Characterization of wall teichoic acid degradation by the bacteriophage ϕ 29 appendage protein GP12 using synthetic substrate analogs

Cullen L. Myers¹, Ronald G. Ireland¹, Teresa A. Garrett² and Eric D. Brown¹

¹ Michael G. DeGroote Institute for Infectious Disease Research; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8N 3Z5

² Department of Chemistry, Vassar College, Poughkeepsie, New York, USA 1260

Supplementary Information

Strains	Description	Source
<i>E. coli</i> BL21-CodonPlus (DE3)-RIL	<i>E. coli</i> protein overexpression strain (F ⁻ ompT hsdS (<i>r_Bm_b⁻</i>) dcm ⁺ Tet ^r gal endA Hte [argU ileY leuW Cam ^r])	Agilent
Plasmids		
pET28b-GP12	Expression plasmid for N-terminal hexahistidine-GP12	Ref. 27
p∆N88GP12	Expression plasmid for N-terminal hexahistidine- ΔN88GP12	This study
Oligonucleotides		
∆N88GP12-Forward	CTAGTAGCCATGGGCCACCATCATCATCATCATGATGAAAACC TGTATTTTCAGGGCGACCTCGTTATCCAAGTTATC	
GP12-Reverse	CTAGTAGTTAGTTCAAGAATAGTTGTTTTGGAGACGATTGAGA CCGTTTCTAGTAAGCTTCAAAGGAAAAAGGATACGGTG	

Table S1. Strains, plasmids and oligonucleotides used in this study

Figure S1. MALDI-TOF mass spectrometry of WTA analogs. Synthetic reactions for WTA analogs were performed as described in the main text. Samples were prepared for analysis by mixing a 5 μ L aliquot of the reaction mixture with an equal volume of a saturated matrix solution (2,5-dihydroxybenzoic acid in 50% acetonitrile and 0.1% trifluoroacetic acid). 1 μ L of this mixture was spotted onto a stainless steel MALDI plate and spectra were acquired in positive ion linear mode, using a Bruker UltrafleXtreme mass spectrometer, calibrated with external standards. Spectra are shown for *A*, the non-glycosylated analog, *m*/*z* 7029: M + 4 Na⁺; M corresponds to the mass of a polymer containing 40 GroP units and *B*, the glycosylated analog, *m*/*z* 13400 corresponds to addition of 39 glucose molecules to the non-glycosylated analog. *C*, MALDI-MS analysis of a larger scale (200 μ M) synthetic reaction for the lipid φ .n (n = 43) analog shows the products generated differ by the mass of the repeating glycerol phosphate polymer unit, colored red in the structure below the spectrum.

Figure S2. Negative ion LC-MS analysis of WTA degradation products. Extracted ion chromatograms and mass spectra (mass assignments are given in Table 3 in the main text) are shown for products from reactions of GP12 with *A*, lipid φ .40 analog (a, glycerol phosphate; b, cytidine monophosphate) and *B*, glycosylated lipid φ .40 analog (c, uridine monophosphate).