Orexin receptors exert a neuroprotective effect in Alzheimer's disease (AD) via heterodimerization with GPR103

J. Davies¹, J. Chen^{2,3}, R. Pink^{4,} D. Carter⁴, N. Saunders⁵, G. Sotiriadis¹, B. Bai³, Y. Pan³, D. Howlett⁶, A. Payne⁷, H. Randeva², E. Karteris¹

KEGG pathway	Number of genes involved	Genes involved
Metabolic pathways	8	PTGES, NAGLU, LALBA, GCDH, FTCD, DLST, ALOX12B
Neuroactive ligand- receptor interaction	7	GALR3, GRIN1, HRH4, HTR4, PTGER1, SSTR3, VIPR1
MAPK signalling pathway	5	FGFR4, IL1B, MAP3K14, MAPT, RASGRP1
NF-KB signalling pathway	5	BTK, IL1B, MAP3K14, SYK, TNFAIP3
TNF signalling pathway	4	EDN1, IL1B, MAP3K14, TNFAIP3
Osteoclast differentiation	4	BTK, IL1B, MAP3K14, SYK
PI3K-Akt signalling pathway	4	FGFR4, GNG13, SYK, TSC1
Cytokine-cytokine receptor interaction	4	CCR8, IL1B, IL8RA, TNFRSF19
Ras signalling pathway	4	FGFR4, GNG13, GRIN1, RASGRP1
Glutamatergic synapse	3	DLGAP1, GNG13, GRIN1
Chemokine signalling pathway	3	CCR8, GNG13, IL8RA
Calcium signalling pathway	3	GRIN1, HTR4, PTGER1
Alzheimer's disease	3	GRIN1, IL1B, MAPT
Serotonergic synapse	3	ALOX12B, GNG13, HTR4

Supplementary Table 1: KEGG pathways associated with OXA treatment in SH-SY5Y

KEGG pathway	Number of genes involved	Genes involved
Metabolic pathways	16	THTPA, SDS, PTGES2, PPOX, PLCG2, PIGO, IVD, GPT, FUK, CSAD, B3GAT3, AUH, ALG10, AKR1A1, AGXT, ACAA1
PI3K-Akt signalling pathway	10	CCND3, CSF3R, DDIT4, EPO, FGFR4, GNG13, ITGA3, JAK2, LAMB2, SYK
Neuroactive ligand- receptor interaction	10	AVPR1B, CHRND, CRHR1, DRD3, GRM4, HTR4, NMUR1, P2RY6, PTGER1, SSTR3
Pathways in cancer	8	CSF3R, HHIP, ITGA3, KLK3, LAMB2, PLCG2, STAT5A, WNT11
Jak-STAT signalling pathway	7	CCND3, CSF2RB, CSF3R, EPO, IL22RA1, JAK2, STAT5A
Biosynthesis of secondary metabolites	6	ACAA1, AGXT, AKR1A1, DHDDS, PPOX, SDS
Cytokine-cytokine receptor interaction	6	CCR10, CSF2RB, CSF3R, EPO, IL22RA1, TNFSF14
Calcium signalling pathway	5	AVPR1B, CACNA1C, HTR4, PLCG2, PTGER1
Vascular smooth muscle contraction	5	ADCY6, AVPR1B, CACNA1C, PPP1R12C, PRKCD
Hematopoietic cell lineage	5	CD2, CD8B, CSF3R, EPO, ITGA3
Glutamatergic synapse	5	ADCY6, CACNA1C, GNG13, GRM4, SLC1A6
Peroxisome	5	ABCD4, ACAA1, AGXT, PECR, SLC27A2
Cholinergic synapse	5	ADCY6, CACNA1C, GNG13, JAK2, KCNQ2
Ras signaling pathway	4	FGFR4, GNG13, PLCG2, RASA4
Dilated cardiomyopathy	4	ADCY6, CACNA1C, ITGA3, LMNA

Chemokine signalling pathway	4	ADCY6, CCR10, GNG13, JAK2			
Focal adhesion	4	CCND3, ITGA3, LAMB2, PPP1R12C			
Cell adhesion molecules	4	CD2, CD8B, LRRC4, PTPRF			
HIF-1 signalling pathway	3	EPO, PLCG2,TF			
Alzheimer's disease	1	CACNA1C			
Supplementary Table 2: KEGG pathways associated with OXB treatment in SH-					

