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Supplementary Figure 1. Inhibiting hb transcription by injecting embryos with α-amanitin.

(a) hb mRNAs (red) after injection of α-amanitin (left) or water (right). Scale bar, 2 μm. (b) A 
comparison of the number of bright foci between α-amanitin-injected embryos (5 embryos, cycles 
11-14) and the control (3 embryos, cycles 11-14). After injection and a brief incubation period 
(~2-5 minutes), foci were counted within the AP position range 0.3-0.7 EL. Error bars indicate 
S.E.M. Bright foci vanished completely within <5 minutes of inhibiting transcription, consistent 
with the release of nascent mRNA from the gene upon completion of synthesis (Garcia et al., 
2013; Larson et al., 2011). (c) The change in cytoplasmic mRNA signal at 5 and 30 minutes after 
α-amanitin injection. The cytoplasmic signal was measured as the difference in average intensity 
between the anterior cytoplasmic region (0.3-0.45 EL) and the posterior cytoplasmic region 
(0.55-0.7 EL) of the embryo (data from 4 embryos, cycles 11-14). Error bars indicate S.E.M. The 
cytoplasmic signals survived for >30 minutes, consistent with the estimated lifetime of mature hb 
mRNA (~1 hour, (Little et al., 2013)).
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Supplementary Figure 2. The spatial profile of hb transcription at different nuclear cycles.

(a) – (d) The transcriptional activity of individual nuclei in wild-type embryos during cycles 11-14. 
The color of each nucleus indicates the number of active hb loci (see legend). Scale bar, 50 μm. 
(e) – (h) Percentage of nuclei containing different numbers of active hb loci as a function of the 
AP position (data from the same embryos shown in Panels a-d). For cycles 11-13 embryos, more 
than 90% of the nuclei in the anterior expression band of the embryo (0.15-0.45 EL, (Porcher et 
al., 2010)) contained at least one active hb locus (23 embryos examined), consistent with 
previous reports using both live and fixed embryos (Garcia et al., 2013; Lucas et al., 2013; 
Porcher et al., 2010). In particular, the majority of nuclei in this region had both hb copies active, 
while nuclei with a single active locus were enriched at the anterior tip and the posterior border of 
the expression band (arrows), again consistent with previous observations (Porcher et al., 2010). 
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Supplementary Figure 3. Quantifying hb mRNA.
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(a) The distribution of pixel intensity of candidate mRNA spots in the anterior (red) and posterior 
(blue) parts of the embryo (>300,000 spots from a single cycle 12 embryo). A threshold (dashed 
line) was used to identify spots corresponding to real hb mRNAs (arrow), and discard 
false-positive particles resulting e.g. from nonspecific probe binding. (b) Fitting the local intensity 
profile (red) of a candidate spot using a 2D Gaussian function (green). The fitting result was used 
to calculate the total fluorescence intensity of the spot. (c) The distribution of total fluorescence 
intensity of smFISH spots at the anterior part of the embryo (red, mean ± S.E.M., >10,000 spots 
from a single cycle 12 embryo). By fitting the histogram to the sum of Gaussian functions (black), 
the intensity corresponding to a single mRNA molecule (ImRNA) was identified. This procedure was 
repeated independently for each imaged embryo, to correct for any differences due to labeling or 
imaging. (d) The rate of decrease in number of candidates for different threshold values 
(>300,000 candidate spots from a single cycle 12 embryo). The lowest intensity value 
corresponding to <8% rate-of-decrease (dashed line) was selected as the threshold to identify 
candidates for active transcription sites. (e) Comparing hb expression level in the strongest 
expression region during cycle 13 (0.34 ± 0.02 EL, mean ± S.E.M., data from 7 embryos) with 
data from (Little et al., 2013). Error bars indicate S.E.M.
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Supplementary Figure 4. Estimating the error in mRNA quantification.

(a) The intensity histogram of hb smFISH spots in the anterior (red) and posterior (blue) parts of 
the embryo (>10,000 spots from a single cycle 11 wild-type embryo). A threshold Ith (dashed line) 
was used to discriminate false positive spots from real mRNA spots. The most probable intensity 
values of the two species (arrows) were used to calculate the probe binding probability. (b) The 
intensity histogram of hb smFISH spots in the anterior part of the embryo (red, mean ± S.E.M., 
>10,000 spots from a single cycle 11 wild-type embryo). By fitting the histogram to the sum of 
Gaussian functions (black), the typical intensity I0 and the half-width w0 corresponding to a single 
hb mRNA were extracted. (c) The 2D spot-intensity histogram for the competitive two-color 
smFISH experiment (>20,000 spots from a single cycle 12 bcd3-lacZ embryo). Two identical sets 
of lacZ smFISH probes, conjugated with TAMRA and Alexa 647, respectively,  were used. (d) 
Comparing the two channels in the noncompetitive two-color smFISH experiment. An image of a 
small area of a cycle 11 bcd3-lacZ embryo is shown. Scale bar, 2 μm. To label the lacZ mRNA, 30 
probes corresponding to the 5' half of the lacZ gene were conjugated with TAMRA, while another 
30 probes corresponding to the 3' half of the lacZ gene were conjugated with Alexa 647. smFISH 
spots that appeared in both channels (solid circle) were distinguished from those that only 
appeared in one channel (dashed circle). The probability of detecting a spot in both channels was 
used to calculate the probe binding probability. (e) A comparison of the estimated probe binding 
probability obtained using different methods. For each method, data is from 3-4 embryos. Error 



bars indicate S.E.M. The estimated binding probabilities are comparable to values reported in 
previous studies (Boettiger and Levine, 2013; Little et al., 2013). (f) A comparison of the estimated 
hb mRNA detection efficiency obtained using probe binding probabilities extracted from different 
methods. For each method, data is from 3-4 embryos. Error bars indicate S.E.M. (g) A 
comparison of the average error in nascent mRNA quantification between different cycles (cycle 
11, 7 embryos; cycle 12, 9 embryos; cycle 13, 7 embryos; cycle 14, 7 embryos). Error bars 
indicate S.E.M.
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Supplementary Figure 5. Quantifying Bcd concentration.
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(a) A comparison of nuclear fluorescence signals between Bcd antibody and GFP fluorescence 
(~2000 nuclei of a single egfp-bcd embryo, cycle 14). Data from individual nuclei (gray) was 
binned along the Bcd axis (black, mean ± S.E.M.) and fitted to a straight line (red, R2 = 0.91 ± 0.02, 
mean ± S.E.M. when averaged over 12 embryos). This comparison reveals a linear relation 
covering the full range of protein concentrations, indicating reliable representation of Bcd protein 
level by the antibody signal. (b) Fitting of the local intensity profile (red) of a candidate spot in the 
cytoplasm using a 2D Gaussian function (green). The fitting result was used to calculate the total 
fluorescence intensity of the spot. (c) The intensity histogram of cytoplasmic Bcd spots in the 
anterior (red) and posterior (blue) parts of the embryo (>20,000 spots from a single cycle 12 
embryo). The histogram was used to discard false-positive spots (shaded region) and to 
distinguish spots corresponding to different numbers of Bcd molecules (brackets). (d) The ratio 
between the typical intensity of a single Bcd molecule (I1) and the typical intensity of a 
false-positive spot (I0). Data from different cycles is shown (cycle 11, 7 embryos; cycle 12, 9 
embryos; cycle 13, 7 embryos; cycle 14, 7 embryos). Error bars represent S.E.M. (e) Confocal 
image of the anterior region of a cycle 12 embryo. The embryo was only labeled using secondary 
antibody (green). Nuclear boundaries are marked in white. No fluorescence spots were identified. 
Scale bar, 2 μm. (f) The parameter Gm as a function of the voxel number for different fluorophores. 
The nucleus was modeled as a 2D square lattice of m voxels. (g) The change in mean and 



fluctuation of nuclear Bcd signal for different numbers of confocal scans. Red, the relative 
deviation of k (the slope between intensity variance and mean) from its minimal value (obtained 
from a 16× scan). Blue, the relative deviation of the mean intensity I from its maximal value 
(obtained from a 1× scan). Data from the anterior region of a single cycle 11 embryo. Error bars 
represent S.E.M. (h) A comparison of the maximal Bcd concentration between different cycles 
and different fly strains. The average concentration in the brightest 1% nuclei of individual 
embryos was calculated using the two methods described in the text. In wild type embryos, Bcd 
concentration during cycles 11-14 does not change much, and the two methods show good 
agreement (cycle 11, 7 embryos; cycle 12, 9 embryos; cycle 13, 7 embryos; cycle 14, 7 embryos).  
egfp-bcd transgenic embryos (5 embryos) have higher Bcd concentrations than wild-type during 
cycle 14. Values from the literature ([1] Gregor et al. 2007; [2] Abu-Arish et al. 2010) are shown in 
grey. Error bars indicate S.E.M.
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Supplementary Figure 6. The regulatory relation between Bcd and hb for multiple individual 
embryos.

The gene regulation function measured in 28 wild-type embryos between cycles 11 and 14 (7 
embryos per cycle). The number of nascent mRNAs from individual hb loci is plotted versus the 
nuclear Bcd concentration (AP positions 0.25-0.7 EL). Gray, individual loci. Black, data binned 
along the Bcd axis (mean ± S.E.M.). Red, fit to a Hill function.
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Supplementary Figure 7. The regulatory relation between Bcd and the bcd3-lacZ reporter gene.
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(a) Confocal image of a bcd3-lacZ embryo during cycle 13. Bcd (green) was labeled using 
immunofluorescence, lacZ mRNA (red) was labeled using smFISH, and DNA (blue) was stained 
with Hoechst. Scale bar, 50 μm. Insets: Magnified views of a small anterior region (left) and a 
small posterior region (right). Scale bar, 2 μm. (b) The gene regulation function measured in the 
embryo shown in Panel a. The number of nascent mRNAs from individual lacZ loci is plotted 
versus the nuclear Bcd concentration (data from >800 nuclei, AP positions 0.15-0.7 EL). Gray, 
individual loci. Black, data binned along the Bcd axis (mean ± S.E.M.). Red, fit to a Hill function. 
(c) – (f) Parameters of the gene regulation function, extracted from the fit to a Hill function. Red 
circles, hb gene in wild-type embryos (cycle 11, 7 embryos; cycle 12, 9 embryos; cycle 13, 7 
embryos; cycle 14, 7 embryos). Blue triangles, bcd3-lacZ in transgenic flies (cycle 11, 6 embryos; 
cycle 12, 7 embryos; cycle 13, 7 embryos; cycle 14, 3 embryos). Error bars represent S.E.M. 

The concentration threshold for hb activation, C50 = 9.4 ± 0.5 nM, is consistent with previous 
estimates using other methods (Burz et al., 1998; Gregor et al., 2007a; Ma et al., 1996). In 
contrast, the bcd3-lacZ gene showed a ~2 fold higher Bcd activation threshold C50 relative to 
endogenous hb, consistent with previous reports regarding the effect of reducing the number of 
transcription-factor binding sites (Becskei et al., 2005). 

Compared to cycles 11-13, cycle 14 embryos displayed a distinctly different regulatory relation 
between Bcd and hb: A higher Hill coefficient, a lower activation threshold, and a lower level of 
maximum hb expression. These differences from earlier cycles indicate changes in the regulation 
of hb expression. They are consistent with previous reports on the involvement of additional 
transcription factors (Lopes et al., 2012) and other enhancers (Perry et al., 2012). 
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Supplementary Figure 8. Fluctuations in the number of nascent mRNAs at individual hb gene 
loci.

