SUPPLEMENTARY DATA

Supplementary FIGURES

Supplementary Figure 1. NMF clusterings of mRNA expression data from 35 FLCs and their validation through the Affinity propagation clustering.

Supplementary Figure 2. FLC tumors over-expressed neuroendocrine markers and their integration in the FLC molecular classification.

Supplementary Figure 3. Heatmap representation of FLC chromosomal alterations and scheme of the DNAJB1-PRKACA fusion transcript.

Supplementary Figure 4. Somatic mutations found by WES and technical validation by TES and Sanger sequencing.

Supplementary FIGURES LEGENDS

Supplementary Figure 1.

Supplementary Figure 2.

Supplementary Figure 3.

Supplementary Figure 4.

Supplementary MATERIALS and METHODS

Gene-expression microarray profiles Immunohistochemistry Genome-wide analysis of DNA copy number alteration Validation of the DNAJB1-PRKACA fusion transcript Whole-exome sequencing chromosomal rearrangements analysis Whole-exome sequencing somatic mutation detection Targeted-exome sequencing somatic mutation detection Prognostic gene expression data analysis

Supplementary REFERENCES

Supplementary TABLES

Supplementary Table 1. Clinicopathological characteristics of 72 FLC patients in the training and validation cohorts

Supplementary Table 2. Leave-one-out cross validation of FLC subclasses
Supplementary Table 3. FLC gene signature
Supplementary Table 4. FLC immunohistochemistry grading
Supplementary Table 5. Chromosomal arm-level genomic copy number alterations
Supplementary Table 6. Molecular profile of the broadly chromosomal altered samples
Supplementary Table 7. Focal amplifications in FLC samples
Supplementary Table 8. Focal deletions in FLC samples
Supplementary Table 9. Chromosomal arm-level genomic copy number alterations of the Fresh Frozen cohort
Supplementary Table 10. Summary of the damaging mutations found by WES
Supplementary Table 11. Mortality Index for the different prognostic group samples

Supplementary Table 12. Enrichment of selected gene signatures in 3 liver cancer cohorts (HCC, ICC and FLC) evaluated by NTP (FDR<0.05)

Supplementary FIGURES

Supplementary FIGURE LEGENDS

Supplementary Figure 1. A) NMF consensus matrices depicting inter-sample correlation among 35 samples when 2 to 5 classes were assumed. Red color indicates highly robust coclustering of samples. Plot of cophenetic correlation coefficient indicates that the most robust clustering is achieved when 3 classes are assumed in the dataset. **B)** Molecular classification validation by the Affinity propagation clustering represented by Principal component analysis (PCA), where PC1 means first principal component, and PC2 second principal component.

Supplementary Figure 2. A) Plot representation of neuroendocrine gene markers expression in FLC patients compared to non-tumoral samples by fold-change. FLC tumors present significant higher expression of VCAN. Vertical axis: gene expression of samples; Horizontal axis; FLC tissues (left) versus non-tumoral tissues (right). **B)** Integration of the neuroendocrine gene expression of FLC patients and non-tumoral tissues in the molecular classification, and their enrichment, when significant, in the FLC classes.

Supplementary Figure 3. A) Heatmap representation of FLC chromosomal alterations. Each tumor is displayed in separate columns, grouped by molecular class, and chromosome positions are indicated along the y axis. Chromosomal amplifications and deletions are represented in red and blue, respectively. **B)** Scheme of the DNAJB1-PRKACA fusion transcript

and example of the sanger sequencing result of the RT-PCR product from a FLC sample with the fusion transcript in the intersection point between the end of exon 1 of DNAJB1 and the start of exon 2 of PRKACA.

Supplementary Figure 4. A) Distribution of the mutations obtained using SIFT and PolyPhen2 algorithms as non-coding and coding, synonymous and non-synonymous, missense and nonsense, and finally among damaging, probably or possibly damaging and benign. **B)** Alignment visualization of TES results through Golden Helix Genome Browse software. **C)** Results of the technical validation of the damaging mutations found in *BRCA2* by Sanger sequencing.

Supplementary MATERIALS and METHODS

Gene-expression microarray profiles

Total RNA was isolated from 4 freshly cut 5-µm thick FFPE sections with the miRNA easy FFPE kit (Qiagen) using the semi-automated procedure QIAcube (Qiagen). To extract the tumoral and non-tumoral RNA, tissue sections were macrodissected in order to avoid contamination between liver tissues. Tissue macrodissection consists on defining areas representing tumoral and non-tumoral tissue by an H&E immunostaining, which is used as reference once obtaining specific tissue material in the FFPE slides with a blade. Quant-iT Ribogreen RNA assay kit (Invitrogen) was used to quantify the RNA. RNA quality was assessed by real-time quantitative reverse transcription PCR (qRT-PCR) using RPL13A Taq-Man probe (Applied Biosystems), cut-off Ct<28 cycles. Total RNA (250ng) was used for whole-genome gene-expression profiling by DASL array (Illumina). Poor quality mRNA expression profiles exhibiting outlier patterns were detected and removed as previously described¹. Quality threshold was set based on %P-call (proportion of gene probes with a "present" signal) to ensure inter-sample similarity measured by Pearson correlation to "median" array defined as a vector of median signal intensity for each probe. We excluded 7 samples with a %P-call of <30%, resulting on 35 tumoral and 4 normal liver tissues. Raw data were normalized using cubic spline algorithm implemented in the Illumina Normalizer module of the GenePattern analysis Toolkit^{2,3} and preprocessed using the PreprocessDataset module (GenePattern) with the following parameters: floor=100, fold change=3, ceiling=120.000 and min delta=100.

Non-negative matrix factorization (NMF) based consensus clustering method⁴ was performed for the unsupervised clustering of the gene expression profiles, 2000 iterative

clusterings of randomly bootstrapped samples to identify highly robust molecular classes were determined (NMFconsensus module, GenePattern).

Robustness of the obtained FLC molecular classification was evaluated in a conventional leave-one-out cross validation (LOOCV) procedure, where one sample at a time was held-out and a predictive model was trained using the rest of samples. Based on the model, the sample held-out was reclassified. This process was repeated for all 35 samples, and the error number was counted by k-nearest neighbor prediction method (KNNXValidation, modules, GenePattern).

To define robust FLC molecular classes gene signature not affected by outlier gene/sample, we employed the following LOOCV signature gene refinement procedure following the same process as explained above. Genes over-expressed in each subclass compared to the rest were identified by t-test with a significance threshold p<0.00001. Genes selected as significant throughout the LOOCV procedure were included in the final list of signature genes. The analysis was performed by using custom R codes (www.r-project.org).

Validation of the number of molecular classes was performed using the independent method Affinity propagation clustering⁵ that calculates the optimal number of clusters in which a set of samples can be divided. The input for the algorithm was the expression values of the genes which were able to differentiate two or more classes, described as those passing the Tukey Honestly Significant Difference *post hoc* test with a p-value < 0.01 and absolute log2 fold change >2. The dispersion between samples and the cluster they belong to is represented graphically (**Suppl. Figure 1**) by calculating a Principal component analysis and plotting the first two components (PC1 and PC2).

Molecular pathways and gene expression signatures associated with classes were evaluated using Gene Set Enrichment Analysis (GSEA)⁶ for Molecular Signature Database gene sets (MSigDB, www.broadinstitute.org/msigdb)⁷ and Nearest template prediction (NTP), both modules from GenePattern. The gene-expression signatures in liver cancer were previously reported⁸. Ingenuity[®] pathway analysis was also run for functional annotation.

Immunohistochemistry

Immunohistochemical staining was performed in 3-µm thick FFPE whole-section slides from 42 FLC tumours and the paired non-tumoral liver when available, after heat-induced antigen retrieval in microwave with sodium citrate (pH=6) or EDTA (pH=8) buffer. The primary antibodies and dilutions used were: rabbit EGFR (D38B1, Cell Signalling) 1:100, rabbit phospho-

RPS6 (Ser240/244) (Cell Signalling) 1:200, mouse HepPar1 (OCH1E5, Dako) ready to use, mouse Cytokeratin 7 (OV-TL 12/30, Dako) 1:50, mouse EpCAM (VU-1D9, Thermo Scientific) 1:100, and mouse Cytokeratin 19 (RCK108, Dako) 1:50. Immunoreactivity was independently graded by three liver expert pathologists (ST, LR, and SW) blinded to the expression profiling results. The variables measured were immunostaining intensity (score 0-3; 0: absent, 1: weak, 2: moderate and 3: strong), pattern (score 1-3; 1: few cells (\leq 1%), 2: focal (\leq 10%) and 3: diffuse), and localization of the staining (membranous, cytoplasmic or nuclear). Samples were defined positive for HepPar1, CK7 and when intensity of staining was 2 or higher, and focal o diffuse pattern, and for p-RPS6, CK19, EGFR and EpCAM by the presence of stained tumoral cells. Once patients were classified as positive or negative, Fisher exact test was performed to assess significance of the distribution between the molecular classes.

Genome-wide analysis of DNA copy number alteration

Genomic DNA was isolated from 7 macrodissected 5-µm thick FFPE sections with the QIAamp DNA FFPE Tissue Kit using QIAcube (Qiagen). To extract tumoral and non-tumoral DNA, tissue sections were macrodissected to avoid contamination between tissues. DNA quantity was assessed using Quant-It PicoGreen dsDNA Assay kit (Invitrogen) and DNA quality was determined by qRT-PCR of RNase P (Applied Biosystems), deltaCt defined as ct values(FFPE DNA) - Ct value (non-fragmented DNA), should not exceed a value of 4.

In order to depict the chromosomal alterations in FLC, copy number variations (CNVs) at over 715,000 genomic loci were analyzed in 32 primary tumors and 17 paired normal livers from FFPE samples. The frequency and magnitude of copy number gains and losses were evaluated in tumors using Genomic identification of significant targets in cancer (GISTIC) algorithm⁹. Genomic DNA (250 ng) of these 49 samples were assessed using Infinium FFPE restoration kit (Illumina) and HumanOmniExpress FFPE-12 v1.0 DNA Analysis BeadChip (Illumina).

This array provides optimized tag SNPs with high coverage of common variants in a genome-wide scale as well as high-resolution signals for DNA copy number. Two independent types of information, log R ratio (LRR) and B allele frequency (BAF), reported directly from GenomeStudio (Illumina) along with genotype calls at each SNP locus, were used for CNV analysis¹⁰. BAF values of tumor tissue can be transformed into the so called mirrored BAF (mBAF), by either taking advantage of paired normal tissue genotype or applying some prespecified criteria as detailed¹¹, providing better signal-to-noise ratio for segmentation in CNV

analysis than LRR, which are commonly used in other cancer studies. Circular binary segmentation (CBS)^{12,13} is employed to partition tumor genome into segments with constant copy number based on mBAF. Within each segment, the median LRR values at all the SNP loci was taken as a surrogate measurement of the actual copy number, and used in genomic identification of significant targets in cancer (GISTIC) analysis, as implemented in the GISTIC2 package⁹. Broad and focal regions with recurrent copy number changes at relatively high frequency in the study cohort were detected, and the significance of such findings was evaluated through a permutation test. The reported regions are those with false discovery rate (FDR)¹⁴ less than 0.25, and those genes within these regions were considered as candidates for further investigation. Focal aberrations are defined as frequently altered regions that affect less than half size of the chromosome arm where they are located, and broad alterations are those that affect more than half size of the chromosome. All genomic coordinates were annotated based on the hg19 assembly.

For the 23 FF FLC tissue samples, DNA was extracted as previously published¹⁵, and hybridized on the Infinium HumanHap370CNV Genotyping BeadChip SNP array. Data was extracted and evaluated as described above for the FFPE cohort.

Due to the small number of FF samples, GISTIC2 was not applicable to this dataset. Thus, we applied different criteria to define for each genomic segments the high confident events, such as allelic imbalance, gain and loss: 1) allelic imbalance=mBAF.median > 0.6 AND |LRR.median| < 0.5 * sigma; 2) gain=mBAF.median > 0.57 AND LRR.median > sigma, and 3) loss: mBAF.median > 0.57 AND LRR.median < -sigma, where mBAF=|BAF-0.5| + 0.5 at heterozygous sites. The parameters used stand for mBAF.median the median of mBAF values at heterozygous sites within the segment; LRR.median the median of LRR values at all sites within the segment and sigma the estimated standard deviation from all LRR values of a sample, reflecting the noise level in LRR of the sample.

Validation of the DNAJB1-PRKACA fusion transcript

500 micrograms of RNA were retro-transcribed into cDNA using the High-Capacity cDNA Reverse Transcription Kit from Applied Biosystems following manufacturer's instructions. The resulting cDNA was used as template for semiquantitative polymerase chain reaction (PCR) amplification using the primers: Fw_DNAJB1-Exon1 5'-GTTCAAGGAGATCGCTGAGG-3' and Rv_PRKACA-Exon3 5'-TTCCCGGTCTCCTTGTGTTT-3'. To detect the presence of the fusion product, the PCR amplifications on human tissues were

6

performed using the following protocol: 95°C for 5 minutes, 34 cycles of 95°C denaturation for 15 seconds, 56°C annealing for 30 seconds, and 68°C extension for 45 seconds, followed by a 5 minute final extension at 68°C. The PCR amplifications were performed in a volume of 35µL reaction mixture containing 1.4mM MgCl2, 0.2mM of each dNTP, 0.125mM of each primer, 0.7µL DMSO, 1U of Platinum Taq DNA Polymerase (Invitrogen) and 2µL (100ng) of cDNA. PCR products were purified using the Qiaquick PCR purification kit (Qiagen) and sequenced using an Applied Biosystems 3700 DNA sequencer (ABI PRISM[®] 3730XL; Applied Biosystems).

Whole-exome sequencing chromosomal rearrangements analysis

One FF FLC-normal liver pair underwent whole-exome sequencing (WES) on HiSeq2000 sequencer (Illumina) with 50X of coverage. Results achieved good quality metrics: high read quality, high mapping rate, low duplication rate and adequate coverage of the target regions. PCR and optical duplicates, as well as low-quality (Q<20) and non-uniquely mapped reads were removed.

In the setting of paired normal-tumor DNA sequencing, somatic copy number variants (sCNV) can be detected from two sources of evidences. (1) The ratio of read depth of tumor vs normal is different in CNV regions from the unchanged regions. Briefly, ratio of a given locus was defined as ratio=(read depth in tumor)/(read depth in normal). Therefore a value of log2ratio greater than 0 indicates copy number gain in tumor and less than 0 copy number loss. (2) The nucleotide composition might be altered at germline polymorphic loci (including SNPs and indels) within sCNV regions. At loci with two alternative alleles, the reference allele is referred as "A" allele and non-reference allele as "B" allele. In analogy to CNV data generated from Illumina SNP array, BAF was defined as (number of reads supporting B allele)/(total number of reads at this locus). In normal tissue, at a locus with heterozygous genotype, the number of reads supporting the reference allele and non-reference allele are roughly equal; therefore, BAF would fluctuate closely around 0.5. If the region, where this locus is located, undergoes copy number loss or gain in tumor, the tumor BAF would deviate from 0.5. A simple transformation, defined as mBAF = |BAF - 0.5| + 0.5 as in CNV analysis of Illumina array data, can dissolve the arbitrary direction of such deviation with respect to haplotype, so that segmentation algorithm can be readily applicable to this signal¹¹. To make noise distribution more adhere to Gaussian, log2 of the ratio of mBAF in tumor vs. normal, denoted as log2mBAF was calculated.

