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I. MATERIALS AND METHODS
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FIG. S1. Graphical representation of computational image
analysis algorithm. From an image of stained micro patterns
where Phalloidin is in red, Dapi is in blue and Tra1-81 is in
green, individual channels are separated and processed using
a Matlab image processing algorithm described below.

A. hiPSC culture and di↵erentiation

Human iPSC line, BC1,1-2 was dissociated into a sin-
gle cell suspension and seeded at a density of 150,000
cells per fibronectin micropatterned coverslip in alpha
MEM media, 10% fetal bovine serum, and 0.1 mM �-
mercaptoethanol. Media was changed daily.

B. Immunofluorescence

Cells were fixed at 1, 2, and 5 days and prepared for im-
munofluorescence as previously described1. Briefly, fixed
cells were blocked in 1% bovine serum albumin, treated
with 0.1% Triton-X (Sigma-Aldrich), and incubated with
mouse anti-human Tra-1-81 (BD Biosciences), followed
by anti-mouse FITC (Sigma) and Phalloidin Alexa-546
(Life Technologies), and DAPI (Roche Diagnostics). The
immunolabeled cells were examined using a fluorescent
microscope (Olympus BX60).

C. Computational Image Analysis and Cell
Quantification

All images were processed using a custom written Mat-
lab algorithm incorporating the imaging processing tool-
box. Prior to enumerating Tra-1-81 positive cells, indi-
vidual JPEG files were preprocessed via background sub-
traction. Total nuclei was then pinpointed by local pixel
intensities within a defined regional array and counted.
Finally, individual channels were masked as binary im-
ages subsequent to excluding extraneous pixel values and
co-localized with DAPI images for quantifying the per-
centage of stem to non stem cell populations.

D. E-cadherin Anti-body Blocking Experiment

To elucidate the role of cell-cell interactions in stem
cell di↵erentiation kinetics within confined geometric do-
mains, 50 µg/mL of anti-E-cadherin antibody (clone
67A4; Millipore) was incubated with freshly dissociated
hiPSCs for two hours. As evidence suggests disrup-
tion of E-cadherin signaling leads to increased stem cell
death2, 500,000 cells were subsequently seeded onto the
micropatterns, cultured for an additional 24 hours3 and
prepped for immunofluorescence as described above.

II. MATHEMATICAL MODEL DETAILS

A. Stochastic two-species growth model: e↵ects of
interconversion and competition

The experimental system in the main text can be mod-
eled by a stochastic birth-death process4–6 with den-
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FIG. S2. Confirmation of stem cell pluripotency using stage-specific embryonic antigen-4 marker expression (SSEA-4). (A)
Immunofluorescence imaging shows pluripotent colonies with SSEA-4 expression with nuclei staining. Scale bar 1mm. (B)
Quantification of SSEA-4 expression via flow cytometry analysis (i) and day 1 SSEA-4 immunofluorescnce 24 hours post
micropattern seeding shows pattern specific organization of stem and non-stem populations (ii).

sity dependent rates for symmetric cell division uS =
vS � �S(nS � 1 + nD) and uD = vD � �D(nD � 1 + nS)
for species S (stem cells) and D (di↵erentiated cells), re-
spectively. Here, vS and vD are intrinsic rates of cell
proliferation in very sparse cell cultures while �S and �D
are crowding coe�cients. In this system, there is also
potentially cell loss or cell death, mostly from cells de-
taching from substrate. We model cell loss with rates wS

and wD for stem and di↵erentiated cells. Since cell loss
comes from mostly cells detaching from the substrate,
and this rate is similar for stem and di↵erentiated cells,
i.e., wS ⇠ wD. Note that the rate constants of cell divi-
sion for species S and D depend on total population size
nS + nD. We will call this stochastic model as Model 1.
Also, linear expressions for rate constants of cell prolif-
eration make sense as long as the rates are positive. For
large cell abundances (nS � 1, or/and nD � 1) we will
assume that uS = 0 and uD = 0 when the linear expres-
sion result in negative rates. Model 1 predicts that the

net growth diminishes as the population grows (and cell
density increases, as the space for growth is limited) and
can be used to describe homeostatic populations. In this
model, all cells divide slower in the more crowed environ-
ment and the population reaches steady state.