Supplementary Table 2: KEGG pathways associated with OXB treatment in SH-SY5Y

KEGG pathway	Number of genes	Genes involved
	involved	
Neuroactive ligand-receptor interaction	26	ADRA1A, ADRA1B, AVPR2, CHRM5, CHRND, DRD3, GALR3, GCGR, GHRHR, GHSR, GLRA1, GRM4, GZMA, HCRTR1, HRH1, HRH3, MC3R, OPRM1, P2RX1, P2RX3, P2RX7, P2RY11, SSTR3, SSTR4, TBXA2R, TSHR
Metabolic pathways	24	ABO, ACAA1, ALG10, ALOX12, ALOX12B, ALOX15, ALOX15B, CYP4A11, CYP4F8, DPYS, EHHADH, FAHD1, FLAD1, FUK, IDUA, LTC4S, MVD, NDUFS7, NNMT, PCYT2, PKLR, PLCG2, PRODH, SDS
Cytokine-cytokine receptor interaction	21	CCL20, CCL3, CCL4, CCL5, CCR4, CSF2, CSF2RB, CSF3, CSF3R, EPO, IL11, IL17E, IL21, IL22, IL3RA, IL6, PDGFB, TNFSF14, TNFSF15, TNFSF18, XCR1
Calcium signalling pathway	19	ADRA1A, ADRA1B, CACNA1A, CACNA1B, CACNA1I, CACNA1H, CHRM5, ERBB2, ERBB3, GNA14, HRH1, ITPR1, P2RX1, P2RX3, P2RX7, PLCG2, PLN, RYR3, TBXA2R
PI3K-Akt signalling pathway	16	BCL2L11, CCND3, CHAD, CSF3, CSF3R, EPO, FGFR4, IL3RA, IL6, INS, ITGA11, ITGB4, JAK3, LAMC3, MYB, PDGFB
Jak-STAT signalling pathway	14	CCND3, CSF2, CSF2RB CSF3, CSF3R, EPO, IL11, IL21, IL22, IL3RA, IL6, JAK3, SOCS5, STAT5A

Hematopoietic cell lineage	14	CD2, CD34, CD37, CD4, CD8A, CD8B, CSF2, CSF3, CSF3R, EPO,
HTLV-I infection	14	ATF3, CCND3, CSF2, E2F1, FZD3, IL6, JAK3, MYB, NRP1, PCAF, PDGFB, STAT5A, TERT, XBP1
Pathways in cancer	13	ARNT, CSF3R, E2F1, ERBB2, FZD3, IL6, KLK3, LAMC3, PAX8, PDGFB, PLCG2,STAT5A, STK4
MAPK signalling pathway	13	CACNA1A, CACNA1B, CACNA1H, CACNA1I, CACNA2D3, CACNB2, CACNG5, FGFR4, MAP3K5, MEF2C, PDGFB, STK3, STK4
Regulation of actin cytoskeleton	11	CHRM5, FGD3, FGFR4, GRLF1, INS, ITGA11, ITGB4, MYL2, MYL5, MYL9, PDGFB
Proteoglycans in cancer	11	ERBB2, ERBB3, FZD3, GAB1, GPC3, HSPB2, HSPG2, ITPR1, NUDT16L1, PLCG2, TIMP3
Focal adhesion	11	CCND3, CHAD, ERBB2, GRLF1, ITGA11, ITGB4, LAMC3, MYL2, MYL5, MYL9, PDGFB
Ras signalling pathway	9	FGFR4, GAB1, INS, PDGFB, PLCG2, RASA4, RASAL2, REL, STK4
Chemokine signalling pathway	9	CCL20, CCL3, CCL4, CCL5, CCR4, FGR, HCK, JAK3, XCR1
Maturity onset diabetes of the young	8	FOXA2, INS, NKX2, NR5A2, PAX4, PAX6, PKLR, TCF1
MicroRNAs in cancer	8	BCL2L11,E2F1, ERBB2, ERBB3, FZD3, PDGFB, PLCG2, TIMP3
Serotonergic synapse	8	ALOX12, ALOX12B, ALOX15, LOX15B, CACNA1A, CACNA1B, ITPR1, KCNJ5
Transcriptional misregulation in cancer	8	CEBPE, CSF2, GZMB, IL6, MEF2C, MPO, PAX8, REL
ECM-receptor interaction	8	CD47, CHAD, GP6, GP9, HSPG2, ITGA11, ITGB4, LAMC3
Salivary secretion	7	ADRA1A, ADRA1B, AQP5, CAMP, FXYD2, ITPR1, RYR3
Non-alcoholic fatty liver disease	7	BCL2L11, IL6, INS, MAP3K5, NDUFS7, PKLR, XBP1
Biosynthesis of secondary metabolites	7	ACAA1, ACOT7, MVD, NAGK, PDSS2, PRODH, SDS
Arachidonic acid metabolism	7	ALOX12,ALOX12B, ALOX15, ALOX15B, CYP4A11, CYP4F8, LTC4S