Both log2ratio and log2mBAF have spatial correlation with copy number change along chromosomes and existing CNV segmentation methods (e.g. circular binary segmentation,

CBS¹²) can be readily applied. It should be noted that log2ratio and log2mBAF reflect distinct aspects of CNV and provide orthogonal information in CNV calling. To our experience, log2mBAF is more sensitive than log2ratio in detecting unbalanced copy number gain or loss. However, log2mBAF cannot directly infer the magnitude of copy number change and is not informative in balanced copy number events.

Standard GATK pipeline was applied for raw data processing, read alignment and variants calling. On each observed SNP/indel locus, the total number of reads and number of reads supporting the non-reference allele in normal and tumor tissues respectively was quantified, and used to calculate the log2ratio and log2mBAF metrics. CBS algorithm (implemented in R package "DNAcopy"¹³) was applied to perform segmentation separately on log2ratio and log2mBAF spaces. Afterwards, the union of change points called from log2ratio and log2mBAF were taken, and summarized the segment boundaries. The copy number status is decided for each segment based on the evidences from both log2ratio and log2mBAF.

Whole-exome sequencing somatic mutation detection

Remaining reads from the quality control (as detailed in the paragraph above: Wholeexome sequencing chromosomal rearrangements analysis) were aligned to the human genome reference 19th version using BWA¹⁶. Afterwards, somatic SNV were detected using Mutect software¹⁷ and small indels were identified through VarScan2¹⁸. We calculated p-value using Fisher's exact test for all putative mutation sites based on the distribution of read support for different alleles in tumor and matched normal samples. The Mutect and VarScan2 software were employed in above analyses because of their desirable feature in detecting mutations in low purity or heterogeneous cancer samples. Purity is defined as the percentage of tumoral cells in the tumor, and of hepatocytes in the normal tissue versus fibroblasts, endothelial and immunological cells, and portal veins in the non-tumoral tissues. FLC tumors presented relatively low purity in both normal and tumor tissues. Among the normal tissues, the purity ranges between 80% and 95%; and 35% to 70% among tumor tissues. Purity information has been factored in mutant allele frequency estimations.

Somatic SNVs were further filtered by Mutect internal threshold, and those SNVs that failed the threshold were excluded. Somatic indels inferred by VarScan2 software were filtered following the criteria: 1) Read depth \geq 20 in both tumor and normal samples, 2) Read support of mutant allele in tumor tissue not as a result of sequencing error (Binomial test, p > 0.01), 3) Quality score not significantly lower than other alleles (Wilcoxon rank sum test, p > 0.01), 4) Mutant allele frequency change between tumor and adjacent normal \geq 20% and Fisher's Exact

Test p-value < 0.01, 5) Mutant allele not significantly enriched in repeatedly aligned reads, 6) Mutant allele not significantly enriched within 10 bps of 5' or 3' ends of reads (Fisher's exact test, p > 0.01) and 7) Mutant allele were observed in both forward and reverse strand of the tumor DNA. Lastly, the resulting mutation were annotated by SNPEff pipeline¹⁹ and scored by SIFT and PolyPhen2, in terms of mutation location, impact on gene product (coding or non-coding, as well as if synonymous or non-synonymous, and missense or non-sense) and the likelihood of the mutation to be functional (damaging, probably damaging, possibly damaging or benign).

BRCA2 damaging mutation (Y2789C) was validated by Sanger sequencing once PCR amplifications on human tissues were performed using the primers: Fw_BRCA2 5'-GGCAGTTCTAGAAGAATGAAAACTC-3' and Rv_BRCA2 5'-CGATGATAAGGGCAGAGGAA-3', and following the PCR amplification protocol: 95°C for 2 minutes, 40 cycles of denaturation at 95°C for 30 seconds, 56°C annealing for 30 seconds, 72°C extension for 45 seconds, followed by a 2 minute final extension at 72°C. The PCR amplifications were performed in a volume of 35µL reaction mixture containing 1.5mM MgCl2, 0.2mM of each dNTP, 0.125mM of each primer and 1U of Platinum Taq DNA Polymerase (Invitrogen).

Targeted-exome sequencing somatic mutation detection

Forty-seven FLCs, 20 FF from the validation-French cohort and 27 FFPE with 14 paired non-tumoral samples from the training cohort, underwent targeted-exome sequencing (TES) by GeneRead DNAseq Targeted Panels V2 (Qiagen) following manufacturer's instructions. TES was applied in the whole *BRCA2* gene, and in 13 exons including the hotspots for *CSMD2, ARMCX1, COL6A6, TERT* promoter, *TP53, CTNNB1, NFE2L2, EGFR, BRAF, KRAS, NRAS, IDH1* and *IDH2* genes. However, the sequencing reaction was not successful for *TERT* promoter, *TP53* and *IDH2*. Then, we got good quality reads for *CSMD2, ARMCX1, COL6A6,* from which we were able to validate the mutations found by WES, and also good quality data for *CTNNB1, NFE2L2, EGFR, BRAF, KRAS, NRAS,* and *IDH1* genes. However, those genes were not damagingly mutated in any of their hotspots (*EGFR*-L858R, *CTNNB1*-exon 3, *BRAF*-V600X, *NFE2L2*-exon 2, *KRAS*-G12, *NRAS*-Q61, *IDH1*-R132) in any of the 47 FLCs. Those results correlated with the WES data, which also demonstrated no damaging mutations in any of the hotspots for those genes, neither for *TP53*-R249S, *IDH2*-R172, *ARID1A, TTN* or *AXIN1*.

Results were filtered by quality control (Q>20) that was performed per base and read, removing and trimming reads with low quality²⁰. Reads were aligned to GRCh37/hg19 with

Burrows-Wheeler Aligner algorithm, paired-end mode, and duplicated reads were also removed¹⁶. Realignment and variant calling was performed with Genome Analysis Toolkit². Variants associated with background polymorphisms (dbSNP b138) have been removed. Genotype quality scores (GQ>30, Read Depth > 30, and ratio AlternativeReads/ReadDepth > 20%) have been used to filter false positive gene mutations events. Variants have also been filtered according to their predicted function (only non-synonymous coding or stop-gaining mutations were considered), assessed by SnpEff pipeline¹⁹.

Prognostic gene expression data analysis

The 8-gene prognostic signature was obtained using the random survival forest technique (RSF)²¹ in those FLC patients that have been resected, excluding those transplanted. This is a method for prediction and variable selection using right-censored survival and competing risk data by growing survival trees to estimate a cumulative hazard function (CHF), which derives from each tree of the RSF. As input, we used the 15,169 Illumina probes which passed the quality filters^{1,3}. First, probes were randomly split in 8 sets to fit a model using the RSF method by growing 10,000 survival trees. Variable importance scores (VIMP) were computed for all probes used to grow the trees, and those with VIMP > 0.01 were selected to fit a new model using the same RSF method. Once the model was built, redundant variables were removed by generating incremental RSF models adding one more probe at each step, ranked by the VIMP calculated in the previous model. This allowed us to get an estimation of the error as a measure of how correctly the ensemble classified two random individuals in terms of survival. As an extra step for removing the redundancy and reduce the signature to the minimum number of probes, a new model was constructed with those probes able to improve the prediction error better than the expected by adding a random probe. Therefore, the expression signature was based upon 8 non-redundant genes.

From the last RSF model, we generated a risk score (i.e. mortality index (MI), range 6.7-42) based on the 8-gene signature for each individual, computed as a sum over the CHF for each individual evaluated at distinct time points weighed by the number of individuals at risk at that moment. Using the reported MI, our cohort was divided into 2 risk groups, the upper quartile (Poor-prognosis, MI \ge 21) and the 3 remaining quartiles (Non poor-prognosis, MI < 21). We were able to show that the risk obtained from the signature, correlated with the survival through the Kaplan-Meier estimator. This signature was assessed to calculate the MI related to

recurrence in the training cohort, being able to stratify those patients based on the upper MI quartile as threshold. The prognostic 8-gene signature was used to calculate the MI in an independent cohort to validate its capacity to predict survival. The expression values of the validation French-cohort samples were obtained from the hybridization of the mRNA extracted as previously published¹⁵ in the HumanHT-12_V4.0 whole genome expression array from Illumina.

The integration of the two datasets (i.e. training and validation) was performed using the virtualArray²² package from Bioconductor²³, which merges independent sets of samples by gene name and normalizes for batch effect by using surrogate variable analysis²⁴. All analyses were performed using the R statistical package (<u>www.r-project.org</u>).

Clinical data and Statistical Analysis

Comparisons of continuous variables between 2 classes were performed with the Mann–Whitney U test. Spearman coefficient was used to assess correlations between continuous variables. Fisher exact test was used to compare proportions. Bonferroni correction for multiple hypothesis testing was applied when appropriate. Kaplan-Meier method and log-rank test were performed to analyze the association of molecular and clinical variables with overall survival and tumor recurrence.

Supplementary REFERENCES

- 1. Hoshida Y, Villanueva A, Kobayashi M, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med 2008;359:1995-2004.
- 2. DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011;43:491-8.
- 3. Reich M, Liefeld T, Gould J, et al. GenePattern 2.0. Nat Genet 2006;38:500-1.
- 4. Brunet JP, Tamayo P, Golub TR, et al. Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci U S A 2004;101:4164-9.
- 5. Frey BJ, Dueck D. Clustering by passing messages between data points. Science 2007;315:972-6.
- 6. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102:15545-50.
- 7. Liberzon A, Subramanian A, Pinchback R, et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 2011;27:1739-40.
- 8. Hoshida Y, Toffanin S, Lachenmayer A, et al. Molecular classification and novel targets in hepatocellular carcinoma: recent advancements. Semin Liver Dis 2010;30:35-51.

- 9. Mermel CH, Schumacher SE, Hill B, et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol 2011;12:R41.
- 10. Peiffer DA, Le JM, Steemers FJ, et al. High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res 2006;16:1136-48.
- 11. Staaf J, Lindgren D, Vallon-Christersson J, et al. Segmentation-based detection of allelic imbalance and loss-of-heterozygosity in cancer cells using whole genome SNP arrays. Genome Biol 2008;9:R136.
- 12. Olshen AB, Venkatraman ES, Lucito R, et al. Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 2004;5:557-72.
- 13. Venkatraman ES, Olshen AB. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 2007;23:657-63.
- 14. Benjamini YH, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B, 1995;57:289–300.
- 15. Wurmbach E, Chen YB, Khitrov G, et al. Genome-wide molecular profiles of HCVinduced dysplasia and hepatocellular carcinoma. Hepatology 2007;45:938-47.
- 16. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754-60.
- 17. Cibulskis K, Lawrence MS, Carter SL, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol;31:213-9.
- 18. Koboldt DC, Zhang Q, Larson DE, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012;22:568-76.
- 19. Cingolani P, Platts A, Wang le L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012;6:80-92.
- 20. <u>http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/</u>.
- 21. Ishwaran H KU, Chen X, Minn AJ. 2011; 4: 115–32. Random survival forests for highdimensional data. Statistical Analy Data Mining 2011;4 115–32.
- 22. Heider A, Alt R. virtualArray: a R/bioconductor package to merge raw data from different microarray platforms. BMC Bioinformatics 2013;14:75.
- 23. Gentleman RC CV, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004;5:R80.
- 24. Leek JT, Johnson WE, Parker HS, et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012;28:882-3.

Supplementary TABLES

в

С

в

Suppl. Figure 2

Α

Suppl. Figure 3

Α

в

 BRCA2 - Y2789C
 CSMD2 - G105E
 ARMCX1 - L246F
 COL6A6 - L929I
 BRCA2 - P2612S

E St

Supplementary Table 11. Mortality Index for the different prognostic group samples

Sample ID	Survival status	Mortality Index	Prognosis group]
FLC56	1	42.06	Poor-prognosis	
FLC59	1	38.22	Poor-prognosis	
FLC17	1	33.05	Poor-prognosis	
FLC60	1	31.10	Poor-prognosis	
FLC55	1	29.37	Poor-prognosis	
FLC31	1	23.46	Poor-prognosis	
FLC32	1	21.08	Poor-prognosis	
FLC22	1	20.68	Non poor-prognosis	
FLC47	1	20.23	Non poor-prognosis	
FLC14	1	18.37	Non poor-prognosis	
FLC50	1	17.36	Non poor-prognosis	
FLC37	0	14.56	Non poor-prognosis	
FLC12	0	13.67	Non poor-prognosis	
FLC23	0	12.22	Non poor-prognosis	
FLC53	1	11.76	Non poor-prognosis	
FLC58	0	11.51	Non poor-prognosis	
FLC35	0	10.89	Non poor-prognosis	
FLC19	0	10.74	Non poor-prognosis	
FLC41	1	10.19	Non poor-prognosis	
FLC33	0	10.09	Non poor-prognosis	
FLC13	1	8.71	Non poor-prognosis	
FLC54	0	8.21	Non poor-prognosis	
FLC05	0	7.28	Non poor-prognosis	
FLC08	0	6.95	Non poor-prognosis	
FLC43	0	6.87	Non poor-prognosis	
FLC49	0	6.78	Non poor-prognosis	
FLC52	0	6.74	Non poor-prognosis	
FLC39	0	6.73	Non poor-prognosis	
FLC01	0	6.71	Non poor-prognosis	

Training Set - Survival

Training Set - Recurrence

Sample ID	Survival status	Mortality Index	Prognosis group
FLC_56	1	36.72	Poor-prognosis
FLC_17	1	35.06	Poor-prognosis
FLC_32	1	31.32	Poor-prognosis
FLC_47	1	28.71	Poor-prognosis
FLC_55	1	27.87	Poor-prognosis
FLC_23	1	25.45	Poor-prognosis
FLC_14	1	24.08	Non poor-prognosis
FLC_31	1	23.82	Non poor-prognosis
FLC_22	1	23.10	Non poor-prognosis
FLC_50	1	22.17	Non poor-prognosis
FLC_13	1	21.85	Non poor-prognosis
FLC_05	1	20.39	Non poor-prognosis

FLC_12	0	ACCEPTED	MANUSCRIPT Non poor-prognosis
FLC_43	1	19.03	Non poor-prognosis
FLC_41	1	18.02	Non poor-prognosis
FLC_35	0	16.58	Non poor-prognosis
FLC_33	1	15.55	Non poor-prognosis
FLC_19	1	14.49	Non poor-prognosis
FLC_53	1	14.11	Non poor-prognosis
FLC_49	1	13.93	Non poor-prognosis
FLC_58	0	13.43	Non poor-prognosis
FLC_54	0	11.10	Non poor-prognosis
FLC_52	0	10.94	Non poor-prognosis
FLC_01	0	10.91	Non poor-prognosis
FLC_39	1	10.10	Non poor-prognosis
FLC_08	0	9.06	Non poor-prognosis