In addition to cell proliferation, stem cells S can dif-
ferentiate, i.e., convert to species D with rate r using
several di↵erent possible mechanisms. We can consider
three scenarios: (a) direct conversion: S ! D, (b) asym-
metric cell division: S ! S +D, and (c) symmetric cell
division: S ! D+D. Note that for mechanism (a) the to-
tal number of cells does not change while for mechanisms
(b) and (c) the total number of cells increases. Therefore,
in this paper, we focus on (a). (c) is not very di↵erent
from (a) if we consider cell division and then conversion
as two success steps. Therefore, results only vary quanti-
tatively. The form of the di↵erentiation probability and
main conclusions of the paper remain the same. For (b),
the number of stem cells cannot decrease, which is not
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what we observe in the experiment. Therefore, we elim-
inate (b) from our consideration.

In the experiments, we discover that the rate of stem
cell di↵erentiation is a function of the composition of a
population. We expect that rate of di↵erentiation is a
function of fractions of stem and nonstem cells in a pop-
ulation. In general, we can expand the rate as a polyno-
mial function of stem cell fraction, � = nS/(nS + nD).
To second order, the rate of cell di↵erentiation can be
written as

r = r0 � f1
nS

(nS + nD)
� f2


nS

(nS + nD)

�2
. (1)

The fraction of di↵erentiated cells is 1��, therefore writ-
ing r as a function of di↵erentiated cell fraction will yield
a similar expression. As previously, this expression for
stem cell conversion rate is valid as long as it gives the
non-negative rates of di↵erentiation. For the range of pa-
rameters where expression becomes negative we assume
that r = 0.

Now let us consider the set of stochastic equations de-
scribing the time dependence of cell number distribution
of S and D). Let P (k,m, t) be the probability to find
nS ⌘ k stem cells and nD ⌘ m di↵erentiated cells at
time t. The general stochastic master equations are

dP (k,m, t)

dt
= Uk�1,m,SP (k � 1,m, t)

+ Uk,m�1,DP (k,m� 1, t)

+ Wk+1,m,SP (k + 1,m, t)

+ Wk,m+1,DP (k,m+ 1, t)

+ Rk+1,m�1P (k + 1,m� 1, t)

� (Uk,m,S + Uk,m,D +Wk,m,S +Wk,m,D +Rk,m)

⇥ P (k,m, t) (2)

with cell division rates based on cell density dependent
rate constants

Uk,m,S = vSk � �S(k � 1 +m)k

Uk,m,D = vDm� �D(m� 1 + k)m (3)

for k = 0, 1, . . . and m = 0, 1, . . . , and loss rates based
on fixed rate constants

Wk,m,S = wSk

Wk,m,D = wDm (4)

for m = 0, 1, . . . and k = 0, 1, . . . . For states (k,m)
where the expressions in Eq. (3) become negative, U is
replaced by zero. The rate of stem cell di↵erentiation is
given by piecewise function

Rk,m = r0k � f1
k

(k +m)
k + f2


k

(k +m)

�2
k (5)

For states (k,m) of the system where the rates expressed
by Eq. (5) become negative, R is replaced by zero. The

coe�cients f1 and f2 for stem cells may have di↵erent
signs.
From Eqs. (3) it follows that

U0,k,S = Um,0,D = W0,k,S = Wm,0,D = 0 (6)

The infinite set of Eq. (2) should be supplemented by

P (�1, j, t) = P (j,�1, t) ⌘ 0 (7)

for j = 0, 1, . . . . Practically, we solve the finite set of
stochastic master equations by introducing the trunca-
tion size K. The set of rates at m or k equal to K is
defined as

UK,j,S = Uj,K,D = 0 (8)

WK+1,j,S = Wj,K+1,D = 0 (9)

for j = 0, 1, . . . ,K and also

RK,j = 0 (10)

RK+1,j = Wj,K+1,D = 0 (11)

for j = 0, 1, . . . ,K + 1. Also instead of Eq. (7) in nu-
merical computations we use the following expression for
rates:

u�1,j,S = uj,�1,D = 0 (12)

for j = 0, 1, . . . ,K.