(a) The coefficient of variation (defined as the ratio of the standard deviation, σ, to the mean, µ) 
for the number of nascent mRNAs at individual hb gene loci, as a function of nuclear Bcd 
concentration (data from >600 nuclei, AP positions 0.25-0.7 EL, single wild-type embryo at cycle 
12). During cycles 11-13, the coefficient of variation for the number of nascent hb mRNAs per 
locus, at a given Bcd concentration, was in the range ~50-300% (values from 23 individual 
embryos). (b) A comparison of the lower bound on the coefficient of variation between different 
cycles. Data averaged over multiple wild-type embryos (cycle 11, 7 embryos; cycle 12, 9 
embryos; cycle 13, 7 embryos; cycle 14, 7 embryos). Error bars represent S.E.M. The lower 
bound on hb variability was in good agreement with previous studies (He et al., 2011; Little et al., 
2013); it is also significantly higher than our estimated error in nascent-mRNA quantification 



(<10%, see Supplementary Note). (c) The correlation coefficient of number of nascent mRNAs 
between different hb gene loci in the same nucleus, as a function of nuclear Bcd concentration 
(data from >600 nuclei, AP positions 0.25-0.7 EL, single wild-type embryo at cycle 12). A 
threshold Bcd concentration value (dashed line) was set to distinguish regions of high and low hb 
expression. (d) A comparison of the correlation coefficient between different cycles in the low Bcd 
concentration range (data from wild-type embryos; cycle 11, 7 embryos; cycle 12, 9 embryos; 
cycle 13, 7 embryos; cycle 14, 7 embryos). Error bars represent S.E.M. Positive correlation was 
detected in the activity of the two hb gene copies within a given nucleus. (e) A comparison of the 
correlation coefficient between different cycles in the high Bcd concentration range (data from 
wild-type embryos; cycle 11, 7 embryos; cycle 12, 9 embryos; cycle 13, 7 embryos; cycle 14, 7 
embryos). Error bars represent S.E.M. Unlike panel d, no correlation was detected here, 
consistent with a negligible contribution by extrinsic noise (Little et al., 2013). (f) The Fano factor 
(defined as the ratio of the variance, σ2, to the mean, µ (Golding et al., 2005; Ozbudak et al., 
2002)) for the number of nascent mRNAs at individual hb gene loci, as a function of nuclear Bcd 
concentration (data from >600 nuclei, AP positions 0.25-0.7 EL, a single wild-type embryo at cycle 
12). For comparison, the Fano factor is also plotted (blue) for the case of transcription events that 
are initiated with constant probability over time (a Poisson process), where the copy-number 
distribution of nascent mRNAs per locus is expected to be ~1 (the deviation from 1 is due to the 
deterministic effect of elongation, (Choubey et al., 2013; Zenklusen et al., 2008) and see 
Supplementary Note). (g) A comparison of the lower bound on the Fano factor between different 
cycles (data from wild-type embryos; cycle 11, 7 embryos; cycle 12, 9 embryos; cycle 13, 7 
embryos; cycle 14, 7 embryos). Error bars represent S.E.M. During cycles 11-13, the Fano factor 
is consistently higher than 5 and can be as high as ~30 at low Bcd concentrations (value from 23 
individual embryos). These values suggested that, rather than occurring regularly in time, hb 
transcription initiation is intermittent (bursty), consisting of periods of intense activity separated by 
periods of quiescence (Golding et al., 2005; Raj et al., 2006; Sanchez and Golding, 2013). In 
contrast, embryos in cycle 14 do reach Fano ≈ 1 at high Bcd concentrations (value from 7 
individual embryos), consistent with the presence of different regulatory mechanisms (and 
resulting stochastic kinetics) at this later stage.
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Supplementary Figure 9. Fitting the copy-number statistics of nascent hb mRNA using a two-
state model.

(a) Fitting the histograms of number of nascent hb mRNAs (gray) using a two-state model (red). 
The single-locus data from a single embryo was binned into multiple Bcd concentration windows, 
and the fitting of each window was performed independently of others using the 
maximum-likelihood method (data from the same embryo used in Figure 2, >1300 loci, AP 
positions 0.25-0.7 EL, cycle 12). A good agreement between model and experiment was achieved 
over the full range of Bcd concentrations (R2 = 0.88± 0.01, 23 embryos). (b) The extracted 
parameters of the two-state model as a function of nuclear Bcd concentration (data from the same 
embryo used in Panel a). Red, kON. Blue, kOFF. Green, kINI. Shaded area, Parameter ranges 
corresponding to >0.7% of the maximum likelihood. (c) A comparison of the maximal fold change 
in different kinetic parameters when varying the Bcd concentration (data from wild-type embryos; 
cycle 11, 7 embryos; cycle 12, 9 embryos; cycle 13, 7 embryos). Error bars represent S.E.M. kON 
changed much more dramatically than kOFF and kINI.
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Supplementary Figure 10. The two-state model reproduces the observed nascent hb mRNA 
statistics.

(a) – (c) The fraction of inactive hb loci, P(0), versus the mean number of nascent hb mRNAs, for 
embryos at different cycles. Gray, experimental data. Red, results of the two-state model. (d) – (f) 
The Fano factor versus the mean number of nascent hb mRNAs, for embryos at different cycles. 
Gray, experimental data. Red, results of the two-state model.
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Supplementary Figure 11. The two-state model reproduces live-embryo data.

(a) Simulated nascent mRNA signal at an anterior (red) and a posterior (blue) gene loci during 
cycle 12. The entire nuclear cycle was modeled as consisting of three time periods. Transcription 
can only be initiated during period T2. The initiation time and the persistence of the transcriptional 
activity are marked for the anterior locus. (b) – (c) Comparison of the initiation time (b) and the 
persistence (c) between the live-imaging data (Lucas et al., 2013) and our simulation. For each 
nuclear cycle, the mean values for the anterior side and the posterior side of the embryo are 
plotted (dots). Dashed line indicates perfect match between experiment and simulation. 
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Supplementary Figure 12. Kinetic parameters of the two-state model.

kON = k1                               + k0

[Bcd]h

[Bcd]h + C50
h

(a) The rate of stochastic gene activation, kON, for the bcd3-lacZ reporter gene is plotted against 
nuclear Bcd concentration, and fitted to a Hill function (dashed line). Fitting was done using data 
from >1700 loci, AP positions 0.15-0.7 EL, in a single bcd3-lacZ embryo at cycle 12. (b) – (f) 
Kinetic parameters extracted from fitting the nascent mRNA statistics to the two-state model. Red 
circles, hb gene in wild-type embryos (cycle 11, 7 embryos; cycle 12, 9 embryos; cycle 13, 7 
embryos). Blue triangles, bcd3-lacZ in transgenic flies (cycle 11, 6 embryos; cycle 12, 7 embryos; 
cycle 13, 7 embryos). Error bars represent S.E.M.
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Supplementary Figure 13. Bcd modulates the probability of hb activation through cooperative 
binding.
a b

0

10

20
Gene state
Initiation
Nascent mRNAs

0 5 10
Time (minute)

N
as

ce
nt

 m
R

N
A

(a) A two-state model of Bcd regulation. Bcd molecules stochastically bind and unbind to the hb 
gene. Cooperative binding of 6 Bcd molecules switches the hb gene to the active state, whereas 
the unbinding of Bcd molecules switches the gene to the inactive state. In the active state, hb 
transcription is stochastically initiated at rate kINI. Transcript elongation occurs deterministically 
with speed VEL. Once elongation is completed, the transcript is released from the gene locus. (b) 
A simulation of hb transcription using the above model. Plotted are time traces of hb gene state 
(green), transcription initiation (black), and nascent mRNA (red).
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Supplementary Figure 14. Quantifying Bcd binding at the hb locus.
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(a) – (b) Comparing the distribution of local Bcd signal between the hb locus and other nuclear 
regions. Panel a is for a single embryo (data from >1200 hb loci, wild-type embryo at cycle 12). 
Panel b is for multiple embryos (data from >20,000 hb loci, 30 wild-type embryos, cycles 11-14). 
In both cases, the distribution of the Bcd signal measured at the hb locus was distinguishable (and 
had a higher mean) from that of the signal at other nuclear regions. (c) The average Bcd 
enrichment signal versus the integration radius r. Data from >20,000 hb loci, 30 wild-type 
embryos, cycles 11-14. (d) The fluctuations of the binned Bcd enrichment signal as a function of 
bin size. The mean and standard deviation of the binned data (black, data from >20,000 hb loci, 
30 wild-type embryos, cycles 11-14) are compared with a model assuming random distribution of 
Bcd molecules inside the nucleus (red). (e) The average Bcd enrichment signal at different gene 
loci. Values are plotted without rescaling. Each data point was obtained from >5000 nuclei in >7 
embryos. Error bars represent S.E.M. (f) The average number of bound Bcd molecules at 
different gene loci. All values were scaled to the value for bcd3-lacZ. Each data point was 
obtained from >5000 nuclei in >7 embryos. Error bars represent S.E.M. (g) The ChIP-chip signal 
in the vicinity of the Act5C gene (red arrow). Data is from the Berkeley Drosophila Transcription 
Network Project (Li et al., 2008), and is plotted using the UCSC Genome Browser 
(www.genome.ucsc.edu). ChIP peaks from two different Bcd antibodies (green) were used to 
estimate the total signal and the error in the data. 
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Supplementary Figure 15. Bcd binding and hb transcription at different cycles.
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(a) – (d) Bcd binding at the hb locus (solid red line, mean value; red shading, S.E.M.) and hb 
transcription (blue line, Hill fit of the gene regulation function) as a function of nuclear Bcd 
concentration, for different cycles (cycle 11, 7 embryos; cycle 12, 9 embryos; cycle 13, 7 embryos; 
cycle 14, 7 embryos, AP range 0.25-0.7 EL). Dashed red lines highlight binding plateaus. During 
cycles 11-13, the binding curve exhibits two sharp steps (cyan and green shading).  The first one 
(cyan) is accompanied by activation of hb, while the second (green) is not.
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Supplementary Figure 16. Simultaneous labeling of Bcd protein, Hb protein and hb mRNA.

Confocal image of a wild-type embryo during cycle 12. Bcd protein (red) and Hb protein (green) 
were labeled using immunofluorescence, hb mRNA (white) was labeled using smFISH, and DNA 
(blue) was stained with Hoechst. Scale bar, 50 μm. Bottom: A magnified view of individual 
channels from a small anterior region (corresponding to the white box in the main panel). Scale 
bar, 2 μm.
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Supplementary Figure 17. Quantifying hb transcription, Hb binding and Bcd binding.

(a) – (d) hb transcription, Hb binding, and Bcd binding at different AP positions for different cycles 
(cycle 11, 6 embryos; cycle 12, 3 embryos; cycle 13, 5 embryos; cycle 14, 4 embryos). Lines, 
mean values. Shading, S.E.M. Purple shading indicates the range 0.20-0.35 EL, the area 
immediately adjacent to the future hb middle stripe (Perry et al., 2012). Within that AP range, Hb 
binding increases while hb expression decreases between earlier cycles (11-13) and cycle 14.
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Supplementary Figure 18. Relating hb transcription to Bcd and Hb binding.

hb transcription as a function of both Bcd and Hb binding at the hb locus. 18 embryos between 
cycles 11 and 14 were analyzed. The numbers of nascent hb mRNAs and bound Bcd and Hb 
proteins were measured for each locus in AP positions 0.25-0.7 EL (>7600 loci). The data for each 
cycle was binned by AP position, and plotted on a 2D color plot (x and y axes, Bcd and Hb binding; 
color, nascent hb mRNAs).
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Supplementary Table 1. Sequences of smFISH probes 

 