Validation Set - Survival

Sample ID	Survival status	Mortality Index	Prognosis group
CHC412T	1	8.49	Poor-prognosis
CHC187T	1	8.44	Poor-prognosis
CHC411T	1	8.32	Poor-prognosis
СНС906Т	1	8.31	Poor-prognosis
CHC255T	1	8.23	Poor-prognosis
CHC1471T	1	8.00	Poor-prognosis
CHC026T	1	7.93	Non poor-prognosis
CHC1468T	0	7.90	Non poor-prognosis
CHC1463T	0	7.89	Non poor-prognosis
CHC442T	0	7.83	Non poor-prognosis
CHC408T	0	7.69	Non poor-prognosis
CHC093T	1	7.65	Non poor-prognosis
CHC1464T	0	7.50	Non poor-prognosis
CHC1465T	0	7.38	Non poor-prognosis
CHC1474T	1	7.30	Non poor-prognosis
CHC1310T	0	7.26	Non poor-prognosis
CHC232T	0	7.03	Non poor-prognosis
CHC410T	0	6.69	Non poor-prognosis
CHC407T	0	6.67	Non poor-prognosis
CHC406T	0	6.26	Non poor-prognosis
CHC1462T	0	5.86	Non poor-prognosis
CHC1473T	0	5.38	Non poor-prognosis

Supplementary Table 2. Leave-one-out cross validation of FLC subclasses

Prediction Method	# Error	% Correct Prediction
k-nearest neighbor	2	94%

Supplementary Table 3. FLC gene signature

/

	KARS ACCEP	TFD MANUSCRIPT	8.060
	RP9	Unannotated	8.001
	UBN1	Unannotated	7.997
	TSPYL1	Unannotated	7.991
	MPHOSPH10	Unannotated	7.966
	SETD1A	Unannotated	7.850
	SLC35B1	Unannotated	7.816
	C190RF22	Unannotated	7.803
	INTS9	Unannotated	7.785
	RIT1	Unannotated	7.766
	ERGIC3	Unannotated	7.765
	ZNF586	Unannotated	7.738
	GHITM	Unannotated	7.714
	RANBP1	Unannotated	7.669
	CNOT6	Unannotated	7.661
	LPHN1	Unannotated	7.644
	VPS45	Unannotated	7.638
	ROD1	Unannotated	7.637
	ΜΑΡΚ6	Unannotated	7.598
	ZDHHC7	Unannotated	7.591
	LYST	Unannotated	7.562
	UBB	Unannotated	7.514
	CUGBP1	Unannotated	7.503
	ROBLD3	Unannotated	7.463
	ALDH9A1	Unannotated	7.403
	WRNIP1	Unannotated	7.381
	IFITM3	Unannotated	7.376
	МСМЗАР	Unannotated	7.339
	AP2S1	Unannotated	7.316
	ATP5SL	Unannotated	7.314
	TMEM170B	Unannotated	7.314
	SAP30L	Unannotated	7.313
	C200RF96	Unannotated	7.312
	FEN1	Unannotated	7.309
	UBAP2	Unannotated	7.302
	SNRNP48	Unannotated	7.297
\sim	RNASEK	Unannotated	7.266
	DNAJB11	Unannotated	7.225
	GRINA	Unannotated	7.201
	L3MBTL2	Unannotated	7.198
Y	TSFM	Unannotated	7.179
	HRB	Unannotated	7.149
	VCL	Unannotated	7.139
	MIA	Unannotated	/.115
	ABCA1	Unannotated	/.109
	IMPDH2	Unannotated	/.103
	TOR1A	Unannotated	7.102
		Unannotated	7.093
	RBP4	Unannotated	7.085
	GOLGA5	Unannotated	7.084

	DDHD2	PTED MANUSCRI	PT 7.082	
	CCDC21	Unannotated	7.077	
	PHB2	Unannotated	7.071	
	URM1	Unannotated	7.067	
	SERPINB9	Unannotated	7.055	
	FLJ45966	Unannotated	7.050	
	ASCC1	Unannotated	7.036	
	SNX14	Unannotated	7.025	
	TRIM11	Unannotated	7.019	
	PI4KA	Unannotated	7.018	
	VPS11	Unannotated	6.979	
	FAM82A2	Unannotated	6.939	
	CEP170	Unannotated	6.897	
	MMS19	Unannotated	6.883	
	ESD	Unannotated	6.878	
	XPOT	Unannotated	6.864	
	TULP4	Unannotated	6.855	
	AQR	Unannotated	6.854	
	LTBR	Unannotated	6.843	
	ZZZ3	Unannotated	6.826	
	TSTD2	Unannotated	6.826	
	NME4	Unannotated	6.813	
	SP140L	Unannotated	6.773	
	NOTCH3	Unannotated	6.763	
	ARID4B	Unannotated	6.759	
	PRAGMIN	Unannotated	6.756	
	RHOC	Unannotated	6.750	
	CSTF3	Unannotated	6.744	
	LRCH3	Unannotated	6.743	
	NCOA6	Unannotated	6.741	
	IRF9	Unannotated	6.726	
	GTF2I	Unannotated	6.708	
	HARS2	Unannotated	6.689	
	RBM33	Unannotated	6.650	
	PDPN	Unannotated	6.648	
	RXRB	Unannotated	6.644	
	PRKRIR	Unannotated	6.637	
	DKC1	Unannotated	6.634	
	RPUSD3	Unannotated	6.627	
χ,	CMAS	Unannotated	6.622	
Υ	EIF3G	Unannotated	6.616	
	FXCI	Unannotated	6.597	
		Unannotated	6.596	
		Unannotated	0.304	
		Unannotated	6 5 5 0	
		Unannotated	0.330	
		Unannotated	6.496	
	TUNNN3N	Unannotated	6 / 29	
	FCHCD2	Inannotated	6.470	
		Unannotateu	0.470	

C190	ACCEPTED MAN	JSCRIPT 6.469	
MRPL	17 Unannotated	6.458	
DOLK	Unannotated	6.457	
ETF1	Unannotated	6.452	
C7OR	F55 Unannotated	6.451	
ILK	Unannotated	6.446	
RECQ	L Unannotated	6.444	
ZFYVE	16 Unannotated	6.443	
UBE3.	A Unannotated	6.425	
ZNF23	4 Unannotated	6.420	
LYAR	Unannotated	6.415	
SKP14	Unannotated	6.410	
SLC35	E3 Unannotated	6.402	
CSK	Unannotated	6.352	
CYBA	C3 Unannotated	6.349	
SMAD	2 Unannotated	6.328	
IQCK	Unannotated	6.323	
NUDO	D3 Unannotated	6.317	
DCAK	D Unannotated	6.316	
ZSWII	V1 Unannotated	6.316	
ZNHI	6 Unannotated	6.315	
CCS	Unannotated	6.308	
PIK3R	2 Unannotated	6.301	
MORE	4L2 Unannotated	6.288	
KCNC	3 Unannotated	6.278	
SLC35	D2 Unannotated	6.245	
CHMF	4B Unannotated	6.228	
NECA	P2 Unannotated	6.223	
AGAP	8 Unannotated	6.217	
DCTN	2 Unannotated	6.186	
FAM1	71A1 Unannotated	6.184	
VEZT	Unannotated	6.184	
UTP14	4C Unannotated	6.183	
DPH3	Unannotated	6.179	
ERH	Unannotated	6.173	
SNRP	A Unannotated	6.171	
TSC2	Unannotated	6.168	
CDC4	2BPB Unannotated	6.163	
COPZ	1 Unannotated	6.157	
MESD	C2 Unannotated	6.153	
SFT2D	01 Unannotated	6.152	
SLFN1	.2 Unannotated	6.142	
RFP	Unannotated	6.137	
QKI	Unannotated	6.134	
SP100	Unannotated	6.133	
HEAT	R6 Unannotated	6.119	
USP7	Unannotated	6.118	
CPT10	C Unannotated	6.112	
ARMO	X6 Unannotated	6.106	
ATG9	A Unannotated	6.094	

	CCNHACCEP	IFD MANUSCRIPT	6.090
	NFIX	Unannotated	6.086
	C8ORF33	Unannotated	6.074
	ACTG1	Unannotated	6.065
	SFRS6	Unannotated	6.045
	FAM122A	Unannotated	6.043
	HDAC3	Unannotated	6.030
	GNB1	Unannotated	6.022
	C2ORF56	Unannotated	6.021
	CYB561D1	Unannotated	6.020
	SLC25A3	Unannotated	6.019
	CCDC53	Unannotated	6.017
	GPATCH8	Unannotated	6.000
	C190RF53	Unannotated	5.998
	C170RF95	Unannotated	5.993
	PNPO	Unannotated	5.990
	FBXL10	Unannotated	5.987
	ZCWPW1	Unannotated	5.976
	C1QBP	Unannotated	5.974
	SH3GL1	Unannotated	5.969
	DBNL	Unannotated	5.968
	PSMC1	Unannotated	5.965
	ZNF860	Unannotated	5.960
	ZNF613	Unannotated	5.946
	DYNLT1	Unannotated	5.943
	UBE2V2	Unannotated	5.921
	OTUD4	Unannotated	5.920
	SEC22C	Unannotated	5.914
	RPUSD2	Unannotated	5.914
	ZNF395	Unannotated	5.907
	GIPC1	Unannotated	5.904
	NDFIP1	Proliferation	9.920
	TMEM205	Proliferation	9.777
	NANP	Proliferation	9.346
\sim	PPP6C	Proliferation	9.329
	RNF181	Proliferation	9.254
	KLHDC3	Proliferation	9.109
	NPC2	Proliferation	9.005
	N6AMT2	Proliferation	8.988
χ,	REV1	Proliferation	8./6/
Y	FNIA	Proliferation	8./31
	SERIA	Proliferation	8.715
		Proliferation	8.049 8.642
	BKAF	Proliferation	0.043 9.642
		Proliferation	0.042
		Proliferation	0.490 9.222
		Proliferation	0.522
	CCT2	Proliferation	0.505 8 100
		Proliferation	8 136
		FIUIIRIALIUII	0.120

	ABHD5	PTED MANU Proliferation	SCRIPT 8.076
	SEC31A	Proliferation	8.026
	DNAJC8	Proliferation	8.000
	BTAF1	Proliferation	7.996
	SIKE	Proliferation	7.895
	MED6	Proliferation	7.867
	GTF2H2	Proliferation	7.730
	KLF3	Proliferation	7.717
	GAK	Proliferation	7.589
	DARS	Proliferation	7.569
	EIF3L	Proliferation	7.502
	MRFAP1	Proliferation	7.473
	P76	Proliferation	7.440
	LAMA5	Proliferation	7.419
	SNORD71	Proliferation	7.386
	ATL2	Proliferation	7.368
	RBM18	Proliferation	7.360
	HSPA4	Proliferation	7.356
	BRP44L	Proliferation	7.351
	SRPK1	Proliferation	7.342
	MITD1	Proliferation	7.326
	FAM125A	Proliferation	7.309
	RPUSD4	Proliferation	7.230
	NDUFA4	Proliferation	7.199
	NCKAP1	Proliferation	7.190
	ZFAND6	Proliferation	7.186
	CTGLF3	Proliferation	7.180
	SAPS3	Proliferation	7.176
	EIF3F	Proliferation	7.115
	LOC644907	Proliferation	7.112
	HP1BP3	Proliferation	7.078
	EEA1	Proliferation	7.071
	MAP1LC3A	Proliferation	7.023
	MRPS31	Proliferation	7.020
	PIGY	Proliferation	7.008
	GNG2	Proliferation	6.999
	TPST2	Proliferation	6.977
	ECD	Proliferation	6.960
	ELF1	Proliferation	6.958
	H1F0	Proliferation	6.941
Y	BAMBI	Proliferation	6.934
	OSBP2	Proliferation	6.931
		Proliferation	6.931
	ANKRD11	Proliferation	6.909
		Proliferation	6.901
	SIPA1	Proliferation	6.896
		Proliferation	b.883
			b.878
		Promeration	0.859
	EIF4G2	Proliteration	6.814

U	IBE2D2	FD MANUSCRIPT	6.786
U	ITP6	Proliferation	6.768
S	EPHS1	Proliferation	6.768
R	UFY2	Proliferation	6.760
А	ASDH	Proliferation	6.749
C	HD2	Proliferation	6.716
C	120RF41	Proliferation	6.695
Р	AWR	Proliferation	6.636
u	I2AF2	Proliferation	6.627
н	IDAC1	Proliferation	6.613
А	NAPC1	Proliferation	6.604
N	/ITMR6	Proliferation	6.586
C	SNK1E	Proliferation	6.586
C	OX4I1	Proliferation	6.568
А	P1S2	Proliferation	6.560
N	ЛҮН9	Proliferation	6.549
F	ARP1	Proliferation	6.546
к	IAA0776	Proliferation	6.544
R	NF160	Proliferation	6.533
R	PL26	Proliferation	6.504
S	NRPN	Proliferation	6.490
Ν	ISUN2	Proliferation	6.479
Ν	IDUFB10	Proliferation	6.470
C	HCHD4	Proliferation	6.468
Ν	IENF	Proliferation	6.457
E	MD	Proliferation	6.448
C	APZA2	Proliferation	6.448
N	IDUFB8	Proliferation	6.446
N	IUDT3	Proliferation	6.424
C	110RF58	Proliferation	6.395
F.	AM53C	Proliferation	6.385
Р	PM1M	Proliferation	6.381
D	MTF1	Proliferation	6.380
R	NF170	Proliferation	6.379
) – C	ASP3	Proliferation	6.374
н	IERC4	Proliferation	6.330
В	MPR2	Proliferation	6.313
G	FPT1	Proliferation	6.298
C	CDC90B	Proliferation	6.277
S	FRS18	Proliferation	6.268
P	DCD6IP	Proliferation	6.261
L	OC374395	Proliferation	6.259
S	NAP29	Proliferation	6.222
E	IF4E2	Proliferation	6.200
C	10RF52	Proliferation	6.197
S	PRYD3	Proliferation	6.195
C		Proliferation	6.166
		Proliferation	b.161
N	/IED13	Proliferation	6.156
S	POP	Proliferation	6.153