Rj,�1 = 0 (13)

for j = 0, 1, . . . ,K+1. Eqs. (12) and (13) are not related
with truncation size K, they just express that no transi-
tions are possible from/to non-existing states (�1, j), or
(j,�1) that are formally present in stochastic equations
for P (0, j, t) and P (j, 0, t).
Eqs. (8-11) expresses the condition that the population

size cannot grow larger than nS = K and nD = K. We
used K = 100 as the truncation size in our computations
for describing the population dynamics of stem/nonstem
cells on small micro patterns.
The set of stochastic master equations can be solved

for a given initial conditions P (k,m, 0) = P0(k,m). In
the experiments, the micropatterns initially are plated by
stem cells with some constant cell density. In this case
di↵erentiated cells are not present at t = 0 and the ini-
tial distribution of stem cells is expected to be a Poisson
distribution

P (k, 0, 0) = �ke�/k! (14)

and P (k,m > 0, 0) = 0, where � is the initial average
number of stem cells on a pattern of a given size.
We solve the system of stochastic master equations

numerically and obtain at each time t the probabilities
P (k,m, t) of states with k stem andm di↵erentiated cells.
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FIG. S3. Computed probability distribution of stem and dif-
ferentiated cells from the stochastic master equation, Eq. (2).
(A) After 0.7 day. (B) After 1 day, and (C) After 1.5 days.
The distribution evolves towards 100% di↵erentiated cells.
The average number of stem and di↵erentiated cells, and num-
ber fluctuations are also shown in Fig. 2 of the main text.

The probabilities of states fully define the state of a sys-
tem. For instance, they allow computing any moments
of joint probability distribution. The average number of
stem and di↵erentiated cells at time t are given by

hnSi =
KX

k=0

KX

m=0

kP (k,m, t)

hnDi =
KX

k=0

KX

m=0

mP (k,m, t) (15)

and the variances (squares of standard deviations) and
covariance are obtained as

�2
S =

KX

k=0

KX

m=0

k2P (k,m, t)� hnSi2

�2
D =

KX

k=0

KX

m=0

m2P (k,m, t)� hnDi2

�S,D =
KX

k=0

KX

m=0

kmP (k,m, t)� hnSihnDi (16)

The average numbers of stem hnSi and di↵erentiated
hnDi cells along with their standard deviations �S and

�D are compared with experimentally observed values
(Fig. 2 main text). For a state (k,m) stem cells fraction
is k/(k +m). Hence, the probability to obtain the frac-
tion �(t) of stem cell in a population at time t is given by
summing up of all P (k,m, t) with k/(k + m) = �. The
one-dimensional distribution ⇢S(�, t) is normalized since
it is derived from normalized two-dimensional distribu-
tion P (k,m, t).

⇢S(�, t) =
KX

k=0

KX

m=0

P (k,m, t)�(�� k/(k +m)) (17)

From the master equation, we computed two-
dimensional probability distributions for the model that
assumes appreciable dependence of the conversion rate
on stem cell fraction. Fig. S2 depicts the joint probabil-
ity distribution for numbers of stem and nonstem cells at
t = 1, 2 and 5 days. This distribution has two distinct
maxima. The composition of cell colonies in collection of
micropatterns described by this distribution is highly het-
erogeneous corresponding to populations highly enriched
by stem cells or nonstem cells. The one-dimensional
stem cell fraction probability distribution is bimodal with
sharp maxima around � = 0 and � = 1. In contrast, we
the di↵erentiation probability r as a constant, indepen-
dent of �, we always find a single peak in the cell number
distribution (Fig. S3).
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FIG. S4. Computed probability distribution of stem and dif-
ferentiated cells from the stochastic master equation (Eq. (2)
with a constant stem cell di↵erentiation rate, r, independent
of �). The distribution is always unimodal.

B. Modeling stem cell di↵erentiation dynamics on
small micro pattern

Given the modeling framework, we fit the model pa-
rameters to experimental data. The procedure of finding
the best parameters of the models is based on the mini-
mization of an error function by the Monte Carlo (MC)
method. The error function is composed of two parts and
represents the sum of deviations of theoretical data from
experimental observations. The first part shows how the
average numbers of stem and nonstem cells on micro pat-
tern agree with experimental observations. The second
part measures the deviations of theoretical probability
distribution function for stem cell fraction for a group of
micropatterns of a given size from experimental results.
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In our case the error function reads

g1 =
KX

i=1

[hnSi(ti)� n0
S(ti)]

2 + [hnDi(ti)� n0
D(ti)]

2

g2 =
KX

i=1

NX

j=0

[⇢S(�j , ti)� ⇢0S(�j , ti)]
2

E = !1g1 + !2g2 (18)

where E is the total error function and gi(i = 1, 2) are its
parts; hnSi and hnDi are theoretical numbers of stem and
nonstem cells at time ti (K = 3 is the number of time
points at which the cell colonies were quantified), and
n0
S and n0

D are experimental values of average numbers
of stem and nonstem cells for micropatterns of a given
size. ⇢S(�j , ti) and ⇢0S(�j , ti) are theoretical and exper-
imental values of probability density function for stem
cell fraction evaluated at time point ti.
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FIG. S5. Computed distribution of stem cell fraction for 80
and 140µm micro patterns after 2 and 5 days. The model (red
lines) is able explain the experimental data (blue lines) with
a single set of parameters. The parameters that best explain
the data are given in Table I.

