parrou JL,
 Petit T, Porro D, Reuss M, van Riel N, Rizzi M, Steensma HY, Verrips CT, Vindelov
 J & Pronk JT. 2000. An interlaboratory comparison of physiological and genetic
 properties of four *Saccharomyces cerevisiae* strains. Enzyme Microb Tech 26(9 10):706-714.

- 4. Guldener U, Heinisch J, Koehler GJ, Voss D & Hegemann JH. 2002. A second set of *LoxP* marker cassettes for *Cre*-mediated multiple gene knockouts in budding yeast.
 Nucleic Acids Res 30(6):e23.
- 5. Guldener U, Heck S, Fiedler T, Beinhauer J & Hegemann JH. 1996. A new efficient gene
 disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24(13):25192524.

6. de Kok S, Yilmaz D, Suir E, Pronk JT, Daran JM & van Maris AJA. 2011. Increasing free energy (ATP) conservation in maltose-grown *Saccharomyces cerevisiae* by
 expression of a heterologous maltose phosphorylase. Metab Eng 13(5):518-526.
 7. Solis-Escalante D, Kuijpers NG, van der Linden FH, Pronk JT, Daran JM & Daran-Lapujade

94 P. 2014. Efficient simultaneous excision of multiple selectable marker cassettes
95 using I-Scel-induced double-strand DNA breaks in *Saccharomyces cerevisiae*. FEMS
96 Yeast Res 14(5):741-754.

8. Knijnenburg TA, Daran JMG, van den Broek MA, Daran-Lapujade PAS, de Winde JH,
 Pronk JT, Reinders MJT & Wessels LFA. 2009. Combinatorial effects of
 environmental parameters on transcriptional regulation in *Saccharomyces cerevisiae*: A quantitative analysis of a compendium of chemostat-based
 transcriptome data. BMC Genomics 10(53):doi: 10.1186/1471-2164-10-53.

9. Gietz RD & Woods RA. 2002. Transformation of yeast by lithium acetate/single-stranded
 carrier DNA/polyethylene glycol method. Method Enzymol 350:87-96.