	ACAP2	PTED MANUSCRIPT Proliferation	6.150
	SLC30A7	Proliferation	6.148
	ΤΑΟΚ3	Proliferation	6.137
	VBP1	Proliferation	6.119
	TMEM218	Proliferation	6.101
	ZNF704	Proliferation	6.094
	UBA1	Proliferation	6.082
	C12ORF43	Proliferation	6.065
	KIF1B	Proliferation	6.064
	C1ORF50	Proliferation	6.064
	PUM2	Proliferation	6.059
	EIF1AX	Proliferation	6.046
	SDHB	Proliferation	6.044
	EIF3A	Proliferation	6.039
	KRAS	Proliferation	6.031
	PTPRK	Proliferation	6.021
	SERPINB6	Proliferation	6.018
	CCDC88A	Proliferation	5.986
	RAD21	Proliferation	5.982
	JMJD1C	Proliferation	5.977
	DRAP1	Proliferation	5.976
	MTRF1L	Proliferation	5.974
	ST13	Proliferation	5.968
	TTC39C	Proliferation	5.956
	TIMM23	Proliferation	5.952
	MRPS7	Proliferation	5.941
	MSRB2	Proliferation	5.934
	MTCH1	Proliferation	5.925
	PRKAR1B	Proliferation	5.923
	CD58	Proliferation	5.923
	CMIP	Proliferation	5.921
	DNTTIP2	Proliferation	5.920
	RBM14	Proliferation	5.875
	CFL1	Proliferation	5.872
	MED20	Proliferation	5.870
	RPL15	Proliferation	5.865
\sim	TSPAN12	Proliferation	5.859
	PHACTR2	Proliferation	5.853
	C170RF70	Proliferation	5.843
	GOSR2	Proliferation	5.833
Y	PITPNB	Proliferation	5.827
	CTDSP2	Proliferation	5.827
	ANKHD1	Proliferation	5.827
	C170RF61	Proliferation	5.816
	NFAT5	Proliferation	5.812
	PTK2	Proliferation	5.808
	ILN1	Proliferation	5.803
	HSZFP36		5./8/
	TERF2IP	Proliferation	5./6/
	IMEM14A	Proliteration	5./62

	UBQLN4	PTED MANUSCI Proliferation	RIPT 5.749
	CISD2	Proliferation	5.745
	NIN	Proliferation	5.728
	C14ORF32	Proliferation	5.721
	ZNF226	Proliferation	5.718
	LRP3	Proliferation	5.714
	CNTNAP1	Proliferation	5.703
	KIAA1539	Proliferation	5.699
	STAT6	Proliferation	5.689
	RPS6	Proliferation	5.687
	SNORA8	Proliferation	5.674
	TFAM	Proliferation	5.666
	FUBP3	Proliferation	5.666
	HNRPUL1	Proliferation	5.657
	BTN2A1	Proliferation	5.657
	FAF1	Proliferation	5.653
	FBXO22	Proliferation	5.645
	BAT2D1	Proliferation	5.643
	PBRM1	Proliferation	5.643
	C2ORF79	Proliferation	5.642
	MRPS6	Proliferation	5.641
	HES1	Proliferation	5.637
	SSU72	Proliferation	5.620
	MUTED	Proliferation	5.613
	DTX2	Proliferation	5.613
	FAM18B	Proliferation	5.610
	RPL23	Proliferation	5.605
	GOLGA8B	Proliferation	5.592
	STAT2	Proliferation	5.587
	CCND3	Proliferation	5.584
	CYB5R3	Proliferation	5.579
	LSM1	Proliferation	5.579
	HADHB	Proliferation	5.574
	C100RF116	Proliferation	5.574
	MRS2	Proliferation	5.559
	HEBP2	Proliferation	5.552
\sim	NDUFV3	Proliferation	5.551
	RBX1	Proliferation	5.544
	HIST1H2BC	Proliferation	5.544
	ID2	Proliferation	5.543
Y	C100RF78	Proliferation	5.529
	CCDC58	Proliferation	5.523
	MASP1	Proliteration	5.514
	UBE2E1	Proliferation	5.512
	ACACB	Proliferation	5.509
	RQCD1	Proliferation	5.506
	ISK1	Proliferation	5.503
		Proliteration	5.497
	51X8	Proliferation	5.4/4
	HRXIN	Proliteration	5.464

	ZNF669	TED MANUSCRIPT	13.075
	PTPLAD2	Inflammation	12.636
	ORC6L	Inflammation	12.551
	LILRB3	Inflammation	12.460
	NAG18	Inflammation	11.844
	MFX3D	Inflammation	11.473
	ZNF674	Inflammation	11.405
	AIRF	Inflammation	10.945
	RAD51	Inflammation	10.905
	MCM8	Inflammation	10.876
	RNU1A3	Inflammation	10.854
	ZNF223	Inflammation	10.628
	LAIR1	Inflammation	10.442
	ABCB8	Inflammation	10.440
	SI C4A5	Inflammation	10.319
	TUBA1A	Inflammation	10.277
	100100190938	Inflammation	10.212
	FAM119A	Inflammation	10.191
	HFF	Inflammation	10 131
		Inflammation	10.107
	DAPP1	Inflammation	10.062
	C140RF85	Inflammation	9 995
	7NF773	Inflammation	9 872
	SERS13A	Inflammation	9.863
	PCDHB9	Inflammation	9 847
	NUP93	Inflammation	9 809
	FAM175A	Inflammation	9,791
	MOV10	Inflammation	9,693
	ZNE652	Inflammation	9,640
	PIGX	Inflammation	9 584
	КІ НІ 28	Inflammation	9 572
	USP49	Inflammation	9 543
	FID2B	Inflammation	9 502
	7NF430	Inflammation	9 471
		Inflammation	9 395
	PPA2	Inflammation	9,393
×	7NF273	Inflammation	9.312
	MGC16703	Inflammation	9 296
	MESDEL	Inflammation	9 267
	SI C5A8	Inflammation	9.245
	PLA2G2D	Inflammation	9,238
· · · · · ·	7NF557	Inflammation	9,160
	C80RF37	Inflammation	9.154
	RNU5D	Inflammation	9.119
	CNGB1	Inflammation	9.113
	NMF3	Inflammation	9.078
	BMS1P5	Inflammation	9.046
	CRFB1	Inflammation	8 934
	SHCBP1	Inflammation	8.934
	PACRGL	Inflammation	8.908

	LILRAG	TFD MANUSCRIPT	8.776
	FLJ45256	Inflammation	8.721
	RNU6-15	Inflammation	8.691
	FAM40B	Inflammation	8.682
	QRFPR	Inflammation	8.668
	DUSP19	Inflammation	8.666
	CDAN1	Inflammation	8.619
	C2ORF69	Inflammation	8.580
	TMEM106A	Inflammation	8.559
	CLCC1	Inflammation	8.436
	TERF1	Inflammation	8.418
	KIAA1143	Inflammation	8.345
	SNTN	Inflammation	8.341
	PNPT1	Inflammation	8.313
	SETD4	Inflammation	8.294
	NLRP8	Inflammation	8.291
	SLC4A2	Inflammation	8.285
	RPS2	Inflammation	8.280
	GGA1	Inflammation	8.266
	RAXL1	Inflammation	8.243
	TRIM16L	Inflammation	8.234
	PPP1R15B	Inflammation	8.230
	PPM1K	Inflammation	8.178
	IL10	Inflammation	8.177
	SMCR5	Inflammation	8.174
	C10RF150	Inflammation	8.169
	C8ORF45	Inflammation	8.144
	CUX1	Inflammation	8.121
	CEP27	Inflammation	8.072
	STAG3L1	Inflammation	8.045
	RAB4B	Inflammation	8.021
	RPS27L	Inflammation	7.980
	ZNF638	Inflammation	7.930
	CDC123	Inflammation	7.913
	MIA3	Inflammation	7.878
	C19ORF60	Inflammation	7.808
	HSPC268	Inflammation	7.764
	ERGICI		7.728
	FAINI39DP	Inflammation	7.705
X '		Inflammation	7.695
Y		Inflommation	7.001
		Inflammation	7.000
		Inflammation	7.027
	NUP214 7NIHIT2	Inflammation	7.014
		Inflammation	7.003
		Inflammation	7.592
	SIC25C2	Inflammation	7.507
	7NF/61	Inflammation	7.550
		Inflammation	7.537
			,

	MALAACCEP	IFD MANUSCRIPT	7.517
	RAB11B	Inflammation	7.510
	PDRG1	Inflammation	7.476
	MSTO2P	Inflammation	7.469
	C11ORF63	Inflammation	7.456
	MLL4	Inflammation	7.454
	GSTTP2	Inflammation	7.417
	C110RF83	Inflammation	7.414
	CABC1	Inflammation	7.399
	STAR	Inflammation	7.380
	RNU6-1	Inflammation	7.378
	ZNF595	Inflammation	7.372
	STAP2	Inflammation	7.319
	TRIM34	Inflammation	7.315
	LOC646996	Inflammation	7.268
	PRRG4	Inflammation	7.265
	AGXT2L2	Inflammation	7.260
	TRPM7	Inflammation	7.249
	RBL2	Inflammation	7.244
	PCTK1	Inflammation	7.231
	LOC100128288	Inflammation	7.216
	NOTCH2NL	Inflammation	7.214
	CHERP	Inflammation	7.207
	RNU1G2	Inflammation	7.206
	SPIN2B	Inflammation	7.199
	SIGLEC9	Inflammation	7.197
	EHMT1	Inflammation	7.176
	RPLP0P2	Inflammation	7.167
	LOC255167	Inflammation	7.167
	FAM108A3	Inflammation	7.146
	DCLRE1C	Inflammation	7.143
	IER3	Inflammation	7.142
	C9ORF80	Inflammation	7.116
	SC4MOL	Inflammation	7.087
	PIGW	Inflammation	7.085
	FXR1	Inflammation	7.024
	RNF126	Inflammation	6.995
	SUM01	Inflammation	6.988
	SSB	Inflammation	6.954
	FLJ35390	Inflammation	6.911
Y	SDC1	Inflammation	6.909
	ZNF682	Inflammation	6.894
	KIAA1632	Inflammation	6.868
	LEP	Inflammation	6.861
	CCDC94	Inflammation	6.853
	ADRA2B	Inflammation	6.820
	RNY4	Inflammation	6.805
	RNY1	Inflammation	6.786
	ALPP	Inflammation	6.786
	KIAA0101	Inflammation	6.782

I	МАРЗК7ІР2	IFD MANUSCRIPT	6.775
	KILLIN	Inflammation	6.774
	RNU5A	Inflammation	6.760
	HNRPH1	Inflammation	6.758
	COX7A2L	Inflammation	6.758
	PPP4R1	Inflammation	6.721
	MTFMT	Inflammation	6.720
	C2ORF14	Inflammation	6.698
	KEAP1	Inflammation	6.681
	SLC30A6	Inflammation	6.672
	SNORD11B	Inflammation	6.654
	C7ORF64	Inflammation	6.654
	NBPF1	Inflammation	6.651
	EIF3B	Inflammation	6.633
	SNAPC1	Inflammation	6.627
	UBTF	Inflammation	6.610
	ZNF787	Inflammation	6.598
	UPLP	Inflammation	6.593
	HMGN3	Inflammation	6.583
	SKAP2	Inflammation	6.558
	HNRNPA1L2	Inflammation	6.535
	RGS10	Inflammation	6.533
	LOC100190986	Inflammation	6.529
	SGPL1	Inflammation	6.528
	CCT6A	Inflammation	6.517
	ZC3HAV1L	Inflammation	6.502
	AFF1	Inflammation	6.488
	UTP20	Inflammation	6.460
	LRP10	Inflammation	6.460
	PARP10	Inflammation	6.456
	FAM84A	Inflammation	6.455
	KCNH6	Inflammation	6.448
	HPR	Inflammation	6.437
	N4BP2	Inflammation	6.433
	TBCD	Inflammation	6.428
	ZNF48	Inflammation	6.410
\sim	RNU4-1	Inflammation	6.403
	PSIP1	Inflammation	6.382
	GCHFR	Inflammation	6.377
	MFSD2	Inflammation	6.367
Y	GYG2	Inflammation	6.349
	TXNDC11	Inflammation	6.321
	FADS2	Inflammation	6.307
	ADAM15	Inflammation	6.289
	LOC441150	Inflammation	6.275
	LOC260339	Inflammation	6.269
	POGZ	Inflammation	6.256
	BRIP1	Inflammation	6.251
	LOC440926	Inflammation	6.251
	PEAR1	Inflammation	6.234

NUPR1	EPTED MANUSCR	IPT 6.227	
THAP4	Inflammation	6.225	
FAM3C	Inflammation	6.217	
RABAC1	Inflammation	6.201	
DPP9	Inflammation	6.180	
SPTLC1	Inflammation	6.177	
RNU1F1	Inflammation	6.174	
TBC1D2B	Inflammation	6.174	
TFAMP1	Inflammation	6.173	
SNORD26	Inflammation	6.157	
LYL1	Inflammation	6.137	
SLC25A16	Inflammation	6.136	
HNRPK	Inflammation	6.129	
C190RF24	Inflammation	6.127	
CCDC85B	Inflammation	6.126	
CHRM2	Inflammation	6.125	
ATG3	Inflammation	6.118	
HIST2H3A	Inflammation	6.113	
PDCD7	Inflammation	6.108	
MCPH1	Inflammation	6.098	
FBXO18	Inflammation	6.095	
CFLAR	Inflammation	6.088	
KLK7	Inflammation	6.069	
GIYD1	Inflammation	6.068	
KRCC1	Inflammation	6.059	
PHF1	Inflammation	6.048	
SDCCAG3	Inflammation	6.048	
FTSJ1	Inflammation	6.047	
MED15	Inflammation	6.045	
PPP2R5D	Inflammation	6.029	
ZNF358	Inflammation	6.024	
RNU1-5	Inflammation	6.019	
BMP4	Inflammation	6.011	
METRN	Inflammation	6.010	
ZFP64	Inflammation	6.008	
TRADD	Inflammation	6.008	
NAT12	Inflammation	6.007	
PHC2	Inflammation	5.998	
LOC399744	Inflammation	5.991	
GLI2	Inflammation	5.990	
MAGED2	Inflammation	5.981	
GLRX2	Inflammation	5.980	
MTDH	Inflammation	5.966	
C1RL	Inflammation	5.950	
SURF2	Inflammation	5.941	
PSMB5	Inflammation	5.920	
EPS8L2	Inflammation	5.919	
NUDT4P1	Inflammation	5.912	
GLTSCR1	Inflammation	5.907	
FAM176B	Inflammation	5.899	

	UBE2T ACCE	PTFD MANUSCRI	PT 5.871
	SNORA5B	Inflammation	5.847
	ZNF205	Inflammation	5.836
	DOPEY2	Inflammation	5.836
	SNORD3D	Inflammation	5.813
	PODXL	Inflammation	5.795
	RNU1-3	Inflammation	5.758
	TIGD2	Inflammation	5.757
	NFE2L1	Inflammation	5.751
	RBM9	Inflammation	5.741
	FKTN	Inflammation	5.707
	TEX11	Inflammation	5.648
	MLL11	Inflammation	5.546
			C
)		
X /			

Supplementar	y Table 4.	FLC imm	unohistoch	emistry	grading ((n=42)
--------------	------------	---------	------------	---------	-----------	--------

Marker	pR	PS6	E	GFR	Нер	Par1	C	СК7	0	СК19	Ep	CAM
Difuse	11	26%	29	69%	39	93%	35	83%	1	2%	2	5%
Focal	11	26%	3	7%	2	5%	3	7%	7	17%	8	19%
Few cels	3	7%	5	12%	0	0%	0	0%	1	2%	0	0%
Positivity	25	60%	37	88%	41	98%	38	90%	9	21%	10	24%
						8			5			