Primary immunodeficiency	7	AIRE, BLNK, BTK, CD4, CD79A, CD8A, CD8B
Cell adhesion molecules	7	CD2, CD34, CD4, CD8A, CD8B, MAG, SDC3
Natural killer cell mediated cytotoxicity	6	CSF2, GZMB, NCR2, NCR3, PLCG2, SH3BP2
Arrhythmogenic right ventricular cardiomyopathy	6	CACNA2D3, CACNB2, CACNG5, ITGA11, ITGB4, LMNA
HIF-1 signalling pathway	6	ARNT, EPO, ERBB2, IL6, INS, PLCG2
Protein processing in endoplasmic reticulum	6	DNAJC1, MAP3K5, MBTPS2, PPP1R15A, SSR1, XBP1
Complement and coagulation cascades	6	C1QA, C2, F3, PROC, SERPINF2, THBD
Dopaminergic synapse	6	CACNA1A, CACNA1B, DRD3, ITPR1, KCNJ5, PPP1R1B
Inflammatory mediator regulation of TRP channels	6	ALOX12,HRH1, ITPR1, PLCG2, PRKCD, TRPV4
Glutamatergic synapse	6	CACNA1A, GRM4, ITPR1, SLC1A1, SLC1A6, SLC1A7
TNF signalling pathway	6	CCL20, CCL5, CSF2, IL6, MAP3K5, MMP14
Rheumatoid arthritis	6	CCL20, CCL3, CCL5, CSF2, IL11, IL6
ABC transporters	6	ABCA1, ABCA5, ABCB9, ABCD4, ABCG1, ABCG2
Cardiac muscle contraction	6	CACNA2D3, CACNB2, CACNG5, FXYD2, MYL2, MYL3
Cholinergic synapse	6	CACNA1A, CACNA1B, CHRM5, ITPR1, KCNQ4, KCNJ4
NF-kappa B signalling pathway	5	BLNK, BTK,CCL4,PLCG2, TNFSF14
Alzheimer's disease	3	ITPR1, NDUFS7, RYR3

Supplementary Table 3: KEGG pathways associated with QRFP treatment in SH-SY5Y

Molecular Functions (GOTERMS-OXA	Gene Count	% of total in	p-value
treatment)	in pathway	pathway	
solute:hydrogen symporter activity	4	0.9	1.50E-02
solute:cation symporter activity	7	1.6	1.50E-02
symporter activity	8	1.8	2.70E-02
antigen binding	5	1.1	3.10E-02
alanine-oxo-acid transaminase activity	2	0.5	4.20E-02
L-alanine:2-oxoglutarate aminotransferase	2	0.5	4.20E-02
activity			
sugar:hydrogen symporter activity	3	0.7	4.40E-02
cation:sugar symporter activity	3	0.7	4.40E-02
Molecular Functions (GOTERMS-OXB	Gene Count	% of total in	p-value
treatment)	in pathway	pathway	
metal ion transmembrane transporter activity	31	2.9	1.50E-03
pyridoxal phosphate binding	10	0.9	1.60E-03
vitamin B6 binding	10	0.9	1.60E-03
enzyme activator activity	31	2.9	2.10E-03
potassium ion binding	15	1.4	5.90E-03
potassium channel activity	15	1.4	8.30E-03
di-, tri-valent inorganic cation transmembrane transporter activity	7	0.7	1.40E-02
metal ion binding	239	22.2	1.60E-02
cation binding	241	22.4	1.70E-02
protein kinase binding	15	1.4	1.90E-02
kinase binding	17	1.6	2.20E-02
calcium ion binding	62	5.8	2.20E-02
fibroblast growth factor receptor activity	3	0.3	2.40E-02