The algorithm of finding the best parameters using
the MC method is as follows: (1) We start with an ini-
tial guess of parameters in the model: intrinsic prolif-
eration rates, crowding coe�cients and cell death rates
for stem and nonstem cells, respectively, and also pa-
rameters describing the rate of di↵erentiation as a func-
tion of local fraction of stem cells in a population; (2)
All parameters are changed randomly by small values;
(3) We solve numerically the system of stochastic mas-
ter equations for initial guess and perturbed parameters;
(4) If the trial function g is smaller for changed set of
parameters and all these parameters are consistent with
constraints, the new parameters are accepted otherwise
the parameters remain intact. The new or unchanged
parameters are perturbed again (see item 2). Thus, we

accomplish the constrained search of parameters, so the
new set of parameters that diminishes the trial function is
accepted only if all these parameters are consistent with
constraints. We put the following constraints on param-
eters: all crowding coe�cients that describe the prolifer-
ation rates of cells on the total population size should be
positive and also the intrinsic proliferation rates should
exceed some pre-set values. The obtained best fits are
checked by starting with other initial guesses to see con-
vergence to the same set of final parameters. We com-
plete the procedure of finding the best parameters when
the trial function practically ceases to change and theo-
retical description of experimental data remains practi-
cally the same. The parameters of the model found by
minimization of error function E by the MC method is
presented in Table I.

STEM CELL DIFFERENTIATION ON LARGE
MICRO PATTERNS: THE MODEL WITH

COMPARTMENTS

The model with compartments is used to capture the
main experimental observations on stem cells di↵erentia-
tion in micro patterns with large sizes. A large micro
pattern is considered as a combination of small com-
partments. The probability of stem cell conversion is
expected to be a function of local composition of a sin-
gle compartment rather than the global composition of
a population in the whole micropattern. The functional
dependence of conversion rate vs. stem cell fraction is
taken identical to cell di↵erentiation on small micropat-
terns. Cell motility is taken into account by introduc-
ing stochastic hopping between compartments. Stem and
nonstem cells can leave their original compartment and
occupy the neighboring one. The hopping rate of a cell
from one compartment to another one is kh, which is
related to the e↵ective di↵usion constant of cells as

kh =
D

L2
(19)

where L = 100µm is the compartment size.
We use a stochastic simulation algorithm to compute

dynamics in the compartment model. For a given time
interval, �t, we consider the probability of escaping the
current state, e�K�t, where K is the sum of all possible
rates of escape from the current state. For example, we
include sums of all rates of proliferation uS,D and cell
loss �S,D for each cell in all compartments in K. We also
include the rate of stem cell di↵erentiation, r, and rates
of di↵usion for each cell, kh. We then use an acceptance
criterion R = min[1, e�K�t], where R is a random num-
ber. To determine the actual stochastic event, we select
another random number and select from the list of all
possible events weighted by their rates. The parameters
specifying proliferation and cell loss in each compartment
are exactly the same as 140µm parameters in Table 1. Us-
ing these parameters we obtained 3000 trajectories for a
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TABLE I. Fitted model parameters of the stochastic di↵erentiation model on smaller (80 and 140µm) micro patterns. The
Initial average number of stem cells is �, whose distribution is given by Eq. (14).

Parameter (day�1) 80 µm 140 µm Equation

vS 0.37 0.66 3

vD 0.18 0.13 3

�S 4.5 x 10�4 0.6 x 10�3 3

�D 1.9 x 10�2 0.7 x 10�2 3

wS 0.025 0.025 4

wD 0.11 0.08 4

r0 1.5 1.5 5

f1 1.8 2.17 5

f2 0.7 1.09 5

� 1.5 3 14

1 2 3 4

5 6 7 8

9 10 11 12

FIG. S6. Twelve examples of simulated configuration for the
4-compartment model after 1 day. The configurations are
close to the average observed stem cell fraction of � = 0.44.
The amount of red or green in each compartment corresponds
to the fraction of stem and di↵erentiated cells. The individ-
ual compartments can still be dominated by either stem or
di↵erentiated cells.

micro pattern comprised four compartments. The initial
number of stem cell follows the Poisson distribution with
an average � = 24, mimicking the experimental setup
when the micropatterns are seeded by stem cells with
particular density but the exact number of cells in each
micropattern is not precisely controlled.

