Supplementary Information

A New Antibiotic with Potent Activity Targets MscL

Irene Iscla¹, Robin Wray¹, Paul Blount^{1*}, Jonah Larkins-Ford², Annie L Conery²,

Frederick M Ausubel², Soumya Ramu³, Angela Kavanagh³, Johnny X Huang³,

Mark A Blaskovich³, Matthew A Cooper³, Andres Obregon-Henao⁴, Ian Orme⁴,

Edwin S Tjandra⁵, Uwe H Stroeher⁶, Melissa H Brown⁶, Cindy Macardle⁷, Nick van Holst⁷,

Chee Ling Tong⁸, Ashley D Slattery⁸, Christopher T Gibson⁸, Colin L Raston⁸

and Ramiz A Boulos^{8*}

¹ Department of Physiology, UT Southwestern Med Ctr, 5323 Harry Hines Blvd, Dallas, TX 75390-9040.

Paul.blount @UTS outhwestern.edu

- ² Department of Molecular Biology, Massachusetts General Hospital, Simches CPZN7808, 185 Cambridge St, Boston, MA 02114
- ³ Institute for Molecular Bioscience, University of Queensland, St Lucia, Qld 4072, Australia.
- ⁴ Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523-1682.
 - ⁵ School of Animal Biology, The University of Western Australia, Crawley, WA 6009 Australia.
 - ⁶ School of Biological Sciences, Flinders University, Bedford Park, SA 5042 Australia.
 - ⁷ Flinders Medical Science and Technology, Immunology, Allergy and Arthritis, Flinders
 University, Bedford Park, SA 5042 Australia.
- ⁸ Centre for NanoScale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA. 5042 Australia.

ramiz.boulos@flinders.edu.au

Fig. S1 | Comparison of efficacy of **10** and Rifampicin against multi-drug resistance *M. tuberculosis* H37RV (a, c and d) and TT372 strains (b). The 7H9 medium contains OADC (oleic acid, albumin, dextrose and catalase), which is needed for the growth of the bacteria. GAS medium has a final pH of 6.6 and the Proskauer and Beck medium has a final pH of 7.4.

Fig. S2 | Cytotoxicity studies of Ramizol[®]. (a) Cytotoxicity in NIH/3T3 fibroblasts and (b) immortalised keratinocytes (HaCaT). (c) Cytotoxicity in hepatocellular carcinoma (HepG2 ATCC HB-8065) and (d) human embryonic kidney cells (HEK293 ATCC CRL-1573). Statistical differences in cell viability were observed between NIH/3T3 fibroblasts in the presence of $\frac{10 \text{ at}}{10 \text{ at}} 2 \text{ μg/mL}$ and $\frac{500 \text{ μg/mL}}{10 \text{ at}} \frac{10 \text{ at}}{10 \text{ at}} \frac{1$

Fig. S3 | SEM images of *S. aureus* (ATCC 29213) treated with **10** at (a) 0.5xMIC (0.5 μg/mL), (b) 1xMIC (1.0 μg/mL), (c) 2xMIC (2.0 μg/mL) and (d) 1xMBC (32.0 μg/mL). Images were taken at approximately x5000 magnification. Scale bar is 30 μm. (e) *In-vitro* efficacy of **10** against *S. aureus* showing a 2-fold decrease at 16-32 μg/mL compared to the starting culture. Untreated *S. aureus* and cultures treated with 0.5 μg/mL showed log (CFU/mL) > 9.

 $Table \ S1 \ | \ Autodock \ parameters \ used$

Description	Value
Number of runs	256
Number of points	56 50 50
Grid Centre	4.0, -0.5353, 0.2711
Energy profile calculation	
Number of runs	30
Number of points	56 40 40
Common parameters for all dockings	
tran0 (initial coordinates)	random
quat0 (initial quaternion)	random
ndihe (number of initial tortions)	depends on ligand
dihe0 (initial torsions)	random
non-hydrogen torsional coeff	0.3113
tstep (translation step/A)	2.0
qstep (quaternion step/deg)	50.0
dstep (torsion step/deg)	50.0
trnrf (trans reduction factor/cycle)	1
quarf (quat reduction factor/cycle)	1
dihrf (tors reduction factor/cycle)	1
e0max (max. allowable initial energy, max. number of retries)	10000
Lamarckian Genetic Algorithm (LGA) parameters	
ga_pop_size (number of individuals in population)	50
ga_num_evals (maximum number of energy evaluations)	250000
ga_num_generations (maximum number of generations)	27000
ga_elitism (num. of top individuals that automatically survive)	1
ga_mutation_rate (rate of gene mutation)	0.02
ga_crossover_rate (rate of crossover)	0.80
ga_window_size (num. of generations for picking worst individual)	10
ga_cauchy_alpha (~mean of Cauchy distribution for gene mutation)	0
ga_cauchy_beta (~varience of Cauchy distribution for gene mutation)	1

Table S2 | Spatial dimensions of Eco-MscL versus spatial dimensions between α , β and γ hydrogen atoms in the ligands. The distance between the H atoms are as follows α - $\gamma > \beta$ - $\gamma > \alpha$ - β .

	α-β	β-γ	α-γ	α β^γ	βα^γ	αγ^β	Lowest Docking Energy (kcal/mol)
	(Å)		(Degrees)				
Spatial description of Eco-MscL	6.32	9.60	14.47	129.57	20.37	30.06	
Ligand							
1	7.11	7.78	12.91	120.20	31.39	28.42	-9.89
2	6.23	6.41	6.76	64.67	59.00	56.34	-10.43
3	9.73	10.33	10.83	65.29	60.02	54.69	-5.96
4	7.23	9.95	12.71	94.13	51.31	34.57	-8.40
5	9.52	10.30	11.14	68.22	59.22	52.56	-8.21
6	5.22	8.40	9.67	87.21	60.16	32.63	-7.56
7	2.43	10.13	10.26	96.23	80.13	13.64	-7.62