endodeoxyribonuclease activity	5	0.5	2.40E-02
cation channel activity	23	2.1	2.60E-02
ion binding	242	22.5	2.60E-02
deoxyribonuclease activity	6	0.6	2.80E-02
vitamin binding	13	1.2	3.50E-02
voltage-gated cation channel activity	14	1.3	3.90E-02
enzyme binding	37	3.4	4.40E-02
alkali metal ion binding	19	1.8	4.60E-02
transition metal ion transmembrane	5	0.5	4.70E-02
transporter activity			
Molecular Functions (GOTERMS-QRFP	Gene Count	% of total in	p-value
treatment)	in pathway	pathway	
peptidase activity	39	4.3	6.20E-03
enzyme activator activity	26	2.9	7.10E-03
voltage-gated calcium channel activity	6	0.7	7.10E-03
serine-type peptidase activity	16	1.8	1.10E-02
serine hydrolase activity	16	1.8	1.20E-02
calcium ion binding	56	6.2	1.20E-02
tumor necrosis factor receptor binding	5	0.6	1.30E-02
cytokine activity	17	1.9	1.30E-02
peptidase activity, acting on L-amino acid	36	4	1.50E-02
peptides			
serine-type endopeptidase activity	14	1.5	1.60E-02
metal ion transmembrane transporter activity	24	2.6	1.80E-02
cation channel activity	21	2.3	1.80E-02
extracellular matrix constituent, lubricant			2 605 02
	3	0.3	2.00E-02
activity	3	0.3	2.002-02

gated channel activity	22	2.4	2.90E-02
extracellular matrix structural constituent	9	1	3.30E-02
transmembrane receptor protein phosphatase activity	4	0.4	4.30E-02
tumor necrosis factor receptor superfamily binding	5	0.6	4.70E-02

Supplementary Table 4. Gene Ontology (GO) terms for Molecular Function with significance at 1.5 fold change for OXA and OXB and at 2.0 fold difference for QRFP.

Gene	ΟΧΑ		ОХВ		QRFP	
	Microarray	qPCR	Microarray	qPCR	Microarray	qPCR
	value	value	value	value	value	value
CSTF2T	2.41	1.42	2.07	1.64	2.58	1.48
		±0.25		±0.05		±0.17
DAB2IP	1.60	1.38	2.06	4.32	2.15	2.24
		±0.42		±0.51		±0.30
GPR148	0.48	0.97	0.43	0.39	0.47	0.66
		±0.52		±0.11		±0.12
KRT23	0.39	0.49	0.33	0.80	0.41	0.63
		±0.09		±0.02		±0.17
OSBPL7	1.50	1.81	1.58	2.02	1.75	2.01
		±0.15		±1.01		±0.73
PYCRL	2.02	1.39	1.86	1.59	2.30	3.03
		±0.16		±0.48		±0.30
ZFP42	0.46	0.82	0.48	0.77±	0.48	0.83
		±0.04		0.20		±0.05
ZP1	2.20	1.47	1.76	3.24	3.43	3.36
		±0.19		±0.33		±0.69

Supplementary Table 5: Values for 8 genes that were similarly regulated by all thee neuropeptides obtained by microarray and qPCR validation upon 24 hour treatment with 100nM OXA, OXB or QRFP \pm S.D.

Diagnosis	Age (years)	Sex	PM delay (hr)
EOFAD	66	F	8
EOFAD	64	М	79
EOFAD	58	М	28
EOFAD	64	М	39
EOFAD	65	М	Not provided
EOFAD	70	F	24
AD	84	F	29
AD	84	М	47
AD	83	F	12
AD	80	М	32
AD	88	F	84
AD	87	F	54
Con (young)	58	F	39
Con (young)	59	М	19
Con (young)	55	F	41
Con (old)	78	F	23
Con (old)	89	F	24
Con (old)	88	F	22

Supplementary Table 6. Clinical details of patients (diagnosis, age in years, sex, and PM delay in hrs).

