
SUPPLEMENTARY TABLE 1

CO and CORMs as antimicrobial agents: a comparison

	Pros	Cons
CO gas	Stability	Ultimately toxic to almost all
		organisms
	Adequate water solubility	Low toxicity against bacteria
	Facile diffusion across	Difficult handling and
	membranes	administration
	Produced intracellularly by	
	heme oxygenases	
CORMs (generalized	Toxicity against bacteria (e.g.	Complex chemistry
properties)	CORM-2 and CORM-3)	
	Easy handling and	Lack of knowledge on biological
	administration	fates
	CO release can be controlled	Only some CORMs have been
	(e.g. PhotoCORMs and enzyme-	tested microbiologically
	activated CORMs)	
	New CORMs with desirable	
	therapeutic effects are appearing	

SUPPLEMENTARY FIGURE 1

Antibiotics and CORMs have distinct cellular targets