Transcript Probe sequences (5’ to 3’) 

hb TTGTGCTGCTCGTAGTTGGT 

GAACATGCTGTTGTACCAGG 

GCTCCTGTTTGATATTTGCC 

TATTCCCGTCGAGATGATGA 

AACTGTTCCAGGTGATTGGT 

ATCCATGGGTTGCTGCTGAA 

TTTGATCGTTTTGGCTGGGT 

TTAGCATCGTAATGCTGCAG 

TTGCTGCAGCAACTGTTGCT 

TGGAAATGCTGCTGGTACTG 

ATGGTGATGATGTTGCTGCT 

TTGAATCCACCCATCAGATG 

TAGAAGTGCTGCATGGGATT 

TGTTAGTGCCTGCAACTTCT 

TATTCGACTGACTCGACTTG 

ATGTACTTCATGTCCTCGCT 

ATGTTGGTATCATCGTCCTC 

TGCGAATTGTAGATGGGCAT 

GGTCTTGCACTTGTAGTTCT 

TTGTCTGGTTTCATGTGGGT 

TACTCCAAGTGGTGCTTGAA 

GTTCTTGTGCTTCCGGATAT 

ACACGTGTAGCTGCATTTGT 

GCGAGTTTAGCATGGATTTG 

TACACAGAACTGTGCGACTT 

TAATCACAATCCGCACAACG 

AAGCTGTGGCAATACTTGGT 

ATACTTGCGCAGATGCAGCT 

AAACATCGATGACCAACGAG 

ATTCTTGCTCTTCGGACCAC 

AGCTGCAACATTTGACTTCC 

TGGCTGAGATTGCTGTTGCT 

TTGAACCAGAGGGAATCCTT 

AAGAAGGCCATGTTGCGGTT 

TGGAGATTGAGGTTCCAGTA 

TCGCATTCTTGGCGACAATT 

TGGTTCTGTTGCTGCAGTTG 

TGACTTACGCTCGTACTCAT 

TTCCTTGGGACAGATCCATG 

TTGTTGCTGCTGCTCATCCT 

TCCTCCACCTTGAGATTCAT 
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TGTGCTGGGTACTTTCAGTT 

TTGCTATTGCTGCTGGCATT 

TTCCATTGCTGCTGGAATTG 

AGTACTTGCACTCGTAGATG 

GCGTCCTTGAAGAAGATATC 

CATGTGAATGGTGTAGAGCA 

TTGCACTTGAACACATCGTC 

lacZ GTGAATCCGTAATCATGGTC 

TCACGACGTTGTAAAACGAC 

ATTAAGTTGGGTAACGCCAG 

TATTACGCCAGCTGGCGAAA 

ATTCAGGCTGCGCAACTGTT 

AAACCAGGCAAAGCGCCATT 

AGTATCGGCCTCAGGAAGAT 

AACCGTGCATCTGCCAGTTT 

TAGGTCACGTTGGTGTAGAT 

AATGTGAGCGAGTAACAACC 

GTAGCCAGCTTTCATCAACA 

AATAATTCGCGTCTGGCCTT 

AGATGAAACGCCGAGTTAAC 

AATTCAGACGGCAAACGACT 

TTTCTCCGGCGCGTAAAAAT 

ATCTTCCAGATAACTGCCGT 

AACGAGACGTCACGGAAAAT 

GCTGATTTGTGTAGTCGGTT 

TTAAAGCGAGTGGCAACATG 

AACTGTTACCCGTAGGTAGT 

ATAATTTCACCGCCGAAAGG 

TTTCGACGTTCAGACGTAGT 

ATAGAGATTCGGGATTTCGG 

TTCTGCTTCAATCAGCGTGC 

ACCATTTTCAATCCGCACCT 

TTAACGCCTCGAATCAGCAA 

ATGCAGAGGATGATGCTCGT 

TCTGCTCATCCATGACCTGA 

TTCATCAGCAGGATATCCTG 

CACGGCGTTAAAGTTGTTCT 

TGGTTCGGATAATGCGAACA 

TTCATCCACCACATACAGGC 

TGCCGTGGGTTTCAATATTG 

ATCGGTCAGACGATTCATTG 

TGATCACACTCGGGTGATTA 

ATACAGCGCGTCGTGATTAG 

GATCGACAGATTTGATCCAG 
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AAATAATATCGGTGGCCGTG 

TTTGATGGACCATTTCGGCA 

TATTCGCAAAGGATCAGCGG 

AAGACTGTTACCCATCGCGT 

TGCCAGTATTTAGCGAAACC 

AAACGGGGATACTGACGAAA 

TAATCAGCGACTGATCCACC 

GGGTTGCCGTTTTCATCATA 

TCGGCGTATCGCCAAAATCA 

TTCATACAGAACTGGCGATC 

TGGTGTTTTGCTTCCGTCAG 

ACGGAACTGGAAAAACTGCT 

TATTCGCTGGTCACTTCGAT 

GTTATCGCTATGACGGAACA 

TTTACCTTGTGGAGCGACAT 

GTTCAGGCAGTTCAATCAAC 

TTGCACTACGCGTACTGTGA 

AGCGTCACACTGAGGTTTTC 

ATTTCGCTGGTGGTCAGATG 

ACCCAGCTCGATGCAAAAAT 

CGGTTAAATTGCCAACGCTT 

CTGTGAAAGAAAGCCTGACT 

GGCGTCAGCAGTTGTTTTTT 

TACGCCAATGTCGTTATCCA 

TAAGGTTTTCCCCTGATGCT 

ATCAATCCGGTAGGTTTTCC 

GTAATCGCCATTTGACCACT 

AGTTTTCTTGCGGCCCTAAT 

ATGTCTGACAATGGCAGATC 

ATAATTCAATTCGCGCGTCC 

TGATGTTGAACTGGAAGTCG 

TCAGTTGCTGTTGACTGTAG 

ATTCAGCCATGTGCCTTCTT 

AATCCCCATATGGAAACCGT 

AGACCAACTGGTAATGGTAG 

Act5C GGAAGGGGAAAGCTACTTAC 

GTTCGATGGTGTTTTGTTGT 

TTGCTTTTTCTTGGTGGGAG 

ACATTTTCCGCGGCTTTTCT 

CTTTCAGCACTGGCACATAA 

CTTTAGCTCGTGGCTAGTAT 

GGGTATTTTTGGAGTTTTGG 

TTGACAATTTAGGGCCAAAC 

GATGTCTTTCGACCTATTGG 
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GGTATTTGAAACCCTGGTTT 

GCAGTTGTAATCCTGATTCT 

GGGCTATTGAATTGCTTTGG 

CGAGCTTGGCTTTAAACACT 

TTTGGGTGAAATCGTGACAC 

GTGTTGGCGAATTGATTTGC 

TAGGGCGTGGGAAAAAAAGA 

CATTTATGGATGATCTGGTG 

CGTCACTATTTTCAAGAACC 

TTTCTGCTTCAGCCAAAACG 

CAACTTTGAAAAACCGGCAA 

GCTCGAAGGTTTTCTCCATT 

GAGTGTGTGTATATGAACGA 

TCTCTCTCGTTATTTTGCGC 

GCTCTCTCACACACACATAC 

TTTCGAGGCGAAAAGCAAAC 

GGCCAAGTTTTGTGACCATA 

AGCGCTGGTGTGTTGAATTG 

TTTTCAATCGCTGCCTGCGT 

GTTGAATGCCAGTTAACTGC 

TAAACCGACTGAAAGTGGCT 

GGTTTGAAAGGAATGACTGG 

ACTACTGTAAACGCAAGTGG 

GCCACGAAACTTTTCAAAGC 

CACTAAACGCACTCTAGAAA 

CTCGAATTGGAACCCGAAAT 

TTAAAATGGCGGCTGCCTAA 

ACAGTTGCCTGTGTGTATGC 

CAAAAGAAAGCCGCAAAGAG 

AGACGACACTTAACGAATGC 

ACGAATATGCCGAAAAGGGA 

CCCCGAAAAATTAAAACCAC 

AGTTACAAAATAGAAGGCCC 

CTGATTTTCACTTGCGATCG 

CACTCAATGCAATGTACGTT 

CTAACTTGTTTTTCGTGTAC 

GCTGGTCTACCAAAGTACAA 

ATTTGCGTGGTTTCCTTGGA 

GAATGCGGATTTCCCATTAG 

nullo ACTGTTGTTGGACAACTGAT 

TTTGGAGAACGTTGTTAGCG 

GGTATAGTCACAAGTTCGTA 

GCTGCCCATTTTGAGATTTC 

TTACCTTCTCAGCGGAATGT 
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AGAAGATGCCAGGATTTGCA 

TTATAAAACCGGGCAGGGGA 

AGGACGAGTCTCTGGATGTT 

TTTGTTTTCTGGCCGAGATG 

ATGCTTGGAGCGCTTGTTTA 

ATGTTGGATGCGGACTTCTT 

TCGAAACTGCACTTCCATTG 

ATGGAGACGCGGCTGCTTTT 

ACACCTCTTGGGATCCGTGT 

AACTGGAGTCCATAACCATC 

ATGTCGTAGAGCGGTGACTC 

ACCGTAGTAATCCTCCAGAT 

TAAACCTTCACCAATCGCTC 

GCTATACAAATGGCTCTATG 

GGCTTACGAGCTATCACAAT 
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1 Image acquisition and processing 

 

1.1 Correction for optical aberrations 

Image processing and data analysis were performed using custom MATLAB scripts 

(Supplementary Software). First, confocal data stored in Zeiss .lsm files was converted to .tif 

format, and the intensity profile of each channel was corrected for optical aberrations as follows. 

Monochromatic aberrations (such as spherical aberration) cause uneven fluorescence detection 

efficiency at different regions of the confocal field of view (Dunn and Wang, 2000; Pawley, 

2006). To compensate for this effect, we imaged a sample of uniformly mixed fluorophores, and 

then used polynomial regression (MATLAB function “polyfitn”) to fit the resulting intensity profile 

(Fig. SN1a) to a 2D quadratic function, 

 𝐼(𝑥, 𝑦) = 𝐴𝑥2 + 𝐵𝑦2 + 𝐶𝑥𝑦 + 𝐷𝑥 + 𝐸𝑦 + 𝐹 (1) 

The relative detection efficiency, r, at a position (x, y) was calculated as  

 
𝑟(𝑥, 𝑦) =  

𝐼(𝑥, 𝑦)

𝐼𝑚𝑎𝑥
 (2) 

and then used to rescale the intensity values of each pixel in the embryo image stacks. 

    To correct for the spatial mismatch between different channels, known as chromatic 

aberration (Dunn and Wang, 2000; Pawley, 2006), we labeled a set of smFISH probes with two 

different colors and applied them in equal molarity to the same sample. By comparing smFISH 

spots from both channels (see Supplementary Note Section 2.1 for details of smFISH spot 

recognition), we identified inter-channel pairs corresponding to the same spot (Fig. SN1b). The 

inter-channel spatial mismatch of these spots indicates the amount of chromatic aberration in 

different parts of the field of view. For the 63× oil immersion objective used in this study, the 

mismatch in the z dimension was negligible (much smaller than 1 voxel, Fig. SN1c), while the 

mismatch in the xy plane was linearly related to the xy coordinates (Fig. SN1d), such that, 

 
(
∆𝑥21
∆𝑦21

) = (
𝑥2 − 𝑥1
𝑦2 − 𝑦1

) = (
𝑎 𝑏
𝑐 𝑑

) (
𝑥1
𝑦1
) (3) 

where (x1, y1) and (x2, y2) denote the xy coordinates of channels 1 and 2, respectively. In later 

analysis of smFISH/immunofluorescence (IF) images, every smFISH spot position was shifted 

according to Equation (3) to match the IF channel. 

 

1.2 Nuclear segmentation and nuclear cycle determination 

In each embryo, we reconstructed the 3D shape of individual nuclei using the Hoechst signal 

(Fig. SN2a). For each z slice, the reconstruction started by smoothing the Hoechst image using 

a Gaussian filter (resulting in image IG). This was followed by a difference-of-Gaussians filter to 

enhance contrast (resulting in image ID). A watershed algorithm was then applied to image ID to 

identify nuclei candidates (Boettiger and Levine, 2013). For each candidate, we determined its 

accurate shape by thresholding the smoothed image IG. To find the optimal threshold, we tested 

a series of values (from 0 to 65535 with a step size of 256) by calculating the nuclear circularity 

4πA/P
2 (where A is the area and P is the perimeter length, (McHale et al., 2011)). Because 

syncytial blastoderm embryos typically have circular nuclei, we chose the lowest threshold value 

that gave circularity >0.7. For a group of nuclei that were too close to each other, and therefore 

could not be separated by pure thresholding, we applied an additional watershed step to 

separate the merged nuclei. Results from individual z slices were stacked together to form a 3D 

mask. Nuclear segments from neighboring z slices were stitched together as one nucleus if the 
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centroid xy position of one was within the area of the other. Further refinements and corrections 

were done manually through a custom MATLAB GUI. 