Gene	Primer sequence 5'→3'	Forward/Reverse	Amplicon size (bp)
OX1R	CCTGTGCCTCCAGA CTATGA ACACTGCTGCATTC CATGAC	F R	204
OX2R	TAGTTCCTCAGCTG CCTATC CGTCCTCATGTGGT GGTTCT	F R	261
GPR103	CGCCTCCCTTCCTC TACTCT GAGATCGAGTCTCC CAGTGC	F R	141
NSE	ATGCGACTAGGTGC AGAGGT GCTCCAAGGCTTCA CTGTTC	F R	133
NES	AACAGCGACGGAG GTCTCTA TTCTCTTGTCCGCA GACTT	F R	220
NG1	ACGCCCTGTTTCAT TCCTTAC CCATCTATTGCCTG CTGACTAG	F R	81
MAPT	TTTGGTGGTGGTTA GAGATATGC CCGAGGTGCGTGA	F R	72
CSTF2T	GCACAACCGGAATC ATGTCG TTCACTGGCAGCAT	F R	299
DAB2IP	AAAAGGAGGAACCC AGACGC TTTCTTGAGGCGAC	F R	135
GPR148	GCTCCCATACCTGT ACCTGC GTAAAGATGGCCTG	F R	90
KRT23	GTGCCT CTCCCACAGCAAAG GCCATA GAAGCTGTGTCCG	F R	130
OSBPL7	GAGCCAGGCTATG GGAACAT AGATGGGCAGAAG	F R	154
PYCRL	GCAGIG TATGTCACTTTCAA GCTCTGGGT ATCACTATGGCCCC	F R	271
ZFP42	TTACGTTTGGGAGG AGGTGG ACATTTGTTTCAGC	F R	229
ZP1	CTGGAGAAGGATG GGCGTTT CAGAGTAGCGTCTT GTGCCA	F R	90

Supplementary Table 7. List of primers used for qPCR analyses.

Supplementary Figure 1. Representative images of immunohistochemistry using DAB staining in EOFAD, LOAD and old and young control patients in the CA region with OX1R, OX2R or a GPR103 antibody. X40 magnification, bar = 100μ M.

Supplementary Figure 2. Immunofluorescence using an OXIR (a, b) OX2R (c,d) and GPR103 (e,f) antibodies in SH-SY5Y cells before (a,c,e) and after differentiation (b, d, f) with retinoic acid. x40 magnification.

Supplementary Figure 3. Raw data for western blots for Figure 3: In white rectangle (panels A and B) images used for phospho-tau measurements. Panel C: immunoblots for GAPDH.

Supplementary Tables

Supplementary Table 1. KEGG pathways associated with OXA treatment.

Supplementary Table 2. KEGG pathways associated with OXB treatment.

Supplementary Table 3. KEGG pathways associated with QRFP treatment.

Supplementary Table 4. Gene Ontology (GO) terms for Molecular Function with significance at 1.5 fold change for OXA and OXB and at 2.0 fold difference for QRFP.

Supplementary Table 5. Values for 8 genes obtained by microarray and qPCR validation upon 24 hour treatment with 100nM OXA, OXB or QRFP ±S.D.

Supplementary Table 6. Clinical details of patients (diagnosis, age in years, sex, and PM delay in hrs).

Supplementary Table 7. List of primers used for qPCR analyses.

Supplementary Figures

Supplementary Figure 1. Representative images of immunohistochemistry using DAB staining in EOFAD, LOAD and old and young control patients in the CA region with OX1R, OX2R or a GPR103 antibody. X40 magnification, bar = 100μ M.

Supplementary Figure 2. Immunofluorescence using an OXIR (a, b) OX2R (c,d) and GPR103 (e,f) antibodies in SH-SY5Y cells before (a,c,e) and after differentiation (b, d, f) with retinoic acid. x40 magnification.

Supplementary Figure 3. Raw data for western blots for Figure 3: In white rectangle (panels A and B) images used for phospho-tau measurements. Panel C: immunoblots for GAPDH.