Supplementary Table 5. Chromosomal arm-level genomic copy number alterations

| ementary Tal | ble 5. Chromos | omal arm-leve | el genomic copy | y number alter | rations | | |

 | | | | | |
 | | | | | |
 | | |
 | | | | | |
 | | | | | | |
|---|---|---|---|---|--|---|--
--
--
--|--|--|---|---|--|--|---|---|--
--
--	--	---
--	--------	--
---	--	--
Chu Arm Lip Liq Liq	R(G)1 0	$\begin{array}{c c} \hline RC02 \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
 301 301 301 301 301 301 301 301</th> <th>201 1 1 1</th> <th>FIG5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>FLC49 0<th>HCS0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>RCS 0</th><th>ACC4 A 0 1 13 13 13 14 14 12 1 172 0 0 3 5 1 5 <t< th=""><th>RC56
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0</th><th>RESB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>HC59 0 0 0</th><th>50 P P</th><th>ICE30 ICE30 ICE300 ICE300 ICE300</th><th>RCB3 RCB3 <thrcb3< th=""> RCB3 RCB3 <thr< th=""><th>RG1 0 0 0</th><th>PLC4s 0 0</th><th>Fit28 0<th>RG31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0</th><th>R657 0 0 0 0</th><th></th></th></thr<></thrcb3<></th></t<></th></th> | RC13 0 0 | RC14 0 0 | 4 HE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RC RC 0 0 | RC3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | FRG3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | HCBS 0 0 0 | 301 301 301 | 201 1 1 1 | FIG5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | FLC49 0 <th>HCS0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0</th> <th>RCS 0</th> <th>ACC4 A 0 1 13 13 13 14 14 12 1 172 0 0 3 5 1 5 <t< th=""><th>RC56
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0</th><th>RESB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>HC59 0 0 0</th><th>50 P P</th><th>ICE30 ICE30 ICE300 ICE300 ICE300</th><th>RCB3 RCB3 <thrcb3< th=""> RCB3 RCB3 <thr< th=""><th>RG1 0 0 0</th><th>PLC4s 0 0</th><th>Fit28 0<th>RG31 0 0 0 0 0 0 0 0 0 0 0 0</th><th>R657 0 0 0 0</th><th></th></th></thr<></thrcb3<></th></t<></th> | HCS0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RCS 0
 0 0 0 0 0 | ACC4 A 0 1 13 13 13 14 14 12 1 172 0 0 3 5 1 5 <t< th=""><th>RC56
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0</th><th>RESB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>HC59 0 0 0</th><th>50 P P</th><th>ICE30 ICE30 ICE300 ICE300 ICE300</th><th>RCB3 RCB3 <thrcb3< th=""> RCB3 RCB3 <thr< th=""><th>RG1 0 0 0</th><th>PLC4s 0 0</th><th>Fit28 0<th>RG31 0 0 0 0 0 0 0 0 0 0 0 0</th><th>R657 0 0 0 0</th><th></th></th></thr<></thrcb3<></th></t<> | RC56
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | RESB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | HC59 0 0 0 | 50 P P | ICE30 ICE300 ICE300 ICE300 | RCB3 RCB3 <thrcb3< th=""> RCB3 RCB3 <thr< th=""><th>RG1 0 0 0</th><th>PLC4s 0 0</th><th>Fit28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0<th>RG31 0 0 0 0 0 0 0 0 0 0 0 0</th><th>R657 0 0 0 0</th><th></th></th></thr<></thrcb3<> | RG1 0 0 0 | PLC4s 0 0 | Fit28 0 <th>RG31 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>R657 0 0 0 0</th> <th></th> | RG31 0 0 0 0 0 0 0 0 0 0 0 0 | R657 0 0 0 0 | |
| | | | | | | | |

 | | | | C | | |
 | | | | | |
 | | |
 | | | | | |
 | | | | | | |

Supplementary Table 6. FLC molecular subclass of chromosomal altered samples

			Patients involved		Molecula	r Subclass (%)		
Alt	eration	Chr.	#, (%)	Proliferation	Inflammation	Unannotated	No transcriptomic data	p value
							R	
Broad								
	Gains							
		1q	2, (6)	50		() '	50	
		19	3, (9)	33	33	33		
		22q	2, (6)	100				
					4			
	Losses							
		4	2, (6)	100		Y		
		17	3, (9)		66		33	
		19	8, (25)	25	50	12.5	12.5	
		20	2, (6)		50		50	
		22q	8, (25)	25	50	12.5	12.5	
Focal								
	Gains							
		6q27	2, (6)	100				
		8q24.3	4, (12.5)	25		50	25	
		17q25.3	2, (6)	50	50			
	Losses							
		1p36.33	3, (9)	33		66		
		8p21.3	2, (6)		50	50		
		11p15.5	1, (3)	100				
		19p13.3	9, (28)	22	56	11	11	p=0.0151
		19p13.12	9, (28)	22	56	11	11	p=0.0151
		22q13.32	8, (5)	25	50	12.5	12.5	

Contraction Manuscraft

Supplementary Table 7. Focal amplifications in FLC samples

cytoband	17q25.3	6q27	8q24.3	
q value	0.004019	0.018965	0.22437	
residual q value	0.004019	0.018965	0.22437	
wide neek houndaries	chr17:77364582-	chr6:168352106-	chr8:145919127-	
wide peak boundaries	77395624	168552064	146364022	
total number of affected	1	4	10	
genes	1	4	12	
genes in wide peak	RBFOX3	KIF25	RPL8	
		MLLT4	ZNF7	
		FRMD1	ZNF16	
		HGC6.3	COMMD5	
			ZNF250	
			C8orf33	
			ZNF34	
			ZNF251	
			ZNF252	
			TMED10P1	
			C8orf77	
			ZNF517	