    To establish the anterior-posterior (AP) axis of the embryo, we first thresholded the maximum 

intensity projection of the Hoechst image to identify the embryo boundary. A pair of boundary 

points with the longest mutual distance were then defined as the anterior and posterior poles, 

respectively, based on their Bcd intensities (the anterior pole has higher Bcd intensity than the 

posterior pole). The AP position of each nucleus was then calculated as its distance (normalized 

by the length of AP axis) to the anterior pole along the AP axis. 

    The nuclear cleavage cycle of each embryo was first estimated using the formula: 

 Cycle number = ceil(log2𝑁nuclei) + 2 (4) 

where Nnuclei is the number of nuclei recognized from the image stack. This equation takes into 

account the fact that our imaging only covers the surface layer of one side (left or right from the 

midsagittal plane) of the embryo. In some cases, the automatic estimation was corrected (±1) 

following visual inspection of the embryo. To test the accuracy of our cycle estimation, we 

measured the nuclear-to-cytoplasmic area ratio of each imaged wild-type embryo, and plotted it 

against the estimated cycle number. The measured ratios were found to increase monotonically 

with nuclear cycles (Fig. SN2b), as expected (Edgar et al., 1986). 

 

2 mRNA quantification 

 

2.1 Identification and quantification of individual mRNAs 

To identify smFISH spots and quantify their intensities, we followed the approach of (Little et al., 

2011; Skinner et al., 2013; Zenklusen et al., 2008).  For each z slice, the smFISH image was 

first smoothed using a 2D Gaussian filter with a radius of 3 pixels. Candidate mRNA particles 

were identified as 3D local maxima in the filtered image stacks, whose xy positions also 

appeared in two consecutive z slices as 2D local maxima (allowing a ±1 pixel shift in xy 

dimensions). 

    Intensity values from the candidate positions exhibited a multi-modal distribution 

(Supplementary Fig. 3a). To determine which signals actually correspond to target mRNA, we 

compared the intensity histogram with one from a negative sample (for lacZ mRNA, OreR 

embryos; for hb mRNA, the posterior part of OreR embryos). The right peak of the histogram 

(marked by a black arrow in Supplementary Fig. 3a) was only present in the positive sample, 

and was therefore identified as target mRNA. In contrast, the left two peaks were present in 

both positive and negative samples, and were therefore identified as false positives. A threshold 

(“single mRNA” threshold) was set to filter out these false-positive spots.  

    For each mRNA candidate, we used a least-square algorithm (MATLAB function “lsqcurvefit”) 

to fit its local intensity profile (7x7 pixels centered on the local peak) to a 2D elliptical Gaussian 

function (Little et al., 2011; Skinner et al., 2013; Zenklusen et al., 2008) (Supplementary Fig. 

3b), 

 𝑓(𝑥, 𝑦) = 𝐼𝑝𝑒
−(𝑎(𝑥−𝑥0)

2+2𝑏(𝑥−𝑥0)(𝑦−𝑦0)+𝑐(𝑦−𝑦0)
2) + 𝐼𝑏 (5) 

with 
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𝑎 =

cos2𝜃

2𝜎1
2
+
sin2𝜃

2𝜎2
2

 

𝑏 = −
sin2𝜃

4𝜎1
2
+
sin2𝜃

4𝜎2
2

 

𝑐 =
sin2𝜃

2𝜎1
2
+
cos2𝜃

2𝜎2
2

 

(6) 

where Ip is the intensity amplitude of the particle, Ib is the background level, (x0, y0) are the 

center coordinates of the particle, (σ1, σ2) are the half-widths of the Gaussian in major and minor 

axes, and θ is the angle between the major axis of the Gaussian and the x axis of the image. 

For candidates that were close to each other in the xy plane (center-to-center distance <15 

pixels in both dimensions), we fitted their superposed intensity profiles to a multiple-Gaussian 

function in order to decompose signals from individual candidates. Fitting results with σ1 or σ2 

<0.4 pixel were discarded to further eliminate false positives. The total fluorescence intensity of 

an mRNA spot was defined as the background-subtracted integral of the Gaussian profile,  

 𝐼 = 2𝜋𝐼𝑝𝜎1𝜎2 (7) 

    To extract the typical intensity, I0, of individual mRNA molecules, we used a least-square 

algorithm (MATLAB function “fit”) to fit the intensity distribution of identified smFISH spots to a 

sum of Gaussian functions (Skinner et al., 2013; Zenklusen et al., 2008) (Supplementary Fig. 

3c), 

 
𝑝(𝐼) = 𝐴1𝑒

−
(𝐼−𝐼0)

2

2𝑤0
2 + 𝐴2𝑒

−
(𝐼−2𝐼0)

2

4𝑤0
2 + 𝐴3𝑒

−
(𝐼−3𝐼0)

2

6𝑤0
2

 
(8) 

where w0 is the half-width. The second and the third terms in the expression describe the 

contribution from closely located molecules. 

 

2.2 Identification and quantification of transcription sites  

The identification of active transcription sites among the population of mRNA spots was done in 

two steps: (1) Before fitting the local intensity profile, candidates corresponding to active 

transcription sites were pre-selected from the mRNA spot candidates. To do this, we tested a 

series of intensity threshold values, Ii (from 1000 to 8000 intensity units, with an interval of 100 

intensity units), by counting the number of detected candidates (N) using a given threshold and 

calculating the rate of decrease in number of candidates, rd(Ii) = N(Ii) / N(Ii+1) − 1, at each 

threshold value (Supplementary Fig. 3d). The intensity value corresponding to the minimum in 

rd (or <8%/100 intensity units, whichever occurred first) was used as the “nascent mRNA” 

threshold for pre-selection. (2) After fitting the local intensity profile of each pre-selected 

candidate, an additional threshold of 3I0 was used to define sites of active transcription (This 

value is similar to the one in (Little et al., 2013). The possible errors resulting from the specific 

choice of threshold are discussed in Supplementary Note Section 8 below). Finally, we 

estimated the number of nascent transcripts at each transcription site by dividing the intensity of 

the transcription site by I0, and rounding the value up or down to the nearest integer. This 

followed the approach of (Femino et al., 1998; Little et al., 2013; Zenklusen et al., 2008).  

 

3 Protein quantification  
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We calculated the average IF intensity of each nucleus from the central z slice of the nucleus, 

defined as the slice with the strongest Hoechst signal. Before averaging, the nuclear mask of 

the slice was eroded by 10 pixels to eliminate boundary effects. Background fluorescence was 

estimated from the average intensity of posterior nuclei (AP positions 0.8-0.9 EL), and 

subtracted from the IF intensity profile (This follows the approach of (Gregor et al., 2007a)). 

    For embryos in cycles 11-14, Bcd immunofluorescence exhibited an exponential gradient 

along the AP axis, and the exponential decay length was in good agreement with previous 

measurements (Abu-Arish et al., 2010; Gregor et al., 2007b; Houchmandzadeh et al., 2002; 

Little et al., 2011) (Fig. SN3). In the anterior part of the embryo, nuclei exhibited strong 

fluorescence, while cytoplasmic regions were characterized by low signal with sparsely 

distributed fluorescent particles (Fig. 1c, middle panel), as expected from the nuclear 

localization of Bcd during interphase (Gregor et al., 2007b). 

 

3.1 Quantifying nuclear Bcd concentration using IF spot intensity 

We recognized IF spots in the cytoplasmic region of the embryo, where Bcd concentration is 

typically much lower than in the nucleus (Driever and Nusslein-Volhard, 1988; Gregor et al., 

2007b). Spot identification and quantification followed the same procedure as for smFISH spots. 

Briefly, spot candidates were recognized as 3D local maxima, whose xy locations also appeared 

in consecutive z slices as 2D maxima. Each candidate was then fitted to a 2D Gaussian function 

to extract its intensity (Supplementary Fig. 5b). 

    To identify spots corresponding to individual Bcd molecules, we compared the intensity 

histograms from the anterior and posterior sides of the embryo (Supplementary Fig. 5c). Since 

most Bcd molecules are in the anterior part (Driever and Nusslein-Volhard, 1988; Gregor et al., 

2007b), and are believed to remain as monomers before binding to DNA (Burz et al., 1998; Ma 

et al., 1996), the extra peaks seen in the anterior distribution were assumed to correspond to 

individual Bcd molecules, as well as multiple adjacent Bcd molecules. In contrast, the lower-

intensity peak seen in the posterior distribution was assumed to correspond to nonspecific 

bindings of the primary antibody. Following the same procedure as for smFISH spots, we used 

a least-square algorithm (MATLAB function “fit”) to fit both the anterior and the posterior 

distributions to a multi-Gaussian function, 

 
𝑝(𝐼) = 𝐵0𝑒

−
(𝐼−𝐼0)

2

2𝑤0
2 + 𝐵1𝑒

−
(𝐼−𝐼1)

2

2𝑤1
2 + 𝐵2𝑒

−
(𝐼−2𝐼1)

2

4𝑤1
2 + 𝐵3𝑒

−
(𝐼−3𝐼1)

2

6𝑤1
2

 
(9) 

where I0 is the typical intensity of spots resulting from nonspecific antibody binding, and I1 is the 

typical intensity of a single antibody-labeled Bcd molecule. In practice, since the nonspecific 

binding term of the anterior distribution typically has a very small amplitude and overlaps heavily 

with the Bcd terms (and vice versa for the Bcd terms in the posterior distribution), direct 

extraction of both I0 and I1 from a single distribution (anterior or posterior) was inaccurate. To 

precisely measure I0 and I1, we first fitted the posterior distribution to extract the value of I0, and 

then applied this value to the fitting of the anterior distribution, to extract I1. We note that I1 was 

equal to approximately 2I0 (Supplementary Fig. 5d). This is consistent with the interpretation 

that I0 represents nonspecific binding of individual primary antibodies, while the specific labeling 

of a Bcd molecule involves two primary antibodies on average. Treating the embryo using only 

secondary antibodies led to no detectable signal and no recognized spots (Supplementary Fig. 

5e), consistent with the same interpretation. 

    We next used the value of I1 to convert the background-subtracted mean nuclear IF intensity, 

Inu (per μm3), to the absolute protein concentration, Cnu, using the following formulas:  
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 𝐶nu = 𝐼nu/𝐴 

𝐴 =  (2𝜋)
1
2⁄ 𝜎𝑧𝐼1 

(10) 

where σz is the half-width of the single-protein intensity profile in the z dimension (in the unit of z 

spacing, see Supplementary Note Section 7 for mathematical details). 

 

3.2 Quantifying nuclear Bcd concentration using IF intensity fluctuations 

As an alternative method, nuclear protein concentration was also estimated based on the spatial 

fluctuation of the IF signal. Specifically, for each nucleus, we computed the variance of pixel 

intensity values at the central z slice (using the same set of pixels as for calculating the average 

IF intensity) and then plotted the variance versus mean for all nuclei in a single embryo (Fig. 

1c). Next, we fitted this plot to a straight line. According to our derivation (see Supplementary 

Note Section 7), the slope k of the fit obeys 

 
𝑘 ≈  

𝐴

8(𝜋)
3
2⁄ 𝜎𝑥𝜎𝑦𝜎𝑧

 (11) 

where A is the calibration constant between fluorescence and protein concentration, as in 

Equation (10) above. σx, σy, σz are the half-widths of the single-protein intensity profile in all three 

dimensions, respectively (in the unit of pixel number or z spacing).  

 

4 Measuring the gene regulation function (GRF) 

 

4.1 Measuring the mean regulatory response 

For the analysis of transcriptional regulation, we used cycles 11-14 embryos, whose gene-of-

interest has not yet been replicated (prior to G2 phase). The identification of nuclear cycle 

phase was based on nuclear morphology and the presence of active transcription sites 

(Boettiger and Levine, 2013). Since our strains are homozygous, we chose embryos where 

most nuclei (≥ 90%) show 2 or fewer active transcription sites (Boettiger and Levine, 2013). 

    We next recorded the amount of nascent mRNA at each gene locus in the embryo. To 

identify silent loci (no nascent mRNA), we applied the following criteria: (1) Each nucleus was 

assumed to contain two copies of the gene. (2) For nuclei containing fewer than two active loci 

(recognized from the smFISH channel), corresponding numbers of silent loci were added to 

satisfy criterion #1. (3) Nuclei containing more than two active loci were discarded. 