The results of these model MC simulations show that
at day 1, the average fraction of stem cells is � = 0.44,
which is close to experimentally observed values for 225
µm and 500 µm micropatterns. The analysis of trajecto-
ries shows that either mostly stem cells � ' 1, or mostly
di↵erentiated cells � ' 0 are present in individual com-
partments while the distribution of stem cell fraction in a
whole micropattern is unimodal and features a maximum
near the average �. Fig. S6 shows the two-dimensional
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FIG. S7. Computed 2-dimensional probability distribution of
numbers of stem and di↵erentiated cells at t = 1 day for a
pattern with 4 100µm compartments. (a) The summed dis-
tribution in the whole pattern comprised four compartments;
(b) A distribution from an individual compartment.

probability distribution of numbers of stem and di↵eren-
tiated cells in the whole pattern comprised four compart-
ments at t = 1 day. Cell motility is taken into account.
The total distribution summed for all compartments re-
veals one maximum that is also consistent with unimodal
one-dimensional distribution of stem cell fraction where
the maximum is close to average value. The individual
compartment distribution can still exhibit a bimodal dis-
tribution.

MEAN POPULATION MODEL FOR STEM CELL
DIFFERENTIATION

Here we focus briefly on di↵erence between stochastic
and mean population model models for describing the
population dynamics of stem cells. The mean popula-
tion model considers only the time evolution of average
number of species derived from expressions for rate con-
stants. These models are often used in chemical kinetic
equations. For our system, equations that describe the
time evolution of average numbers of stem and di↵eren-
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tiated cells can be written as

dhnSi
dt

= uShnSi+RhnDi � wShnSi

dhnDi
dt

= uDhnDi �RhnDi � wDhnDi (20)

with rate constants expressed through the average num-
bers of species (X = S, D)

uX = vX � �X(nS + nD)

R = r � f1nS/(nS + nD)� f2[nS/(nS + nD)]2 (21)

This simple system of two di↵erential equations can be
solved numerically. Comparison between this mean field
approach and the full stochastic model for average stem
and di↵erentiated cells are shown in Fig. S4. Note that
the mean field model cannot compute probability distri-
butions of stem cell fractions from our data. The mean
field model also does not consider possible population
fluctuations away from the average. Since in our system
the cell number is small, fluctuations are substantial, and
a↵ect the mean population.

Alternatively, starting with the full stochastic model
of Eq. (2), we can perform a cumulant expansion by
considering moments such as

hnM
S i(t) =

X

k,m

kMP (k,m, t)

hnN
Di(t) =

X

k,m

mNP (k,m, t) (22)

and mixed moments

hnM
S nN

Di(t) =
X

k,m

kMmNP (k,m, t) (23)

For instance, for M = N = 1, the above Eq. (22) is
equivalent to the average populations in Eq. (15). The
time evolution of the complete set of moments of the dis-
tribution P (k,m, t) can be derived from the full master
equation. For instance, for the average populations

@hnSi
@t

=
X

k,m

k
@P (k,m, t)

@t

@hnDi
@t

=
X

k,m

m
@P (k,m, t)

@t
(24)

Substituting the right hand side of Eq. (2) for @P/@t
will give a complicated function of higher moments of P .
Note that this set of coupled moment equations are in
principle exact. Approximations can be made by cutting
o↵ the moment equations and introducing a closure re-
lation. The typical population models of Eq. (20) is not
equivalent to the cumulant expansion, even if we cut the
expansion o↵ at first order and neglect any terms involv-
ing higher moments of P .

Comparisons between Eq. (20) and the full stochastic
equation solutions are shown in Fig. S3. The mean-field
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FIG. S8. Comparison between the mean population model
of Eq. (20) (solid lines) with the stochastic master equation
(dots). Red is the number of di↵erentiated cells and green
is the number of stem cells. Since the number of cells is
small, the mean population model does not agree with the
full stochastic solution.

model with composition dependent conversion rate (Eq.
(21) is significantly di↵erent from the stochastic model.
For a constant stem cell conversion rate, mean field model
can agree with the full stochastic solution. Of course, the
mean field model cannot obtain distributions of stem cell
fractions such as shown in Fig. 1 of the main text.
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