Supplementary Table 8. Focal deletions in FLC samples

g-valueDD <th>cytoband</th> <th>1p36.33</th> <th>8p21.3</th> <th>11p15.5</th> <th>19p13.12</th> <th>19p13.3</th> <th>22q13.32</th>	cytoband	1p36.33	8p21.3	11p15.5	19p13.12	19p13.3	22q13.32
revide optimization of the sector of the	q value	0.22421	0.22421	0.22421	0.22421	0.22421	0.22421
wide peak boundariehttp:1:138221http:1:300343http:1:4287571http:1:411049http:0:4004304Total number of effect561010475577733004304genes in wide peakhs-mir:429HMP1Hs-mir:428100100100300430430043043004304genes in wide peakhs-mir:429HS-mir:4218100 </th <th>residual q value</th> <th>0.22421</th> <th>0.22421</th> <th>0.22421</th> <th>0.22421</th> <th>0.22421</th> <th>0.22421</th>	residual q value	0.22421	0.22421	0.22421	0.22421	0.22421	0.22421
Total number of affects genes 56 10 104 7 150 2 genes in wide peak hs-mir-429 MMP1 hs-mir-438 CD97 hs-mir-4211 LOC284933 genes hs-mir-1202 FPR0 hs-mir-1202 DOX39A hs-mir-1302 LOC284933 SCNNID FFFC hs-mir-1202 DOX39A hs-mir-1302 LOC284933 SCNNID FFFC hs-mir-1202 DOX39A hs-mir-1302 L NORTS FAM1002 CD81 DOX39A hs-mir-1302 L NORTS FAM1002 CD81 DOX39A hs-mir-1302 L L NORTS FAM102 CD51 AU AU L L L L L L L L L L L C C R L L R L L L L L L L L L L L L L L L L L	wide peak boundaries	chr1:1-1388267	chr8:21888571- 22058121	chr11:1-3009437	chr19:14276712- 14623757	chr19:1-4110491	chr22:48929172- 49004394
genesi nivologoMartin -232BMP1Isa-mir-432BAMI-AS3CO2RASAMI-AS3CO2RANULSYR10SYR10SYR10SYR10SYR10SYR10SYR10SYR10SYR10SYR10SYR10SYR10SYR10SYR10SYR10SYR10SYR10SYR11SYR10SYR10SYR10SYR10SYR10SYR10SYR10SYR10SYR10SYR11SYR11SYR10SYR10SYR10SYR10SYR10SYR10SYR10SYR10SYR11SYR11SYR10SYR10SYR10SYR10SYR10SYR10SYR10SYR10SYR11SYR11SYR10SYR1	Total number of affected genes	56	10	104	7	150	2
hss-mir-1302-2 IPE49 hss-mir-675 PKN1 Ns-mir-1290 OC284933 OV.1 SFTC hss-mir-210 DDXS9A Ns-mir-3107 OC284933 SCNN1D FGF17 hss-mir-210 DDXS9A Ns-mir-3107 Imeani-1302 TNFRSF18 HR ASC12 LPHN1 ASS Imeani-1302	genes in wide peak	hsa-mir-429	BMP1	hsa-mir-483	CD97	hsa-mir-637	FAM19A5
UVL1 SFTPC hs-mir-4200 DVSAN Ns-mir-1307 CNN1D FGF1 hs-mir-1200 DVSAN hs-mir-1302 TNFRSF18 NPM2 AP2A2 GIPC1 hs-mir-1302 TNFRSF18 HR ASC12 UPN1 AES NOC2L NUD18 CD51 ATP50 AP4 OR473 REF4 CDKN1C AZU1 AP50 OR473 REF4 CDKN1C AZU1 AP50 Clorif19 HRAS CDC34 CDC34 AD70 ADRKAP1 IGF2 CNN2 AD70 AD70 ADRKAP1 IGF2 CNN2 AD70 AD70 ADRKAP1 IGF2 CNN2 AD70 AD70 ADRKAP1 IGF2 CNN2 EFF2 AD70 ADRKAP1 IGF2 CNN2 EFF2 AD70 INC015 MUC2 EFF2 AD70 AD70 INC015 MUC6 FFNA2 AD70 AD71 INC014<		hsa-mir-1302-2	EPB49	hsa-mir-675	PKN1	hsa-mir-4321	LOC284933
SCNN1D FGF17 hsa-mir-210 DDX39A hsa-mir-3127 ITNFRSF18 HR ASCL2 LPHN1 AFS ISG15 FAM16082 CD81 LOC100507373 AMH NCC2L NUDT18 CD151 LOC100507373 AMH OR473 REFP4 CDN1C AZU1 AZU1 MMRA8 ORD4 DSG CC54 CC54 Clor571 HRAS CCC34 CC54 CC54 Clor572 HRAS CGC34 CC54 CC54 AURKAIP1 IG72 CNN2 CSN1G2 CC54 VMA1 ISP1 CAN2 CSN2 CSN1G2 VMA1 ISP1 CAN2 CSN1G2 CSN2 UR451 ISP1 ARID3A CSN2 CSN2 INC0115 MUC2 EFF2 CSN1G2 CSN1G2 UR451 ISP1 ARID3A CSN2 CSN2 INC0115 MUC2 EFF2 CSN1G2 CSN1G2		DVL1	SFTPC	hsa-mir-4298	PTGER1	hsa-mir-1909	
THFRSF4 NPM2 AP2A2 GIPC1 Ibsaminage11 THFRSF18 HR ASCL2 UPHN1 AE5 SG15 FAM16082 CD81 LOC100507373 ANH NOC2L NUDT18 CD151 ATP50 OR473 REEP CDKN1C A2U1 SG15 FAM16082 CDS1 HCN2 MRRA8 ORD4 GS5 CDC34 Cfor159 HRA5 CDC34 CDS3 AURKAP1 IG72 ONN2 IBRP AURA1P1 IG72 ONN2 IBRP VMA1 KCN21 CFP ONN3 VMA1 KCN21 CFP IBRP UNC0115 MUC2 EF2 IBRP GITPD1 MUC66 EFNA2 IBRP CNL2 SIC22A18A GAMT IBRP CLorif 70 IBMD13 GNA51 IBRP QEEM14 POL21 MRR123 GPA4 QEEM14 POL22 MRR123		SCNN1D	FGF17	hsa-mir-210	DDX39A	hsa-mir-3187	
THRSF18 HR ASCL2 LPHN1 AES ISG15 FAM160B2 CDE1 LOCL00507373 ANH NOC2L NUDT18 CD151 ATP5D ORAF3 RFF4 CDKN1C AQU1 SF64 LG13 CTSD HCN2 MKRAR DRP4 ESG CC34 CFS31 DUSPB CDC34 CHM2 AURKARP1 IG72 ONN2 IMM12 MRP20 INS CSNK162 IMM2 WA1 KCNQ1 CFD IMM23 OR4F5 LSP1 ARD3A IMM23 OR4F16 NAP14 ELNNE IMM23 CCN12 SLC2A18AS GAM1 IMM24 CCN2 SLC2A18AS GM11 IMM24 DELNNE SLC2A18AS GMA15 IMM14 DELNNE SLC2A18AS GM11 IMM24 DV13 POM14 ELNNE IMM14 DELNNE GAM15 IMM14 IMM24 <		TNFRSF4	NPM2	AP2A2	GIPC1	hsa-mir-1302-11	7
ISG15 FAM16082 CDR1 LOCI0507373 AMH NOC2L NUDTB CDS1 ATP50 ONAF3 REEPA CDXN1C AZU1 SDF4 LGI3 CTSD HCN2 CPF33 DUSP8 CDC34 CF07159 HRAS CRBP AURKAP1 IGF2 CNN1C AURKAP1 IGF2 CNN2 MRPL20 INS CSNK162 HE54 IRF7 DAFK3 UNC0115 MUC2 EFF2 GLTDD1 MUC6 EFFA2 INC00115 MUC2 EFF2 ORAF16 NAP1L4 ELANE ORAF16 NAP1L4 ELANE CCN12 SLC2A18 GNA11 PLEKHN1 POIR31 GNG7 ACAP3 RNH1 MKN22 UBE212 MRP123 GPX4 UDC148413 TH MCN2 UB212 MRP123 GPX4 UC248413 TH NFC<		TNFRSF18	HR	ASCL2	LPHN1	AES	
NOC2L NUDT18 CD151 ATP50 OR473 REF4 CKN1C A2U1 SDF4 LGI3 CTSD HCN2 MXRA8 DR04 BSG CFS73L DUSP8 CDC34 CAFF3L DUSP8 CDC34 CAFF3L DUSP8 CCC34 ARRAIP1 IGF2 CNN2 MR120 INS CSNL302 VWA1 KCNQ1 CFP QR4F5 LSP1 AR03A GLTPD1 MUC2 EFF2 GLTPD1 MUC6 FMA2 QR4F5 LSP1 AR03A CN12 SLC22A18 GAMT CCN12 SLC22A18 GAMT PLEKHN1 POLR2L GN11 PLEKHN1 POLR2L GN41 DE22 MRP23 GFX4 UBE2/2 MRP23 GFX4 UBE2/2 MRP23 GFX4 UBE2/2 MRP23 GFX4 DVS11 RP		ISG15	FAM160B2	CD81	LOC100507373	АМН	
ORAF3 REEPA CDKN1C AZU1 SD74 LG13 CTSD HCN2 MXRA8 DRD4 BSG CD5731 DUSP8 CDC34 CL0rf159 HRAS CRRP AURKAIP1 IGF2 CNN2 MRP120 INS CSNK1G2 MRP20 INS CSNK1G2 VWA1 KCNQ1 CFD QR4F5 LSP1 AND3A UINC00115 MUC2 EF72 GLTPD1 MUC6 EFN42 CR4F16 NAP114 ELANE CR12 SLC22A18A GANT CL0170 PSMD13 GN67 ACAP3 RNH1 MKK2 UBE212 MBP123 GPM4 PUSL1 RPL2 GZMM UBE212 MBP123 GPM4 UC148413 TH NFC UBE212 MBP123 GPM4 UC24099 TN13 POLA2 UC148413 TH <		NOC2L	NUDT18	CD151		ATP5D	
SDF4 LG13 CTSD HCN2 MXRA8 DRD4 BSG ESG C19F31 DUSP8 CDC34 ESG C1off259 HRA5 CIRP ESG AURKAP1 IGF2 CNN2 ERP MRP20 INS CSN1G2 ESG WKA1 KCNQ1 CFD ESG ORAF5 LSP1 ARD3A EEF2 GLTPD1 MUC2 EF72 EANE ORAF16 NAP14 ELANE ECAL CCNL2 SLC2A18AS GNA11 ELANE CCNL2 SLC2A18AS GNA11 ELANE CLorf70 PSMD13 GN67 GRA4 PUEL1 RPL23 GFX4 ESG UBE22 MRPL33 GFX4 ESG UBE21 MRPL3 GAD4 ESG UGC148413 TH NFC EANE UGC24099 TNN12 PALM EANE UC234099 TNN13 P		OR4F3	REEP4	CDKN1C		AZU1	
MXRA8 DRD4 BSG CPS73L DUSP8 CDC34 Clorif159 HRAS CDRP AURKAIP1 IGF2 CNN2 MRPL20 INS CSNX1G2 MRP120 INS CSNX1G2 MRP20 INS CSNX1G2 VWA1 KCN01 CFD QR4F5 LSP1 ARID3A LINC00115 MUC2 EF7 QR4F16 NAP1L4 ELANE ORAF16 NAP1L4 ELANE CCNL2 SIC22A18A GANT TAS1R3 SIC22A18AS GNA11 PLEKHN1 POLR2L GNA7 ACAP3 RNN1 MKK2 UB222 MRPL23 GRV4 PUS1 RPU23 GRV4 UB21 RPL23 GRV4 UG24099 TNN12 PALM UC24099 TNN12 PALM UC254099 TNN13 POLR2E FAM41C PHLDA2 POLR2E		SDF4	LGI3	CTSD		HCN2	
CPS71 DUSP8 CDC34 Clorf159 HRAS CIRBP AURKAP1 IGF2 CNN2 MRP20 INS CSNK1G2 HESA IRF7 DAPK3 VWA1 KCNQ1 CFD OR4F5 LSP1 ARID3A LINC00115 MUC2 EFF2 GLTPD1 MUC6 EFFA2 OR4F16 NAP114 ELANE CCNL2 SLC2A18 GAMT CLORT70 PSMD13 GNA75 CLORT70 PSMD13 GNA75 CLORT70 PSMD13 GNA7 UBE212 MRP123 GPX4 UBE212 MRP123 GPX4 UGC48413 TH NFC ATAD3C TSPAN4 OA21 LCC48413 TH NFC ATAD3C TSPAN4 OA21 LOC48413 TH NFC ATAD3C TSPAN4 OA21 LOC48413 TH RFC		MXRA8		DRD4		BSG	
Clof159 HRAS CIRBP AURKAIP1 IGF2 CNN2 MRPL20 INS CSNK1G2 HE54 IRF7 DAPK3 WM1 KCNQ1 CFP OR475 LSP1 ARID3A LINC00115 MUC2 EF2 OR4716 NAP114 ELANE CCNL2 SLC22A18 GAMT CCNL2 SLC22A18 GAMT CLof770 PSMD13 GNG7 ACAP3 RNH1 MKNK2 UBE212 MRPL23 GP34 UBE212 MRPL23 GP44 B3GALT6 SCT MATK SAMD11 TALD01 GAD045B LOC148413 TH NFIC TL10 TNN12 PALM TL110 TNN13 POLR2E FAM41C PHLDA2 POLRMT KHL17 RAS57 MAP2K2 AGRN FITM1 PRTN3 FAM420 JSFAN3 STK11 <t< th=""><th></th><th>CPSF3L</th><th></th><th>DUSP8</th><th></th><th>CDC34</th><th></th></t<>		CPSF3L		DUSP8		CDC34	
AURKAIP1 IGF2 CNN2 MRPL20 INS CSNKIG2 WKA1 KCNQ1 CFD VWA1 KCNQ1 CFD OR4F5 LSP1 ARID3A LINC00115 MUC2 EFF2 GLTPD1 MUC6 EFNA2 OR4F16 NAP114 ELANE CCNL2 SLC2A18A GAMT TASIR3 SLC2A18AS GNA15 CLoff170 PSMD13 GNG7 ACAP3 RNH1 MKNK2 UBE212 MRPL23 GPX4 PUSL1 RPL23 GPX4 B3GALT6 SCT MATK LOC48413 TH NFIC ATAD3C TSPAN4 OAZ1 LOC48413 TH NFIC AGRN IFTM1 PALM TL10 TNN12 PALM AGRN IFTM1 PRP13 KHL17 RASS7 MAP2K2 AGRN IFTM3 STK11 <		C1orf159		HRAS	C_	CIRBP	
MRPL20 NS CSNK162 HE54 IRF7 DAPK3 WWA1 KCNQ1 CFD OR4F5 LSP1 ARID3A UINC00115 MUC2 EFF2 GTP01 MUC6 EFFA2 OR4F16 NAP1L4 ELANE CCNL2 SLC22A18AS GAMT TASIR3 SLC22A18AS GNA11 PLKHN1 POLR2L GNG7 ACAP3 RNH1 MKNZ UBE212 MBPL33 GPX4 PUSL1 RPLP2 GZMM B3GALT6 SCT MATK SAMD11 TALDO1 GAD45B LOC148413 TH NFC TL110 TNN12 POLR2E FAM41C PHLDA2 POLRMT KLH17 RASSF7 MAP2K2 AGRN IFITM1 PRTN3 FAM12A BSK2 PTBP1 RM223 TSPAN32 RP515 MIR200A TSSC4 SGTA		AURKAIP1		IGF2		CNN2	
HES4 IRF7 DAPK3 VWA1 KKNQ1 CFD OR4F5 LSP1 ARID3A UINC0015 MUC2 EFF2 GLTPD1 MUC6 EFFA2 ORAF16 NAP114 ELANE CCNL2 SLC22A18 GAMT TAS1R3 SLC22A18A GNAT CLOLZ SLC22A18A GNAT CLOLZ SLC22A18A GNAT CLOLTO PSMD13 GNAT CLOTTO PSMD13 GNAT CLOTATO PSMD13 GNAT UBE2/2 MRPL23 GPX4 PUSL1 RPLP2 GZMM B3GALT6 SCT MATK SAMD11 TALD01 GAD45B LOC148413 TH NFC TTL10 TNN12 PALM LOC254099 TNN12 PALM CLO254049 TNN12 PALM KH117 RASS7 MAP2K2 GRN IFTM1 PR155		MRPL20		INS		CSNK1G2	
VWA1 KCNQ1 CFD OR4F5 LSP1 ARID3A UINCOD115 MUC2 EFF2 GLTPD1 MUC6 EFNA2 OR4F16 NAP114 ELANE CCNL2 SLC22A18 GAMT TAS1R3 SLC22A18 GAMT CL012 SLC2A18 GAMT CL013 SLC2A18 GAMT CL014 SLC2A18 GAMT CL0170 PSMD13 GN67 ACAP3 RNH1 MKK2 UBE212 MRPL23 GPX4 PUSL1 RPL22 GZMM SAMD11 TALD01 GAD458 LOC148413 TH NFC ATAD3C TSPAN4 OA21 LOC254099 TNN12 PALM LOC254099 TNN12 POLRM FAM41C PHLDA2 POLRAT KH117 RASSF7 MAP2K2 AGRN IFITM1 PRTN3 FAM412 PLF1 TRA2R <th></th> <th>HES4</th> <th></th> <th>IRF7</th> <th></th> <th>DAPK3</th> <th></th>		HES4		IRF7		DAPK3	
OR4F5 LSP1 ARID3A LINC00115 MUC2 EF2 GLTPD1 MUC6 EFNA2 OR4F16 NAP114 ELANE CCNL2 SLC22A18 GAMT TASIR3 SLC22A18AS GNA11 PLEKHN1 POLR2L GNA55 C1of170 PSMD13 GNG7 ACAP3 RNN1 MKNK2 UBE212 MRPL23 GPX4 PUSL1 RPLP2 GZMM B3GALT6 SCT MATK SAMD11 TALDO1 GAD958 LOC148413 TH NFIC ATAD3C TSPAN4 OA21 LOC24099 TNN12 PALM VL0254099 TNN12 PALM KLHL17 RASSF7 MAP2K2 AGRN IFITM1 PRTN3 FAM12A BSK2 PT9P1 RNF223 TSPAN32 RP515 MR208 IFITM3 STK11 ANKRD65 DE471 TBXA2R <th></th> <th>VWA1</th> <th></th> <th>KCNQ1</th> <th></th> <th>CFD</th> <th></th>		VWA1		KCNQ1		CFD	
LINC00115 MUC2 EFF2 GLTPD1 MUC6 EFN2 OR4F16 NAP114 ELANE CCNL2 SLC22A18A GAMT TAS1R3 SLC22A18AS GNA15 PLEKHN1 POLR2L GNA15 C1orf170 PSMD13 GNG7 ACAP3 RNH1 MKNK2 UBE2J2 MRPL23 GPX4 PUSL1 RPLP2 GZMM B3GALT6 SCT MATK SAMD11 TALDO1 GAD45B LOC148413 TH NFIC ATAD3C TSPAN4 OA21 LOC254099 TNN12 PALM TILL10 TNNT3 POLR2E FAM41C PHL0A2 POLRMT KLHL17 RASSF7 MAP2K2 AGRN IFITM1 PRTN3 FAM12A BSK2 PTB91 MIR200A TSSC4 SGTA MIR200B IFITM3 STK11 LOC643837 PKP3 TLE		OR4F5		LSP1		ARID3A	
GLTPD1 MUC6 EFNA2 OR4F16 NAP114 ELANE CCNL2 SLC22A18 GAMT TAS1R3 SLC22A18AS GNA11 PLEKIN1 POLR2L GNA15 Clor170 PSMD13 GNG7 ACAP3 RNH1 MKNK2 UBE212 MRPL23 GPX4 PUSL1 RPLP2 GZMM B3GALT6 SCT MATK SAMD11 TALDO1 GADD45B LOC148413 TH NFIC LOC254099 TNN2 PALM TIL10 TNN3 POLR2E FAM41C PHLDA2 POLRMT KLHL17 RASSF7 MAP2K2 AGRN IFITM1 PRTN3 FAM32A BSK2 PTBP1 RNF223 TSPAN32 RP515 MIR200A TSC4 SGTA MR203 IFITM3 STK11 AGRN IFITM3 STK11 MAK205 DEAF1 TBXA2R		LINC00115		MUC2		EEF2	
ORAF16 NAP1L4 ELANE CCNL2 SLC22A18 GAMT TASIR3 SLC22A18AS GNA11 PLEKHN1 POLR2L GNA15 CLOT170 PSMD13 GNG7 ACAP3 RNH1 MKNK2 UBE2J2 MRPL23 GPX4 PJSL1 RPLP2 GZMM B3GALT6 SCT MATK SAMD11 TALD01 GAD45B LOC148413 TH NFIC ATAD3C TSPAN4 OA21 LOC254099 TNNI2 PALM TTL10 TNNT3 POLR2E FAM41C PHLDA2 POLRMT KLH17 RASSF7 MAP2K2 AGRN IFITM1 PRTN3 FAM132A BSK2 PTBP1 RNF223 TSPAN32 RS15 MIR200A TSSC4 SGTA MIR200B IFITM3 STK11 AGKN IFITM3 STK11 AGKN20S DEAF1 TBXA2R		GLTPD1		MUC6		EFNA2	
CCNL2 SLC22A18 GAMT TASIR3 SLC2A18AS GNA11 PLEKHN1 POLR2L GNA15 Clorf170 PSMD13 GNG7 ACAP3 RNH1 MKNK2 UBE2J2 MRPL33 GPX4 PUSL1 RFUP2 GZMM B3GALT6 SCT MATK SAMD11 TALDO1 GAD45B LOC148413 TH NFIC ATAD3C TSPAN4 OAZ1 LOC248099 TNNI2 PALM TTU10 TNNT3 POLRZE FAM41C PHLDA2 POLRMT KLH17 RASSF7 MAP2K2 AGRN IFITM1 PRTN3 FAM32A BKSQ PTBP1 RNF223 TSPAN32 RFS15 MIR200A TSC4 SGTA MIR200A TSC4 SGTA MIR200A TSC4 SGTA MIR429 IFITM3 STK11 ANKR065 DEAF1 TEXA2R <th></th> <th>OR4F16</th> <th></th> <th>NAP1L4</th> <th></th> <th>ELANE</th> <th></th>		OR4F16		NAP1L4		ELANE	
TASIR3 SLC22A18AS GNA11 PLEKHN1 POLR2L GNA15 C1orf170 PSMD13 GNG7 ACAP3 RNH1 MKNK2 UBE2J2 MRPL23 GPX4 PUSL1 RPLP2 GZMM B3GALT6 SCT MATK SAMD11 TALDO1 GAD45B LOC148413 TH NFIC ATAD3C TSPAN4 OAZ1 LOC254099 TNNI2 PALM TTL10 TNNT3 POLR2E FAM41C PHLDA2 POLRMT KLH17 RASSF7 MAP2K2 AGRN IFITM1 PRTN3 FAM132A BRSK2 PTBP1 RNF223 TSPAN32 RFS15 MIR200A TSC4 SGTA MIR200B IFITM3 STK11 ANKR055 DEAF1 TBXA2R MIR208 IFITM2 TCF3 FAM138A C11orf21 SFA32 MIR209 IFITM3 <td< th=""><th></th><th>CCNL2</th><th></th><th>SLC22A18</th><th></th><th>GAMT</th><th></th></td<>		CCNL2		SLC22A18		GAMT	
PLEKHN1 POLR2L GNA15 C1orf170 PSMD13 GNG7 ACAP3 RNH1 MKNK2 UBE2J2 MRPL23 GPX4 PUSL1 RPLP2 GZMM B3GALT6 SCT MATK SAMD11 TALDO1 GAD45B LOC148413 TH NFIC ATAD3C TSPAN4 OAZ1 LOC254099 TNN12 PALM TTL10 TNN13 POLR2E FAM41C PHLDA2 POLRMT KLHL17 RASSF7 MAP2K2 AGRN IFITM1 PRTN3 FAM132A BKSK2 PTBP1 RNE203 TSPAN32 RPS15 MIR200B IFITM3 STK11 MIR200B IFITM3 STK11 MIR200B IFITM3 STK11 MIR429 IFITM3 STK11 ILOC643837 PKP3 TLE2 TMEM88B SIRT3 MADCAM1 MAR405 DEAF1 <td< th=""><th></th><th>TAS1R3</th><th></th><th>SLC22A18AS</th><th></th><th>GNA11</th><th></th></td<>		TAS1R3		SLC22A18AS		GNA11	
Clorf170 PSMD13 GNG7 ACAP3 RNH1 MKNKZ UBE2J2 MRPL33 GPX4 PUSL1 RPLP2 GZMM B3GALT6 SCT MATK SAMD11 TALDO1 GADD45B LOC148413 TH NFIC ATAD3C TSPAN4 DAZ1 LOC254099 TNN12 PALM TTL10 TNNT3 POLR2E FAM41C PHLDA2 PDRNT KLH17 RASSF7 MAP2K2 AGRN IFITM1 PRTN3 FAM132A BSK2 PTBP1 RNF223 TSPAN32 RPS15 MIR200A TSSC4 SGTA MIR200B IFITM3 STK11 ANKR065 DEAF1 TBXA2R MIR429 IFITM2 TCF3 FAM138F KCNQ10T1 THOP1 LOC643837 PKP3 TLE2 TMEM88B SIRT3 MADCAM1 FAM138A C110rf21 <td< th=""><th></th><th>PLEKHN1</th><th></th><th>POLR2L</th><th></th><th>GNA15</th><th></th></td<>		PLEKHN1		POLR2L		GNA15	
ACAP3 RNH1 MKNK2 UBE2J2 MRPL23 GPX4 PUSL1 RPLP2 GZMM B3GALT6 SCT MATK SAMD11 TALD01 GADD45B LOC148A13 TH NFIC ATAD3C TSPAN4 OA21 LOC254099 TNN12 PALM TTLL10 TNNT3 POLR2E FAM41C PHLDA2 POLRMT KLHL17 RASSF7 MAP2K2 AGRN IFITM1 PRTN3 FAM132A BRSK2 PTBP1 RNF223 TSPAN32 RP515 MIR200A TSSC4 SGTA MIR200B IFITM3 STK11 ANKR065 DEAF1 TBXA2R MIR429 IFITM2 TCF3 FAM138A C110rf21 SF3A2 WASH7P TRPM5 PPAP2C UC627373 IGF2-AS1 S1PR4 UC100130417 CEND1 APBA3 LOC100132052 CDHR5		C1orf170		PSMD13		GNG7	
UBE2J2 MRPL23 GPX4 PUSL1 RPLP2 GZMM B3GALT6 SCT MATK SAMD11 TALDO1 GAD45B LOC148413 TH NFIC ATAD3C TSPAN4 OAZ1 LOC254099 TNNI2 PALM TTL10 TNNT3 POLR2E FAM41C PHLDA2 POLRMT KLH17 RASSF7 MAP2K2 AGRN IFITM1 PRTN3 FAM132A BRSK2 PTBP1 RNF223 TSPAN32 RPS15 MIR200A TSSC4 SGTA MIR200B IFITM3 STK11 ANKR055 DEAF1 TBXA2R MIR429 IFITM2 TCF3 FAM138F KCNQ1071 THOP1 LOC648377 PKP3 TLE2 TMEM88B SIRT3 MADCAM1 FAM138A C110rf21 SF3A2 WASH7P TRPM5 PPAP2C UC729737 IGF2-SS1		ACAP3		RNH1		MKNK2	
PUSL1 RPLP2 GZMM B3GALT6 SCT MATK SAMD11 TALD01 GADD45B LOC148413 TH NFIC ATAD3C TSPAN4 OAZ1 LOC254099 TNNI2 PALM TTL10 TNN12 PALM KLHL17 RASSF7 MAP2K2 AGRN IFITM1 PRTN3 FAM122A BSK2 PTBP1 RNF223 TSPAN32 RP515 MIR200A TSSC4 SGTA MIR200B IFITM3 STK11 ANKRD65 DEAF1 TBXA2R MIR429 IFITM2 TCF3 FAM138F KCNQ10T1 THOP1 LOC643837 PKP3 TLE2 TMEM88B SIRT3 MADCAM1 FAM138A C110rf21 SF3A2 WASH7P TRPM5 PPAP2C LOC100130417 CEND1 APBA3 LOC10013287 TOLIP FSTL3 LOC100132831 PIDD </th <th></th> <th>UBE2J2</th> <th></th> <th>MRPL23</th> <th></th> <th>GPX4</th> <th></th>		UBE2J2		MRPL23		GPX4	
B3GALT6 SCT MATK SAMD11 TALDO1 GADD45B LOC148413 TH NFIC ATAD3C TSPAN4 OA21 LOC254099 TNNI2 PALM TTL10 TNNT3 POLR2E FAM41C PHLDA2 POLR7 KLHL17 RASSF7 MAP2K2 AGRN IFTM1 PRTN3 FAM132A BRSK2 PTBP1 RNF223 TSPAN32 RPS15 MIR200A TSSC4 SGTA MIR200B IFTM3 STK11 ANKR055 DEAF1 TBXA2R MIR209 IFTM2 TCF3 MIR208 IFTM2 TCF3 MIR409 IFTM2 TCF3 COC643837 PKP3 TLE2 MM88B SIRT3 MADCAM1 COC29737 IGF2-AS1 SIPR4 OR4F29 BET1L AP3D1 LOC100132417 CEND1 APBA3 LOC100132331 PIDD		PUSL1		RPLP2		GZMM	
SAMD11 TALDO1 GADD45B LOC148413 TH NFIC ATAD3C TSPAN4 OAZ1 LOC254099 TNNI2 PALM TTL10 TNNT3 POLR2E FAM41C PHLDA2 POLRMT KLHL17 RASSF7 MAP2K2 AGRN IFTM1 PRTN3 FAM132A BRSK2 PTBP1 RNF223 TSPAN32 RP515 MIR200A TSSC4 SGTA MIR200B IFITM3 STK11 ANRR65 DEAF1 TBXA2R MIR429 IFITM2 TCF3 FAM138F KCNQ10T1 THOP1 LOC643837 PKP3 TLE2 TMEM88B SIRT3 MADCAM1 FAM138F C110rf21 SF3A2 WASH7P TRPM5 PPAP2C LOC703737 IGF2-AS1 SIPR4 LOC100130417 CEND1 APBA3 LOC100132062 CDHR5 MED16 LOC10013331		B3GALT6		SCT		MATK	
LOC148413 TH NFIC ATAD3C TSPAN4 OAZ1 LOC254099 TNN12 PALM TTLL10 TNNT3 POLR2E FAM41C PHLDA2 POLRMT KLH17 RASSF7 MAP2K2 AGRN IFITM1 PRTN3 FAM41C BRSK2 PTBP1 RKP223 TSPAN32 RP515 MIR200A TSSC4 SGTA MIR200B IFITM3 STK11 ANKRD65 DEAF1 TBA2R MIR200B IFITM2 TCF3 MIR429 IFITM2 TCF3 MIR429 IFITM2 TCF3 MIR429 IFITM2 TLE2 MMR429 IFITM3 MADCAM1 JC643837 PKP3 TLE2 MMM88B SIRT3 MADCAM1 FAM138A C110rf21 SF3A2 WASH7P TRPMS PPAP2C LOC100130417 CEND1 AP3D1 LOC10013247 CEND1		SAMD11		TALDO1		GADD45B	
ATAD3C TSPAN4 OAZ1 LOC254099 TNN12 PALM TTL10 TNN13 POLR2E FAM41C PHLDA2 POLRAT KLHL17 RASSF7 MAP2K2 AGRN IFITM1 PRTN3 FAM132A BRSK2 PTBP1 RNF223 TSPAN32 RP515 MIR200A TSSC4 SGTA MIR200B IFITM3 STK11 ANKRD65 DEAF1 TBXA2R MIR429 IFITM2 TCF3 FAM138F KCNQ10T1 THOP1 LOC643837 PKP3 TLE2 TMEM88B SIRT3 MADCAM1 FAM138A C110rf21 SF3A2 WASH7P TRPM5 PPA2C UC329737 IGF2-AS1 SIPR4 LOC100130417 CEND1 APBA3 LOC100132042 CDHR5 MED16 LOC100132287 TOLUP FSTL3		LOC148413		ТН		NFIC	
LOC254099 TNN12 PALM TTLL10 TNNT3 POLR2E FAM41C PHLDA2 POLRMT KLHL17 RASSF7 MAP2K2 AGRN IFITM1 PRTN3 FAM132A BRSK2 PTBP1 RNF223 TSPAN32 RP515 MIR200A TSSC4 SGTA MIR200B IFITM3 STK11 ANKR055 DEAF1 TBXA2R MIR429 IFITM2 TCF3 IOC643837 PKP3 TLE2 IMI88B SIRT3 MADCAM1 IOC643837 PKP3 TLE2 IMIR429 IFITM2 SF3A2 IMIR429 IGF2-AS1 SF3A2 IOC60132062 CDHR5 MADCAM1 IOC100132287 TOLUP FSTL3 IOC10013331 PIDD APC2		ATAD3C		TSPAN4		OAZ1	
TTLL10 TNNT3 POLR2E FAM41C PHLDA2 POLRMT KLHL17 RASSF7 MAP2K2 AGRN IFITM1 PRTN3 FAM132A BRSK2 PTBP1 RNF223 TSPAN32 RPS15 MIR200A TSSC4 SGTA MIR200B IFITM3 STK11 ANKRD65 DEAF1 TBXA2R MIR429 IFITM2 TCF3 FAM138F KCNQ10T1 THOP1 LOC643837 PKP3 TLE2 WASH7P TRPM5 PPAP2C WASH7P TRPM5 PAP2C LOC100130417 CEND1 APBA3 LOC100132062 CDH75 MED16 LOC100132287 TOLIP FSTL3		LOC254099		TNNI2		PALM	
FAM41C PHLDA2 POLRMT KLHL17 RASSF7 MAP2K2 AGRN IFITM1 PRTN3 FAM132A BRSK2 PTBP1 RNF223 TSPAN32 RP515 MIR200A TSSC4 SGTA MIR20B IFITM3 STK11 ANKR055 DEAF1 TBXA2R MIR429 IFITM2 TCF3 FAM138F KCNQ10T1 THOP1 LOC643837 PKP3 TLE2 MM888 SIRT3 MADCAM1 FAM138A C11orf21 SF3A2 VASH7P TRPM5 PPAP2C LOC100130417 CEND1 APBA3 LOC100132287 TOLIP FSTL3 LOC10013331 PIDD APC2		TTLL10	N V	TNNT3		POLR2E	
KLHL17 RASSF7 MAP2K2 AGRN IFITM1 PRTN3 FAM132A BRSK2 PTBP1 RNF223 TSPAN32 RPS15 MIR200A TSSC4 SGTA MIR200B IFITM3 STK11 ANKRD65 DEAF1 TBXA2R MIR429 IFITM2 TCF3 FAM138F KCNQ10T1 THOP1 LOC643837 PKP3 TLE2 TMEM88B SIRT3 MADCAM1 FAM138A C11orf21 SF3A2 WASH7P TRPM5 PPAP2C LOC729737 IGF2-AS1 S1PR4 OR4F29 BET1L AP33 LOC100130417 CEND1 APBA3 LOC100132287 TOLUP FSTL3 LOC10013331 PIDD APC2		FAM41C		PHLDA2		POLRMT	
AGRNIFITM1PRTN3FAM132ABRSK2PTBP1RNF223TSPAN32RPS15MIR200ATSSC4SGTAMIR200BIFITM3STK11ANKR055DEAF1TBXA2RMIR429IFITM2TCF3FAM138FKCNQ10T1THOP1LOC643837PKP3TLE2TMEM88BSIRT3MADCAM1FAM138AC11orf21SF3A2UO729737IGF2-AS1S1PR4LOC729737BET1LAP3D1LOC100130417CEND1APBA3LOC100132287TOLLIPFSTL3LOC10013331PIDDAPC2		KLHL17	Y	RASSF7		MAP2K2	
FAM132A BRSK2 PTBP1 RNF223 TSPAN32 RPS15 MIR200A TSSC4 SGTA MIR200B IFITM3 STK11 ANKRD65 DEAF1 TBXA2R MIR429 IFITM2 TCF3 FAM138F KCNQ10T1 THOP1 LOC643837 PKP3 TLE2 TMEM88B SIRT3 MADCAM1 FAM138A C11orf21 SF3A2 WASH7P TRPM5 PPAP2C LOC100130417 CEND1 APBA3 LOC100132062 CDHR5 MED16 LOC10013331 PIDD APC2		AGRN		IFITM1		PRTN3	
RNF223 TSPAN32 RPS15 MIR200A TSSC4 SGTA MIR200B IFITM3 STK11 ANKRD65 DEAF1 TBXA2R MIR429 IFITM2 TCF3 FAM138F KCNQ10T1 THOP1 LOC643837 PKP3 TLE2 TMEM88B SIRT3 MADCAM1 FAM138A C11orf21 SF3A2 WASH7P TRPM5 PPAP2C LOC729737 IGF2-AS1 S1PR4 OR4F29 BET1L APBA3 LOC100130417 CEND1 APBA3 LOC100132062 CDHR5 MED16 LOC10013331 PIDD APC2		FAM132A		BRSK2		PTBP1	
MIR200A TSSC4 SGTA MIR200B IFITM3 STK11 ANKRD65 DEAF1 TBXA2R MIR429 IFITM2 TCF3 FAM138F KCNQ10T1 THOP1 LOC643837 PKP3 TLE2 TMEM88B SIRT3 MADCAM1 FAM138A C11orf21 SF3A2 WASH7P TRPM5 PPAP2C LOC729737 IGF2-AS1 S1PR4 OR4F29 BET1L APBA3 LOC100132062 CDHR5 MED16 LOC100132287 TOLLIP FSTL3		RNF223		TSPAN32		RPS15	
MIR200B IFITM3 STK11 ANKRD65 DEAF1 TBXA2R MIR429 IFITM2 TCF3 FAM138F KCNQ10T1 THOP1 LOC643837 PKP3 TLE2 TMEM88B SIRT3 MADCAM1 FAM138A C11orf21 SF3A2 WASH7P TRPM5 PPAP2C LOC729737 IGF2-AS1 S1PR4 OR4F29 BET1L AP3D1 LOC100130417 CEND1 APBA3 LOC100132062 CDHR5 MED16 LOC100132331 PIDD APC2		MIR200A		TSSC4		SGTA	
ANKRD65 DEAF1 TBXA2R MIR429 IFITM2 TCF3 FAM138F KCNQ10T1 THOP1 LOC643837 PKP3 TLE2 TMEM88B SIRT3 MADCAM1 FAM138A C11orf21 SF3A2 WASH7P TRPM5 PPAP2C LOC729737 IGF2-AS1 S1PR4 OR4F29 BET1L AP3D1 LOC100130417 CEND1 APBA3 LOC100132287 TOLLIP FSTL3 LOC10013331 PIDD APC2	7	MIR200B		IFITM3		STK11	
MR429 IFITM2 TCF3 FAM138F KCNQ1OT1 THOP1 LOC643837 PKP3 TLE2 TMEM88B SIRT3 MADCAM1 FAM138A C11orf21 SF3A2 WASH7P TRPM5 PPAP2C LOC729737 IGF2-AS1 S1PR4 OR4F29 BET1L AP3D1 LOC100130417 CEND1 APBA3 LOC100132062 CDHR5 MED16 LOC100132331 PIDD APC2		ANKRD65		DEAF1		TBXA2R	
FAM138F KCNQ1OT1 THOP1 LOC643837 PKP3 TLE2 TMEM88B SIRT3 MADCAM1 FAM138A C11orf21 SF3A2 WASH7P TRPM5 PPAP2C LOC729737 IGF2-AS1 S1PR4 OR4F29 BET1L AP3D1 LOC100130417 CEND1 APBA3 LOC100132062 CDHR5 MED16 LOC100132331 PIDD APC2		MIR429		IFITM2		TCF3	
LOC643837 PKP3 TLE2 TMEM88B SIRT3 MADCAM1 FAM138A C11orf21 SF3A2 WASH7P TRPM5 PPAP2C LOC729737 IGF2-AS1 S1PR4 OR4F29 BET1L AP3D1 LOC100130417 CEND1 APBA3 LOC100132062 CDHR5 MED16 LOC100132331 PIDD APC2		FAM138F		KCNQ10T1		THOP1	
TMEM88B SIRT3 MADCAM1 FAM138A C11orf21 SF3A2 WASH7P TRPM5 PPAP2C LOC729737 IGF2-AS1 S1PR4 OR4F29 BET1L AP3D1 LOC100130417 CEND1 APBA3 LOC100132062 CDHR5 MED16 LOC100132287 TOLLIP FSTL3 LOC100133331 PIDD APC2		LOC643837		РКРЗ		TLE2	
FAM138A C11orf21 SF3A2 WASH7P TRPM5 PPAP2C LOC729737 IGF2-AS1 S1PR4 OR4F29 BET1L AP3D1 LOC100130417 CEND1 APBA3 LOC100132062 CDHR5 MED16 LOC100132287 TOLLIP FSTL3 LOC100133331 PIDD APC2		TMEM88B		SIRT3		MADCAM1	
WASH7P TRPM5 PPAP2C LOC729737 IGF2-AS1 S1PR4 OR4F29 BET1L AP3D1 LOC100130417 CEND1 APBA3 LOC100132062 CDHR5 MED16 LOC100132287 TOLLIP FSTL3 LOC100133331 PIDD APC2		FAM138A		C11orf21		SF3A2	
LOC729737 IGF2-AS1 S1PR4 OR4F29 BET1L AP3D1 LOC100130417 CEND1 APBA3 LOC100132062 CDHR5 MED16 LOC100132287 TOLLIP FSTL3 LOC100133331 PIDD APC2		WASH7P		TRPM5		PPAP2C	
OR4F29 BET1L AP3D1 LOC100130417 CEND1 APBA3 LOC100132062 CDHR5 MED16 LOC100132287 TOLLIP FSTL3 LOC100133331 PIDD APC2		LOC729737		IGF2-AS1		S1PR4	
LOC100130417 CEND1 APBA3 LOC100132062 CDHR5 MED16 LOC100132287 TOLLIP FSTL3 LOC100133331 PIDD APC2		OR4F29		BET1L		AP3D1	
LOC100132062 CDHR5 MED16 LOC100132287 TOLLIP FSTL3 LOC100133331 PIDD APC2		LOC100130417		CEND1		APBA3	
LOC100132287 TOLLIP FSTL3 LOC100133331 PIDD APC2		LOC100132062		CDHR5		MED16	
LOC100133331 PIDD APC2		LOC100132287		TOLLIP		FSTL3	
		LOC100133331		PIDD		APC2	