    For a given gene, we examined its transcription in a defined AP position range. For the case 

of hb regulation by Bcd, we used 0.25-0.7 EL. This range covers the AP expression boundary of 

hb in early embryos (Gregor et al., 2007a; Houchmandzadeh et al., 2002; Struhl et al., 1989), 

while excluding the anterior pole and the posterior expression band of the embryo, both of which 

are believed to involve other transcription factors (Janody et al., 2000; Margolis et al., 1995; 

Perry et al., 2012; Ronchi et al., 1993). When examining bcd3-lacZ, we extended the range to 

0.1-0.7 EL. The purpose was to include nuclei with higher Bcd concentration, since the 

activation of bcd3-lacZ occurs at a higher concentration.  

    For each embryo and the chosen AP position range, we plotted the number of nascent 

mRNA, r, against the Bcd concentration in the corresponding nucleus (Fig. 2a, Supplementary 

Fig. 6, 7b). To extract the GRF, we binned individual data points by Bcd concentration and used 

a least-square algorithm (MATLAB function “nlinfit”) to fit the binned data to a Hill function: 
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𝑟 =  𝑟1

[Bcd]ℎ

[Bcd]ℎ + 𝐶50
ℎ
+ 𝑟0 (12) 

where h is the Hill coefficient, C50 is the concentration threshold for hb activation, r1 indicates the 

maximal level of Bcd-dependent activity, and r0 denotes the basal activity of hb (see 

Supplementary Fig. 7c-f). 

    To test the robustness of the fitting results, we tested different binning methods (equal 

population versus equal concentration interval) and different bin sizes. Fitting results were found 

to be insensitive to the choice of particular binning (Fig. SN4). 

 

4.2 Measuring mRNA fluctuations and correlation 

For each Bcd concentration bin, we calculated the coefficient of variation (CV), defined as the 

ratio between the standard deviation (σ) and the mean (µ) of the number of nascent mRNAs: 

 CV =
𝜎

𝜇
 (13) 

    We also calculated the Fano factor (F) for each Bcd concentration bin as the ratio between 

the variance (σ2) and the mean (µ) of the nascent mRNA level:  

 
𝐹 =

𝜎2

𝜇
 (14) 

For a transcription model with constant probability of initiation, the Fano factor was estimated to 

be 22/27 (see Supplementary Note Section 6 for details). 

    To calculate the Pearson correlation coefficient (ρ) between the numbers of nascent mRNAs 

at hb loci within the same nucleus, for each Bcd concentration bin, we first divided the single-

locus data (number of nascent mRNAs) from each embryo into two groups, R1 and R2, each 

containing one of the two loci from each nucleus. Next, we applied the following formula: 

 
𝜌 =

∑ (𝑥𝑖 − 𝑟1)(𝑦𝑖 − 𝑟2)𝑖

𝜎1𝜎2
−
∑ (𝑥𝑖 − 𝑟1)(𝑦𝑖+1 − 𝑟2)𝑖

𝜎1𝜎2
 (15) 

where xi  R1 and yi  R2 belong to nucleus i (the index was sorted by Bcd concentration). r1, r2 

and σ1, σ2 are the mean and standard deviation of each group, respectively. The second term in 

Equation (15) is used to correct for the so-called “input noise” (Tkacik et al., 2008), created by 

the variation of Bcd concentration within the bin. This is achieved by re-assigning the single-

locus data, xi, to pair with yi+1 coming from a different nucleus with similar Bcd concentration. 

The correlation profile of a typical cycle 12 embryo is shown in Supplementary Figure 8. 

 

5 Measuring Bcd binding 

 

5.1 The enrichment calculation 

The method for quantifying transcription-factor binding at specific gene loci was motivated by 

the observation in (He et al., 2011), that the IF signal (corresponding to antibody-labeled 

protein) is enriched at active transcription sites. Here, we used the presence of nascent mRNA 

(smFISH signal) to identify the spatial position of (active) gene loci. For each such locus, we 

then defined a “locus-integration region”, Vl (in units of voxel number), to cover the nearby 

nuclear voxels within xy distance ≤r and z distance ≤h, and measured the total IF signal within 

that volume, Il. In addition, we chose a random position somewhere else in the nucleus and 

measured the total IF signal, Ir, in its vicinity in the same manner. To examine protein 
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enrichment at the gene locus, we compared the distributions of Il and Ir for multiple nuclei. 

Supplementary Figure 14a-b shows the results for the Bcd signal at hb loci, (Panel A, single 

embryo; Panel B, multiple embryos pooled together). A Kolmogorov-Smirnov test (Massey Jr, 

1951) indicated that these two signals follow different distributions (α ≤ 0.05 for all embryos). 

To increase the accuracy of calculating the enriched IF signal, we replaced Ir with an average 

over multiple out-of-locus positions. Specifically, we defined the faraway voxels from the same 

nucleus with xy distance >2r and z distance ≤h as the “out-of-locus region”, Vo, and measured 

the total IF signal of that region, Io. The enriched IF signal was then calculated as 

 
𝑰𝐞𝐧𝐫𝐢𝐜𝐡 = 𝑰𝒍 − 𝑰𝒐

𝑽𝒍
𝑽𝒐

 (16) 

    To convert Ienrich to the absolute number of bound molecules, Nbound, we used the calibration 

constant, A (see Supplementary Note Sections 3, 7), as follows: 

 

 
𝑁locus =

𝐼𝑙
𝐴 ∙ 𝑅𝑙

 

𝑁background =
𝐼𝑜
𝑉𝑜

𝑉𝑙
𝐴 ∙ 𝑅𝑙

 

𝑁bound =
𝐼enrich
𝐴 ∙ 𝑅𝑙

= 𝑁locus −𝑁background 

(17) 

 

Here, Nlocus and Nbackground denote the number of molecules in Vl and at the background region 

respectively, and Rl is the fraction of single-protein fluorescence signal covered by Vl (assuming 

that the molecule is located at the center of Vl), calculated as  

 

𝑅𝑙 =
∭ 𝑑𝒓 𝑓(𝒓)
𝑉𝑙

‖𝑓‖
 (18) 

where f(r) is the intensity profile of individual molecules (see Supplementary Note Section 7). 

    We note that the specific choice of Vl  is expected to affect our quantification result. Since the 

typical size of a smFISH spot corresponding to active gene locus is ~2 times the optical 

diffraction limit, a small Vl may miss some of the enrichment signal, while a large Vl may collect 

additional signal from other nearby genes. To determine the optimal size of Vl, we examined 

Nbound for different r’s and h’s. We found that Nbound does not vary much with h, but it increases 

significantly when r > 3 pixels (Supplementary Fig. 14c). We therefore chose r = 2 pixels and h 

= 0 (single image plane) for the data analysis. Under this setting, Vl is 13 voxels, and Rl = 0.335. 

 

5.2 Estimating the required sample size 

The accuracy in estimating Nbound is limited by the random spatial distribution of protein 

molecules in the nucleus. To estimate the noise level of a single measurement, we combined 

Equations (60) and (17), to obtain 

 
𝐵locus ≈ 𝑁locus =

𝐼𝑙
𝑉𝑙

𝑉𝑙
𝐴 ∙ 𝑅𝑙

= 𝐶
𝑉𝑙
𝑅𝑙

 (19) 

where Blocus denotes the background number of Bcd molecules in Vl, and C is the nuclear Bcd 

concentration. Under our parameter settings, Vl / Rl = 1.44 μm3. Hence, in the anterior 

expression region where C > 10 nM (the transition Bcd concentration, see Supplementary Fig. 

7d), we have Blocus ≳ 10 molecules. The noise caused by random distribution of Bcd molecules 
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is calculated as σlocus ≈ √Blocus ≳ 3 molecules. In contrast, Nbackground is measured from a much 

larger region (Vo ≈ Vnucleus ≫ Vl), and its noise level is thus negligible. Therefore, the noise level 

of a single enrichment measurement is 

 𝜎bound ≈ 𝜎locus ≳ 3 molecules (20) 

Averaging over N loci will reduce this noise level by a factor 1/√N. For the case of Bcd binding 

at hb, the estimated average enrichment is ≈ 0.5 (Supplementary Fig. 14d), and therefore 

requires averaging over at least ≈ 40 loci to emerge above the noise (Supplementary Fig. 

14d).  

 

5.3 Recalibrating enrichment levels using the bcd3-lacZ strain 

Measuring Nbound for Bcd protein at different gene loci (hb, Act5C, nullo and the bcd3-lacZ 

reporter) consistently yielded values smaller than 1 (Supplementary Fig. 14e).  Specifically, for 

both hb and bcd3-lacZ, the measured numbers were ~10 times smaller than the expected 

values assuming full occupancy of the cognate binding sites at saturating Bcd concentrations. 

This apparent discrepancy may represent an experimental artifact; for example, a lower 

efficiency of antibody labeling for DNA-bound proteins. Alternatively, the lower numbers may 

truly reflect the average number of bound Bcd proteins. This would be consistent with recent 

reports of less-than-full occupancy by transcription factors (Poorey et al., 2013), possibly due to 

rapid binding and unbinding (McNally et al., 2000). 

    To circumvent this issue, we used an alternative method to convert IF enrichment to the 

number of bound Bcd proteins. We measured the Bcd binding curve for the bcd3-lacZ reporter 

gene, which exhibited a plateau at high Bcd concentration (Fig. SN5, see Supplementary Note 

Sections 5.6 for details). Postulating that this plateau corresponds to the binding of 3 Bcd 

molecules, we rescaled the enrichment of Bcd at all other genes accordingly. 

 

5.4 Ruling out cross-talk between imaging channels 

To verify that the enrichment signal did not simply represent cross-talk between the smFISH 

and IF channels, we measured the fluorescence at both channels in samples that were only 

labeled using smFISH. Plotting the intensity value of each pixel in the two channels revealed 

that the cross-talk from the smFISH channel to the IF channel was linear in the smFISH 

intensity, with a slope of ≈ 6 × 10−4 (data from 8 images). For the hb locus, the contribution to 

enrichment from cross-talk would therefore be ~0.001 molecule, much lower than the measured 

enrichment signal (Supplementary Fig. 14e). 

 

5.5 Comparing the enrichment values with ChIP 

To validate the quantification of Bcd binding, we compared our results with ChIP-chip data, 

taken from the online database of the Berkeley Drosophila Transcription Network Project 

http://bdtnp.lbl.gov/Fly-Net/, (Li et al., 2008; MacArthur et al., 2009). For a given gene, we 

summed all ChIP peak values within ± 100kbp of the gene (the range was set based on (Ghavi-

Helm et al., 2014)). Since the database provided signals from two different Bcd antibodies, we 

estimated the error of ChIP measurements from the difference between these two signals 

(Supplementary Fig. 14g). We then plotted the ChIP data from each gene against the 

corresponding Bcd enrichment values, and fitted the data to a straight line (Fig. 3b).  

 

5.6 The Bcd binding curve 

http://bdtnp.lbl.gov/Fly-Net/
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To plot the Bcd binding curve at the hb gene, we binned the enrichment data from individual 

gene loci by Bcd concentration (Fig. 3c, Supplementary Fig. 15). As a robustness test, we 

compared different binning methods (equal population versus equal concentration interval) and 

different bin sizes, and found no significant differences in terms of the shape and amplitude of 

the curve (Fig. SN6).  

    At the lower end of the enrichment curve, where Bcd concentration is lower than the 

threshold for hb activation, our estimation of the average Bcd enrichment is expected to be 

higher than the actual value, since we only detect active hb loci, which are more likely to have 

Bcd bound. This explains why the lower bound of the enrichment signal is higher than zero (Fig. 

3c, Supplementary Fig. 15). To limit the level of overestimation, we calculated, for each bin, 

the fraction of hb loci that are active. For cycle 11-13 embryos, we excluded bins that have 

<25% active hb loci. 

    The Bcd binding curves at different cycles exhibited plateaus, where binding is approximately 

constant over a range of Bcd concentrations (Fig. 3c, Supplementary Fig. 15). To estimate the 

enrichment value of each plateau, we plotted the distribution of enrichment values from all data 

points on the binding curve (Fig. SN5). This distribution exhibited multiple peaks, each of which 

corresponds to a plateau. We fitted these peaks to Gaussian functions to extract the mean 

enrichment value and width of each plateau (Fig. SN5).  

 

5.7 Relating Hb and Bcd binding with hb transcription 

To simultaneously measure the binding of Bcd and Hb proteins at hb loci, we applied Bcd and 

Hb antibodies simultaneously, following the smFISH labeling of hb mRNAs (Supplementary 

Fig. 16). We then quantified Bcd and Hb enrichment, as well as nascent hb mRNA, at each 

active hb locus. For each nuclear cycle (11-14), we combined the single-locus data (all three 

species) from multiple embryos, and binned the data by the embryo AP position 

(Supplementary Fig. 17).  

To describe hb transcription as a 2D function of Bcd and Hb binding, we plotted the average 

amount of nascent hb mRNAs at each AP position against the corresponding Bcd and Hb 

enrichment (x and y axes) for all cycles (Supplementary Fig. 18). Based on the Bcd and Hb 

enrichment values at the transition AP position (~0.4 EL), we set a Bcd enrichment threshold (3 

Bcd molecules) and a Hb enrichment threshold (2.5 Hb molecules; the conversion from 

enrichment to number of bound molecules was done using the same calibration factor 

calculated for Bcd in Supplementary Note Section 5.3 above). We used those threshold 

values to divide the entire data set into 4 groups, corresponding to “high” and “low” binding of 

both Bcd and Hb, and calculated the average hb transcription level for each group (Fig. 3d). 

 

6 Modeling transcription kinetics  

 

6.1 A two-state model of initiation, followed by deterministic elongation 

We model nascent transcription at the gene locus using a modified version of the two-state 

model (Neuert et al., 2013; Peccoud and Ycart, 1995; Raj et al., 2006). In this model, the gene 

can be in one of the two states: (1) an “ON” (active) state, where new transcripts can be 

initiated, and (2) an “OFF” (inactive) state, where the gene is silent. Transitions between states 

and the initiation of new transcripts (during the ON state) are all assumed to be Poisson 

processes (Fig. 2c). The possible reactions can be written as 

OFF
𝑘ON
→  ON 
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ON
𝑘OFF
→  OFF 

ON
𝑘INI
→  ON + nascent mRNA 

where, kON, kOFF and kINI are the rates of gene activation, gene inactivation and transcription 

initiation, respectively. Next, we assume that each nascent mRNA molecule elongates with a 

constant speed, VEL; thus it takes TEL = 1/VEL to complete a transcript. Upon completion, mRNA 

is immediately released from the gene. This scenario can be abbreviated as follows:  

nascent mRNA
𝑉EL
→  full length mRNA

𝑘FALL=∞
→      mature mRNA 

 

6.2 Deriving equations for the distribution of nascent mRNA numbers 

We begin by noting that, at a given time point tob (the observation time), the number of nascent 

mRNA molecules Nm (the total length of nascent transcripts) on a gene is completely determined 

by transcription events that happened within a time window from tob−TEL to tob, and the 

contribution from each event depends on its initiation time, ti. Without loss of generality, let us 

set tob = 0. For an given series of initiation events, n(t) =Σi δ(ti), we then have 

 
𝑁m = ∫ 𝑛(𝑡)𝑔(𝑡)𝑑𝑡

0

−𝑇EL

 (21) 

Here, g(t) is the contribution function quantifying the signal from a single transcript initiated at 

time t. A transcript that initiated at t = −TEL will contribute a full length mRNA at tob = 0, therefore 

g(−TEL) = 1. On the other hand, a transcript that initiated at t = 0 has had no time to elongate, and 

hence g(0) = 0. For intermediate values of t, g(t) is given by  

 𝑔(𝑡) =  −𝑡/𝑇EL (22) 

(see Fig. SN7a). 

    When analyzing the smFISH signal in our experiments, we have to modify the expression for 

g(t) to account for the positions of smFISH probes along the gene. In the simplest case, where 

smFISH probes are uniformly distributed along the entire gene (as is the case for lacZ), 

Equation (22) still stands. For hb, however, the probes cover only the coding region of the gene, 

leaving the 5’-UTR (including an intron) and the 3’-UTR unlabeled. Considering the lengths of 

the relevant features (Schroder et al., 1988), we obtain 

 
𝑔(𝑡) = {

1,
−0.2 − 𝑡/𝑇C,

0,

−1.6𝑇C ≤ 𝑡 < −1.2𝑇C
−1.2𝑇C ≤ 𝑡 < −0.2𝑇C
−0.2𝑇C ≤ 𝑡 ≤ 0

 (23) 

where TC = TEL/1.6 is the elongation time for the coding region (Fig. SN7b). 

    To describe the distribution of number of nascent mRNAs, we first define the state of a 

transcription site at time t (−TEL ≤ t ≤ 0) using two parameters: i, denoting the gene state (1 = 

OFF, 2 = ON); and 𝑚 = ∫ 𝑛(𝜏)𝑔(𝜏)𝑑𝜏
𝑡

−𝑇EL
, which denotes the amount of nascent mRNAs at time 

0 created by transcripts initiated between –TEL and t. Note that m is non-decreasing with time. 

Specifically, m = 0 at t = −TEL and m = Nm (the number of nascent mRNA molecules) at t = 0. 

Next, we write the Kolmogorov forward equations describing the time evolution of the probability 

distribution function,  Pi(m,t), as follows: 
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{

𝑑𝑃1(𝑚, 𝑡)

𝑑𝑡
= −(𝑘12 + 𝑘𝑖𝑛𝑖,1)𝑃1(𝑚, 𝑡) + 𝑘21𝑃2(𝑚, 𝑡) + 𝑘INI,1𝑃1(𝑚 − 𝑔(𝑡), 𝑡)

𝑑𝑃2(𝑚, 𝑡)

𝑑𝑡
= −(𝑘21 + 𝑘𝑖𝑛𝑖,2)𝑃2(𝑚, 𝑡) + 𝑘12𝑃1(𝑚, 𝑡) + 𝑘INI,2𝑃2(𝑚 − 𝑔(𝑡), 𝑡)

 (24) 

where k12 = kON, k21 = kOFF, kINI,1 = 0, and kINI,2 = kINI. The distribution of number of nascent mRNAs 

at the observation time t = 0 can be written as  

 𝑃(𝑁) = 𝑃1(𝑚, 0) + 𝑃2(𝑚, 0) (25) 

    Before we proceed to solve the full model, we note that in the special case where the gene is 

always in the active state, we can write a simpler equation, 

 𝑑𝑃(𝑚, 𝑡)

𝑑𝑡
= −𝑘INI𝑃(𝑚, 𝑡) + 𝑘INI𝑃(𝑚 − 𝑔(𝑡), 𝑡) (26) 

By multiplying both sides of Equation (26) by m and m2, we can easily obtain equations for the 

mean and variance of m, such that, 

 𝑑〈𝑚〉

𝑑𝑡
= 𝑘INI𝑔(𝑡) (27) 

 𝑑𝜎𝑚
2

𝑑𝑡
= 𝑘INI𝑔

2(𝑡) (28) 

Substituting g(t) from Equation (23) above,  we can calculate the Fano factor,  

 

𝐹 =
𝜎𝑚
2

〈𝑚〉
|
𝑡=0

=
∫ 𝑔2(𝜏)𝑑𝜏
0

−𝑇EL

∫ 𝑔(𝜏)𝑑𝜏
0

−𝑇EL

=
∫ 𝑑𝜏
−1.2

−1.6
+ ∫ (𝜏 + 0.2)2𝑑𝜏

−0.2

−1.2

∫ 𝑑𝜏
−1.2

−1.6
+ ∫ (𝜏 + 0.2)𝑑𝜏

−0.2

−1.2

=
22

27
 (29) 

 

6.3 Solving the Kolmogorov forward equations using the Finite State Projection (FSP) 

method 

To solve Equation (24), we use the Finite State Projection (FSP) algorithm (Munsky and 

Khammash, 2008; Neuert et al., 2013). Since mbelongs to the uncountable set [0,∞), we first 

discretize it to m = 0, Δm, 2Δm, …, with Δm ≪ 1. The probability distribution functions, P1(m,t) and 

P2(m,t), can then be replaced by a vector P(t), such that, 

 

𝑷(𝑡) = [
𝑷0
𝑷∆𝑚
⋮
]

𝑡

=

[
 
 
 
 [
𝑃1,0
𝑃2,0
]

[
𝑃1,∆𝑚
𝑃2,∆𝑚

]

⋮ ]
 
 
 
 

𝑡

 (30) 

where the vector Pm groups the probabilities of observing m when the gene is either in the ON or 

OFF states. Similarly, we discretize the contribution function, g(t), by rounding up its values to 

the nearest multiplications of Δm. 

    We next rewrite Equation (24) as 
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𝑑

𝑑𝑡
𝑷(𝑡) = 𝑸(𝑡)𝑷(𝑡) =

[
 
 
 
 
 
 
 
𝑲 − 𝑻 0 0 0
0 𝑲− 𝑻 0 ⋯
0 0 𝑲 − 𝑻 ⋯
⋮ ⋮ ⋮ ⋱
𝑻 0 0 ⋱
0 𝑻 0 ⋱
0 0 𝑻 ⋱
⋮ ⋮ ⋮ ⋱]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

𝑷0
𝑷∆𝑚
𝑷2∆𝑚
⋮

𝑷1−𝑔(𝑡)
𝑷1−𝑔(𝑡)+∆𝑚
𝑷1−𝑔(𝑡)+2∆𝑚

⋮ ]
 
 
 
 
 
 
 

𝑡

 (31) 

where K and T are matrices describing gene-state transition and transcription initiation, 

respectively, 

 
𝑲 = [

−𝑘12 𝑘21
𝑘12 −𝑘21

] ; 𝑻 = [
𝑘INI,1 0

0 𝑘INI,2
] (32) 

Q(t) is the propagation matrix describing the transition between different i's (gene states) and 

m's (nascent mRNA numbers) at time t. Note that Q(t) is time dependent. Specifically, at t = −TEL 

we have 

 

𝑑

𝑑𝑡
𝑷(−𝑇EL) = 𝑸(−𝑇EL)𝑷(−𝑇EL) =

[
 
 
 
 
 
 
 
𝑲 − 𝑻 0 0 0
0 𝑲 − 𝑻 0 ⋯
0 0 𝑲 − 𝑻 ⋯
⋮ ⋮ ⋮ ⋱
𝑻 0 0 ⋱
0 𝑻 0 ⋱
0 0 𝑻 ⋱
⋮ ⋮ ⋮ ⋱]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑷0
𝑷∆𝑚
𝑷2∆𝑚
⋮
𝑷1

𝑷1+∆𝑚
𝑷1+2∆𝑚
⋮ ]

 
 
 
 
 
 
 

𝑡=−𝑇EL

 (33) 

    To calculate the distribution of number of nascent mRNAs, we need to time-propagate the 

initial state, P(−TEL), all the way to t = 0, i.e. 

 𝑷(0) = (𝑰 + 𝑸(−∆𝑡)∆𝑡)⋯ (𝑰 + 𝑸(−𝑇EL + ∆𝑡)∆𝑡)(𝑰 + 𝑸(−𝑇EL)∆𝑡)𝑷(−𝑇EL) (34) 

where I is the unit matrix and Δt is the time step. Since m is always zero at t = −TEL, we can write 

the initial state, P(−TEL), as  

 

𝑷(−𝑇EL) = [
𝑷0(−𝑇EL)

0
⋮

] =

[
 
 
 
 
 
 

[
 
 
 

𝑘21
𝑘12 + 𝑘21
𝑘12

𝑘12 + 𝑘21]
 
 
 

[
0
0
]

⋮ ]
 
 
 
 
 
 

 (35) 

where the distribution of gene states in P0(−TEL) satisfies the steady-state condition. Plugging in 

Equation (24) into Equation (34) will allow us to calculate P(0). Equation (25) can then be used 

to convert P(0) to the distribution of number of nascent mRNAs. 