	DDX11L1	ACCEPTI	KCNQ1DN NUS	CRIPT	ABCA7	
	LOC100288069		PNPLA2		HMG20B	
			PHRF1		UQCR11	
			SIGIRR		SBNO2	
			RIC8A		ZFR2	
			EPS8L2		PIP5K1C	
			CHID1		HMHA1	
			SLC25A22		SHC2	
			ATHL1		TIMM13	
			PTDSS2		DAZAP1	
			MOB2		SNORD37	
			SYT8		FGF22	
			ODF3		TJP3	
			LRRC56		ITGB1BP3	7
			LOC143666		SLC39A3	
			SCGB1C1		THEG	
			NLRP6		ZBTB7A	
			NS3BP		FZR1	
			LOC255512	~	PIAS4	
			C11orf35	(LSM7	
			H19		MBD3	
			EFCAB4A	C-	MIER2	
			TMEM80		PCSK4	
			ANO9		C19orf24	
			LOC338651		PLEKHJ1	
			B4GALNT4		BTBD2	
			PDDC1		RNF126	
			KRTAP5-1		NCLN	
			KRTAP5-3		SPPL2B	
			KRTAP5-4	<i>Y</i>	WDR18	
			IFITM5		REXO1	
			FAM99A		ZNF77	
			IFITM10		C19orf29	
			MIR210		CELF5	
			KRTAP5-5		TLE6	
			KRTAP5-2		IPPR3	
			KRTAP5-6		ZNF556	
			MIR483		OR4F17	
			SNORA52		FAM108A1	
			LOC653486		DOHH	
		0	SNORA54		KLF16	
	A		INS-IGF2		DOT1L	
			MUC5B		KISS1R	
			MIR675		LMNB2	
		7	FAM99B		RAX2	
			LOC100133161		MUM1	
			MRPL23-AS1		ATCAY	
			MIR4298		MIDN	
			MIR210HG		R3HDM4	
			MIR4686		C19orf6	
	X.				TPGS1	
	Y				REEP6	
					IZUMO4	
					SCAMP4	
					ADAT3	
					ZNF554	
					GRIN3B	
					MRPL54	
					ZNF57	
					JSRP1	
					MOB3A	
					MFSD12	
					GIPC3	
		L			- ·	1