    We note that, in Equation (34), the kinetic rates (kON, kOFF, and kINI) always appear multiplied 

by the time step, Δt. We can therefore define a time constant, T0, and scale all parameters in 

Equation (34) to dimensionless ones. Specifically, the value of TEL is rescaled to TEL/T0, the 

value of Δt is rescaled to Δt/T0, and the values of kON, kOFF, and kINI are rescaled to kON∙T0, kOFF∙T0, 

kINI∙T0, respectively. To simply the expression for g(t) (see Equations (22) and (23)), we choose 
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T0 = TEL for lacZ and T0 = TEL/1.6 for hb, where TEL = 2 min for lacZ and TEL = 2.5 min for hb 

(values estimated based on the length of the two genes). 

    Until this step, m has no upper boundary. As a result, P(t) has infinite dimensions. To enable 

numerical calculation of the relevant equations, we follow the FSP approach (Munsky and 

Khammash, 2008; Neuert et al., 2013), and truncate the dimensions of vectors and matrices in 

Equation (34) by setting an upper limit of m. The truncated P(t) and Q(t) must still be large 

enough to cover the main portion of the distribution. According to our experimental data, the 

number of nascent mRNAs at individual hb loci seldom exceeds 100 (less than 1 per 5000 loci), 

we therefore set the upper limit to be m = 100. 

    We solve Equation (34) using MATLAB. To compromise accuracy and speed, we set Δm = 0.1 

and Δt = 0.001. After code optimization, we are able to achieve a speed of <0.05 second per 

solution. Such a speed is necessary for the large-scale parameter search (see Online Methods 

Section 8.4). To ensure the accuracy of computation, we compare the computed probability 

distribution with Gillespie simulations (Gillespie, 1977; Zenklusen et al., 2008) at different 

parameter settings (Fig. SN8). The two calculation methods agree well over the full range of 

parameters tested (kON∙T0 and kOFF∙T0: 0.01-10, kINI∙T0: 1-100; R
2
 = 0.975 ± 0.004 from 64 

simulations). 

 

6.4 Maximum Likelihood Estimation (MLE) of transcription parameters 

To fit our experimental data to the theoretical model and estimate the kinetic parameters, we 

apply a Maximum Likelihood Estimation (MLE) method, following the approach of (Neuert et al., 

2013). Briefly, for a given parameter set (K = {kON, kOFF, kINI}), if the probability of observing Nm 

nascent mRNAs at a single locus is P(N|K), then the likelihood of K for a set of observations N = 

{N1, N2, …} is defined as 

 

𝐿(𝑵|𝑲) =∏𝑃(𝑁𝑗|𝑲)

𝑗

 (36) 

The best fit to our experimental data should satisfy the highest likelihood (or log-likelihood), 

namely, 

 

𝑲best = argmax
𝑲
(𝐿(𝑵|𝑲)) = argmax

𝑲
(log(𝐿(𝑵|𝑲))) = argmax

𝑲
(∑log (𝑃(𝑁𝑗|𝑲))

𝑗

) (37) 

    For a given embryo, we divide the single-locus data set into multiple subsets according to the 

nuclear Bcd concentration (the subset is marked as N([Bcd])). To ensure a sufficient number of 

data points in each subset, we use equal-population binning. We adjust the bin size for each 

nuclear cycle, to limit the range of Bcd concentration in a single bin (bin size for cycle 11: 100; 

for cycles 12-13: 200; for cycle 14: 250). In all cases, we end up with ~15 bins per embryo. 

    To fit the nascent-mRNA distribution in a given bin, we test a broad range of {kON, kOFF, kINI} 

values (covering what we considered the “physiologically plausible” space): kON and kOFF from 0 

to 10 min−1, and kINI from 0 to 100 min−1. We then look for maxima of the likelihood function (see 

Supplementary Fig. 9).  

    We followed the free parameter fit with a modified fit, using the assumption that Bcd only 

regulates kON. In that case, we fit all bins (n = 1, …, n0) together by constructing a total-likelihood 

function for the embryo, 
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𝐿𝑎𝑙𝑙(𝑵|𝑲) =∏𝑃(𝑵([Bcd]𝑛)|{𝑘ON(𝑛), 𝑘OFF, 𝑘INI})

𝑛0

𝑛=1

 (38) 

Here kOFF and kINI are both single valued, whereas kON is bin-specific. Therefore, an embryo with 

n0 bins will have n0+2 parameters. To perform parameter search in such high dimensions, we 

use a combination of simplex and simulated annealing methods (MATLAB function: 

“simulannealbnd”). To increase the accuracy, the search is applied to each embryo 24 times, 

and the result with the highest Lall is chosen. To further verify that the fitting did not get stuck in 

local solutions, we follow up with a complimentary approach: scanning all three parameters 

simultaneously within a similar range (kON and kOFF from 0.01 min−1 to 10 min−1, and kINI from 1 

min−1 to 100 min−1), and calculating the likelihood function for each parameter combination. We 

found that the scanning and fitting yielded very similar estimates for the kinetic parameters, 

suggesting that the solution found using the combined simplex and simulated annealing 

algorithm is global, not local. 

    For all fitting and scanning approaches, computation was performed on a single node (12 

cores, 48 GB memory) of a computer cluster (at the Computational and Integrative Biomedical 

Research Center of Baylor College of Medicine), using MATLAB Parallel Computing Toolbox. 

For a typical embryo, it took ~24 hours to fit each bin independently (all k’s), and ~48 hours to fit 

all bins together (kON only). 

 

6.5 Gillespie simulation and comparison with live data 

We used stochastic simulation to generate virtual kinetic data, and compared it with data from 

the literature, obtained using live imaging of an hb-MS2 reporter gene (Lucas et al., 2013). We 

first created a set of “virtual embryos” (cycles 10-13), each containing 200 hb-MS2 gene loci 

evenly distributed within the AP position range 0.15-0.85 EL (The number of loci, AP position 

range, and all other parameters were chosen to match the details in (Lucas et al., 2013). To 

model the regulation by Bcd, we created a virtual Bcd concentration, C(x) = Cmax e
−x/d, where x 

denotes the AP position. Cmax = 75 nM and d = 0.225 EL were set according to our findings in 

the current study (Fig. SN3). For each gene locus, the transcriptional activity during a nuclear 

cycle was divided into three time periods: (1) During period T1 (lasting 3.5 min for all cycles), the 

gene was at the OFF state, with no nascent mRNA produced. (2) During period T2 (lasting 1 min 

for cycle 10, 2.5 min for cycle 11, 4.5 min for cycle 12, 8 min for cycle 13), transcription initiation 

followed two-state kinetics and was modulated by Bcd concentration. (3) During period T3 (the 

remainder of the nuclear cycle), the gene is OFF again, but any nascent transcripts initiated 

during T2 continue to elongate until they are completed. 

    To simulate the two-state kinetics during T2, we used the kinetic parameters found for the 

endogenous hb gene, namely, kOFF = 1 min−1, kINI = 32 min−1, kON = k1 C
h
 / (C

h
 + C50

h
) + k0, k1 = 1.1 

min−1, k0 = 0.05 min−1, h = 6, C50 = 10 nM (Supplementary Fig. 12). Based on the length of the 

hb-MS2 reporter gene in (Lucas et al., 2013), we estimated its elongation time to be TEL = 1.70 

min. Since only the array of MS2 binding sites is fluorescently detected and quantified, we 

defined the response function as follows: 

 
𝑔(𝑡)ℎ𝑏−MS2 = {

−0.95 − 1.95 ∙ 𝑡,
0,

−1 ≤ 𝑡 < −0.49
−0.49 ≤ 𝑡 ≤ 0

 (39) 

where the time scale has been normalized by TEL. 

    Following the procedure in (Lucas et al., 2013), we recorded the following two quantities from 

each active gene locus: (1) The initiation time, defined as the time when the first transcription 



SUPPLEMENTARY NOTE 
 

 

event takes place; and (2) The persistence, defined as the time interval during which nascent 

mRNA signal is detected (Supplementary Fig. 11a). Next, we defined an AP position threshold 

(cycles 10-12: 0.5 EL; cycle 13: 0.4 EL), and used this threshold to partition all loci in an embryo 

into “anterior” and “posterior” groups. We then calculated the average values of the initiation 

time and the persistence for each group, during each cycle. Comparing our simulated data with 

the values from (Lucas et al., 2013) showed good agreement (Supplementary Fig. 11b-c). 

Consistent with the findings in (Lucas et al., 2013), the simulated initiation time did not show a 

noticeable trend with either the nuclear cycle or the AP position. In contrast, the persistence 

increased with nuclear cycle and decreased with AP position.  

 

6.6 Generalization to more than two states 

Our theoretical formalism can be extended to describe a model with multiple gene states. The 

general form of Equation (31) remains the same, but the dimensions of vectors and matrices 

involved are increased, to describe the additional states. Thus, for a three-state model (Fig. 

SN9a), we have 

 

𝑷 = [
𝑷0
𝑷∆𝑚
⋮
] =

[
 
 
 
 
 
 
 
[

𝑃1,0
𝑃2,0
𝑃3,0

]

[

𝑃1,∆𝑚
𝑃2,∆𝑚
𝑃3,∆𝑚

]

⋮ ]
 
 
 
 
 
 
 

 (40) 

 

𝑲 = [

−𝑘12 − 𝑘13 𝑘21 𝑘31
𝑘12 −𝑘21 − 𝑘23 𝑘32
𝑘13 𝑘23 −𝑘31 − 𝑘32

] ; 𝑻 = [

𝑘INI,1 0 0

0 𝑘INI,2 0

0 0 𝑘INI,3

] (41) 

 
𝑷(−𝑇EL) = [

𝑷0(−𝑇EL)
0
⋮

] (42) 

 

where P0 obeys the steady-state requirement:  

 𝑲𝑷0(−𝑇EL) = 0 (43) 

    A three-state model can be used to reproduce the observed correlation between hb alleles 

within the same nucleus (Supplementary Fig. 9c). To show that, we first assume that only one 

of the three states is transcriptionally active (kINI,1 = kini,2 = 0, kini,3 > 0), and that transitions only 

occur between neighboring ones. Next, we define both state 1 and state 2 as “nuclear” states, 

such that transitions between them must happen simultaneously for both alleles. In contrast, 

state 3 describes the state of individual hb alleles (Fig. SN9b). If we further assume that k23 

responds to Bcd concentration in a power-law form (k23 = k1 (C
h
 / C50)

h
 + k0, k1 = 1.2 min−1, k0 = 

0.05 min−1, h = 6, C0 = 10 nM) while all other transition rates are constant (k12 = 1.2 min−1, k21 = 

0.9 min−1, k32 = 1.2 min−1, kINI,3 = 32 min−1), we are then able to recreate the observed trend of 

intra-nuclear correlations between nascent hb mRNA levels (Fig. SN9c). 

 

7 Deriving the fluctuation method for measuring protein concentration 
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7.1 Modeling the immunofluorescence signal in the nucleus 

To model the immunofluorescence signal, we start with the following assumptions: (1) Bcd 

molecules are distributed randomly in a 3D volume V (the nucleus), with uniform probability over 

V. (2) Each Bcd molecule exhibits the same intensity profile in space, which is not affected by 

the presence of other Bcd molecules. (3) The size of a single Bcd molecule is much smaller 

than the optical diffraction limit, therefore the intensity profile of a single Bcd molecule can be 

described by the point spread function (PSF) f(r−r0), where r = (x,y,z) is the imaging position, and 

r0 = (x0,y0,z0) is the position of the Bcd molecule. 

   Suppose a nucleus contains N Bcd molecules at positions r1, …, rN. The observed 

fluorescence signal I at a position r is then the sum of individual PSFs, or, 

 
𝐼(𝒓|𝒓𝟏, ⋯ , 𝒓𝑵) =∑𝑓(𝒓 − 𝒓𝒊)

𝑁

𝑖=1

 (44) 

Therefore, by averaging over all possible positions of all molecules, the expectation value of I at 

the position r is 

 
𝐼(𝒓) =∑∫ 𝑑𝒓𝒊 𝑓(𝒓 − 𝒓𝒊)𝑝(𝒓𝒊)

𝑉

𝑁

𝑖=1

=
𝑁

𝑉
∫ 𝑑𝒓𝟎 𝑓(𝒓 − 𝒓𝟎)
𝑉

 (45) 

where p(ri) = 1/V is the probability of having the i’th Bcd molecule at position ri.  