ACCEDTE	DITICANT	ODIDT		
ACCEPTI	ED MANUS	CKIPI	C19orf21	
			PLK5	
			C2CD4C	
			CIRBP-AS1	
			C19orf25	
			ATP8B3	
			DIRAS1	
			ZNF555	
			C19orf26	
			CSNK1G2-AS1	
			C19orf77	
			ODF3L2	
			ADAMTSL5	
			TMPRSS9	7
			NDUFS7	
			C19orf35	
			WASH5P	
			ONECUT3	
			MEX3D	
			FLJ45445	
			PRSS57	
			C19orf29-AS1	
			FAM138F	
			LINGO3	
			FAM138A	
			MIR637	
			C19orf71	
			LOC100288123	
			MIR1909	
			MIR1227	
			MIR3187	
			MIR4321	
			MIR4745	

Alteration	chr.arm	92T	187T	232T	255T	334T	406T	407T	410T	1310T	total	%	93T*	337T*
Gains	8q	1	0	0	1	0	0	0	0	0	2	22	0	1
	15q	1	0	0	0	0	0	0	0	0	1	11	0	0
	20q	1	0	0	0	0	0	0	0	0	1	11	0	0
Losses	18p	1	0	1	1	0	0	0	0	0	3	33	1	1
	18q	1	0	1	1	0	0	0	0	0	3	33	1	1
	8p	1	0	0	1	0	0	0	0	0	2	22	1	1
	21q	1	0	0	0	0	0	0	0	1	2	22	0	0
	22q	1	0	1	0	0	0	0	0	0	2	22	0	0
	13q	1	0	0	0	0	0	0	0	0	1	11	1	0
	20p	1	0	0	0	0	0	0	0	0	1	11	1	0
	4q	1	0	0	0	0	0	0	0	0	1	11	0	0
	9q	0	0	0	0	0	0	0	0	1	1	11	0	0
Allelic imbalance	22q	0	0	0	0	0	1	0	0	0	1	11	1	0
	1p	0	1	0	0	0	0	0	0	0	1	11	0	0
	Зр	0	1	0	0	0	0	0	0	0	1	11	0	0
	4q	0	1	0	0	0	0	0	0)	0	1	11	0	0
	9p	1	0	0	0	0	0	0	0	0	1	11	0	0
	9q	1	0	0	0	0	0	0	0	0	1	11	0	0
	15q	0	0	0	0	0	1	0	0	0	1	11	0	0
	18p	0	0	0	0	0	1	0	0	0	1	11	0	0
	18q	0	0	0	0	0	1	0	0	0	1	11	0	0
	21q	0	0	0	0	1	0	0	0	0	1	11	0	0

Supplementary Table 9. Chromosomal arm-level genomic copy number alterations of the Fresh Frozen cohort

* 93T is a tumoral sample from a different part of the same tumor as T92, and 337T is the relapse from the primary tumor 255T

Supplememntary Table 10: Summary of the damaging mutations found by WES

Chr.	Sample	Gene	Position	Ref. Allele	Alt. Allele	Mutation Profile	AminoAcid Change	Cosmic HCC
chr1	FLC100	CSMD2	34068134	С	т	NON SYNONYMOUS CODING	G1055E	2.7
chr1	FLC100	SASS6	100575999	т	G	NON SYNONYMOUS CODING	K210T	
chr2	FLC100	RTN4	55214684	С	G	NON SYNONYMOUS CODING	R1055T	
chr3	FLC100	COL6A6	130290045	С	А	NON SYNONYMOUS CODING	L929I	
chr4	FLC100	GABRA2	46252405	G	А	NON SYNONYMOUS CODING	P426S	1.4
chr4	FLC100	UGT2B10	69879855	т	А	NON_SYNONYMOUS_CODING	Y201F	
chr7	FLC100	WIPI2	5256247	G	А	NON_SYNONYMOUS_CODING	M127I	
chr7	FLC100	CDK13	40133813	А	G	NON_SYNONYMOUS_CODING	D1198G	
chr9	FLC100	CD72	35618023	С	А	NON_SYNONYMOUS_CODING	G60W	1.4
chr10	FLC100	TUBB8	94579	А	G	NON_SYNONYMOUS_CODING	F13L	1.4
chr10	FLC100	JMJD1C	64936109	А	с	NON_SYNONYMOUS_CODING	L2213R	1.4
chr10	FLC100	MMS19	99229890	G	А	NON_SYNONYMOUS_CODING	T238I	1.4
chr13	FLC100	BRCA2	32944573	Α	G	NON_SYNONYMOUS_CODING	Y2789C	1.5
chr14	FLC100	RNASE7	21511552	G	С	NON_SYNONYMOUS_CODING	C134S	
chr14	FLC100	ACIN1	23564195	G	А	NON_SYNONYMOUS_CODING	R101W	1.4
chr16	FLC100	POLR3K	97543	А	G	NON_SYNONYMOUS_CODING	C72R	
chr16	FLC100	ITGAM	31308917	С	Т	NON_SYNONYMOUS_CODING	P480L	1.4
chr16	FLC100	HAS3	69148458	С	G	NON_SYNONYMOUS_CODING	D317E	
chr18	FLC100	IMPA2	12028977	G	А	NON_SYNONYMOUS_CODING	V246M	
chr18	FLC100	ZNF236	74583728	G	Т	NON_SYNONYMOUS_CODING	G203V	
chr19	FLC100	CRX	48364098	с	Т	NON_SYNONYMOUS_CODING	R104W	1.4
chr20	FLC100	PRND	4705610	А	С	NON_SYNONYMOUS_CODING	E138A	
chr20	FLC100	ADNP	49518604	Т	С	NON_SYNONYMOUS_CODING	T51A	
chrX	FLC100	ARMCX1	100808651	G	Т	NON_SYNONYMOUS_CODING	L246F	1.4
			A C					

Variable	Training (n=38)	Validation- French (n=22)	Validation- Brazilian (n=12)	p-value
0.111				R
Origin		0	<u>^</u>	
USA	19 (50%)	0	0	
Europe	19 (50%)	22 (100%)		
South-America		0	12 (100%)	
Median age	25.5 (11-65)	26 (17-65)	21 (17-33)	0.26
Gender				0.51
Male	16 (42%)	6 (28%)	4 (33%)	
Female	22 (58%)	16 (72%)	8 (67%)	
Race				0.24
Caucasian	23 (61%)		11 (92%)	
Non-caucasian	8 (21%)		1 (8%)	
Virology		ÓY		-
HCV	1 (3%)		0	
HBV	1 (3%)		0	
Fibrosis				0.06
FO	27 (71%)	21 (95%)	12 (100%)	0.00
F1-2	8 (21%)	1 (5%)	0	
		y		
Cirrhosis	1 (3%)	1 (5%)	0	1.00
Median tumor size (cm)	11 (7-13)	9 (2.5-17)	13 (6-20)	0.03

Supplementary Table 1. Clinicopathological characteristics of 72 FLC patients in the training and validation cohorts

Multiple nodules				0.66
Absent	27 (69%)		11 (92%)	
Present	7 (18%)		1 (8%)	<u>_</u>
Satellites	6 (16%)		2 (17%)	1.00
Macro-vascular invasion	5 (13%)			<u> </u>
Treatment				0.29
Treatment		///		0.28
Resection	34 (89%)	22 (100%)	12 (100%)	
Transplantation	4 (11%)	0	0	
			\sim	
Adjuvant Therapy	14 (37%)		0	1.00
Chemotherapy	11 (29%)			-
Radiotherapy	2 (5%)			-
Chemoembolization	1 (3%)	A		-
			Y	
Events				
Recurrence	21 (54%)		7 (58%)	1.00
Death	16 (42%)	9 (41%)	7 (58%)	0.65
Median survival (month)	58	68	48	0.37

Fisher's exact test for categorical data.

Anova test for parametric non-categorical data

Supplementary Table 12. Enrichment of selected gene signatures in 3 liver cancer cohorts (HCC, ICC and FLC) evaluated by NTP (FDR<0.05).

	Liver cancer cohorts					
Gene signatures	HCC	ICC	FLC			
	n=228, (%)	n=149, (%)	n=35, (%)			
FLC molecular subclasses						
FLC_Proliferation	54,(24)	73,(49)	18,(51)			
FLC_Inflammation	8,(4)	43,(29)	8,(23)			
Tumor aggressiveness/ poor-prognosis						
Solid tumors						
Breast, Sarrio_EMT ₃₆	55,(24)*	21,(14)*	0,(0)			
Thyroid, Montero_poor prognosis ₃₇	37,(16)*	11,(7)	0,(0)			
Melanoma, Winnepenninckx_poor prognosis38	59,(26)*	32,(21)*	0,(0)			
HCC						
Coulouarn_TGFb39	32,(14)	28,(19)*	1,(3)			
Boyault_G3 poor prognosis16	53,(23)*	4,(3)	3,(9)			

* significant (p<0.05) vs FLC tumors