 

7.2 The mean and variance of nuclear immunofluorescence intensity 

Suppose that the image of a nucleus contains m voxels, with each voxel corresponding to an 

imaging position rj (j = 1, …, m). The fluorescence signal from each voxel obeys Equation (45) 

with r = rj. Therefore, the average fluorescence over all voxels should have the following 

expectation value: 

 
Mean(𝐼) = 〈𝐼(𝒓𝒋)〉𝑗=1,⋯,𝑚 =

𝑁

𝑉

1

𝑚
∑∫ 𝑑𝒓𝟎 𝑓(𝒓𝒋 − 𝒓𝟎)

𝑉

𝑚

𝑗=1

 (46) 

where “∙” denotes averaging over different imaging positions. Similarly, the expectation value 

for the variance of fluorescence is 

 
Var(𝐼) = 〈𝐼(𝒓𝒋)

2
〉 − 〈𝐼(𝒓𝒋)〉

2 = 〈𝐼(𝒓𝒋)
2
〉 − 〈𝐼(𝒓𝒋)〉

2 (47) 

where, 

 
〈𝐼(𝒓𝒋)

2
〉 =

1

𝑚
∑𝐼(𝒓𝒋)

2
𝑚

𝑗=1

 

=
1

𝑚
∑[

𝑁

𝑉
∫ 𝑑𝒓𝟎 𝑓(𝒓𝒋 − 𝒓𝟎)

2

𝑉

+
𝑁(𝑁 − 1)

𝑉2
(∫ 𝑑𝒓𝟎 𝑓(𝒓𝒋 − 𝒓𝟎)
𝑉

)

2

]

𝑚

𝑗=1

 

(48) 

 

〈𝐼(𝒓𝒋)〉
2 =

1

𝑚2
(∑∑𝑓(𝒓𝒋 − 𝒓𝒊)

𝑁

𝑖=1

𝑚

𝑗=1

)

2

 (49) 
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=
1

𝑚2
∑∑ [

𝑁

𝑉
∫ 𝑑𝒓𝟎 𝑓(𝒓𝒋 − 𝒓𝟎)𝑓(𝒓𝒋′ − 𝒓𝟎)
𝑉

𝑚

𝑗′=1

𝑚

𝑗=1

+
𝑁(𝑁 − 1)

𝑉2
∫ 𝑑𝒓𝟎 𝑓(𝒓𝒋 − 𝒓𝟎)
𝑉

∫ 𝑑𝒓𝟎′ 𝑓(𝒓𝒋′ − 𝒓𝟎′)
𝑉

] 

    Next, we note that the size of the PSF (~200 nm in x and y directions and ~500 nm in z 

direction) is much smaller than the whole nucleus (~6 μm in all three dimensions). Therefore, by 

excluding the nuclear boundary voxels (see Supplementary Note Section 3 for details), we 

can replace the integrals in Equations (46), (48), (49) with the following approximations: 

 
∫ 𝑑𝒓𝟎 𝑓(𝒓𝒋 − 𝒓𝟎)
𝑉

≈∭𝑑𝒓 𝑓(𝒓) ≡ ‖𝑓‖ (50) 

 
∫ 𝑑𝒓𝟎 𝑓(𝒓𝒋 − 𝒓𝟎)

2

𝑉

≈∭𝑑𝒓 𝑓(𝒓)2 ≡ ‖𝑓2‖ (51) 

where “∫∫∫” denotes integration over the entire 3D space. Equations (50) and (51) allow us to 

rewrite Equations (46) and (47) as 

 
Mean(𝐼) ≈

𝑁

𝑉
‖𝑓‖ (52) 

 
Var(𝐼) ≈

𝑁

𝑉
‖𝑓2‖ −

𝑁

𝑉𝑚2
∑ ‖𝑓𝑗𝑓𝑗′‖

𝑚

𝑗,𝑗′=1

 (53) 

where fj = f(rj−r0).  

    In Equation (53), since f is a localized function, it is easy to see that the magnitude of 

‖𝑓𝑗𝑓𝑗′‖ decreases with the distance between two imaging positions rj and rj’. More specifically, a 

significant contribution is obtained only when this distance is smaller than the PSF size. 

Therefore, the double sum in Equation (53) should be proportional to m instead of m2, namely,  

 
∑ ‖𝑓𝑗𝑓𝑗′‖

𝑚

𝑗,𝑗′=1

= 𝑚𝐺𝑚‖𝑓
2‖ (54) 

where Gm is a function of the voxel number m, and should saturate at large m. We calculated Gm 

numerically, by simulating the image of a “virtual nucleus” using the actual form of the PSF for 

different fluorescent channels (see Supplementary Note Section 7.3). The results are shown 

in Supplementary Figure 5f. Since Gm is always smaller than 40, while m > 1000 voxels for a 

typical nucleus, we can neglect the second term on the right hand side of Equation (53), such 

that, 

 
Var(𝐼) ≈

𝑁

𝑉
‖𝑓2‖ (55) 

  

7.3 Obtaining the single-Bcd intensity from nuclear intensity fluctuations 

As seen from Equation (52), the key to converting the average pixel intensity of a nucleus to its 

Bcd concentration is ‖𝑓‖, the integrated fluorescence signal of a single Bcd molecule. To obtain 

this quantity, we measured the ratio between the variance and mean of the fluorescence from 

individual nuclei, k (equivalently, the slope of our linear fit for the variance vs. mean plot, see 
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Supplementary Note Section 3.3). According to Equations (52) and (55), k is a constant that 

depends only on the shape and magnitude of the PSF, i.e. 

 
𝑘 =

Var(𝐼)

Mean(𝐼)
≈
‖𝑓2‖

‖𝑓‖
 (56) 

    For confocal imaging, we can approximate the PSF using a 3D Gaussian function (Zhang et 

al., 2007),  

 

𝑓 =  
𝐴

(2𝜋)
3
2⁄ 𝜎𝑥𝜎𝑦𝜎𝑧

𝑒
−
𝑥2

2𝜎𝑥
2−
𝑦2

2𝜎𝑦
2−

𝑧2

2𝜎𝑧
2
 (57) 

where σx, σy, σz are half-widths of the PSF in the x, y, z dimensions, respectively, and A is the 

amplitude, i.e. 

 ‖𝑓‖ = 𝐴 (58) 

Therefore, by applying Equation (57) to Equation (56), we get 

 𝐴 ≈  8(𝜋)
3
2⁄ 𝜎𝑥𝜎𝑦𝜎𝑧𝑘 (59) 

This directly relates the single-Bcd fluorescence to the measurable quantity k. Bcd concentration 

can now be calculated using Equation (52), i.e. 

 
𝐶 =

𝑁

𝑉
=
Mean(𝐼)

𝐴
 (60) 

Recall that, as an alternative method, we also extracted the single-Bcd fluorescence A by 

identifying individual antibody-labeled molecules (see Supplementary Note Section 3.2). In 

this case, the typical spot intensity I1 is essentially the integrated intensity (over xy dimensions) 

at the central z slice, therefore, 

 
𝐼1 = ∫ 𝑓𝑧=0𝑑𝑆

𝑆

= 
𝐴

(2𝜋)
1
2⁄ 𝜎𝑧

 (61) 

The agreement between the two methods in estimating Bcd concentration (Fig. 1d) indicates 

that they both provide similar estimates for the single-molecule intensity A. 

    In the above derivations, the PSF half-widths, σx, σy, σz, were determined experimentally from 

individual Bcd particles. Specifically, for Alexa 488 channel, σxy = 1.35 pixels (110 nm) and σz = 

0.8 voxel (280 nm). For Alexa 647 channel, σxy = 1.8 pixels (150 nm) and σz = 1 voxel (350 nm).  

  

7.4 Estimating the effect of imaging noise 

Experimental noise due to the imaging process may cause an overestimation of the variance in 

fluorescence, leading to an error in our measurement of Bcd concentration. To characterize this 

effect, we consider the imaging “shot noise”, which is due to the stochastic nature of photon 

emission and counting (Pawley, 2006). The shot noise obeys Poisson statistics, 

 
𝑃(𝑞|𝑄) =  

𝑄𝑞

𝑞!
𝑒−𝑄 (62) 

where Q is the expected number of photons (per pixel and per acquisition), and q is the actual 

number of photons being observed (for a given pixel and during a given acquisition). 

   To incorporate the effect of the shot noise, we need to rewrite the expressions for the 

fluorescence mean and variance (Equations (46) and (47)) to include averaging over different 
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q’s. We assume that the observed fluorescence intensity of a voxel is proportional to the number 

of detected photons (I = βq, where β is a constant), and likewise the expected fluorescence 

intensity of a voxel is proportional to the expected photon number (Σfj = βQ). By re-defining “‖∙‖” 

as both an integration over space and a summation over all possible q values (q = 0,1,2,…), we 

can rewrite Equations (46) and (47) as 

 
Mean(𝐼) ≈

𝑁

𝑉
‖𝑓‖ =

𝑁𝛽

𝑉
‖
𝑓(𝒓)

𝛽
‖ =

𝑁𝛽

𝑉
∭𝑑𝒓 ∑ 𝑞𝑃(𝑞|

𝑓(𝒓)

𝛽
)

∞

𝑞=0

=
𝑁

𝑉
∭𝑑𝒓 𝑓(𝒓) (63) 

 
Var(𝐼) ≈

𝑁

𝑉
‖𝑓2‖ =

𝑁𝛽2

𝑉
‖
𝑓(𝒓)2

𝛽2
‖ =

𝑁𝛽2

𝑉
∭𝑑𝒓 ∑𝑞2𝑃(𝑞|

𝑓(𝒓)

𝛽
)

∞

𝑞=0

 

=
𝑁𝛽2

𝑉
∭𝑑𝒓 (

𝑓(𝒓)

𝛽
+
𝑓(𝒓)2

𝛽2
) =

𝑁

𝑉
[𝛽∭𝑑𝒓 𝑓(𝒓) +∭𝑑𝒓 𝑓(𝒓)2] 

(64) 

    In the final expression of Equation (64), the first term indicates the contribution of the shot 

noise. Therefore, the effect of noise can be diminished by lowering β. This can be achieved by 

scanning each pixel multiple times and taking the average intensity value (this is done using a 

standard setting of the Zeiss Zen imaging software). When varying the number of scans, we 

found that the slope k between intensity variance and mean (see Supplementary Note Section 

7.3) initially decreases with the scan number and then approaches a constant value 

(Supplementary Fig. 5g). This indicates that the noise level of a single scan is significant 

(>40%), and averaging over multiple scannings is necessary for accurate quantification of k. In 

our experiments, we chose to use 8 scannings per pixel, which was enough to lower the shot 

noise effect to <10%, and only caused a photobleaching of <1.5%, while allowing the imaging of 

an entire embryo in ~3 hours. 

 

8 Error estimates 

 

8.1 Estimating the efficiency of mRNA labeling and detection 

Our accuracy of quantifying mRNA depends critically on the efficiency of labeling the mRNA 

using smFISH probes. This efficiency can be described through the parameter p0, defined as the 

probability of a probe binding site being occupied. We developed four different methods to 

estimate p0: 

    (1) In the histogram of smFISH spot intensities, real mRNAs and false-positive spots appear 

as separate peaks (Supplementary Fig. 4a). Assuming that false-positive spots mainly 

correspond to the nonspecific binding of individual smFISH probes, we estimated the most 

probable number of probes binding on an individual mRNA molecule as the ratio between the 

intensity of the positive and the negative peaks. The probe binding probability is therefore 

 
𝑝0 =

𝐼positive

𝑁set ∙ 𝐼negative
 (65) 

where Nset is the total number of probes in the probe set (Nset = 48 for hb), Ipositive is the typical 

intensity of individual mRNA spots, Inegative is the intensity of false-positive spots. This calculation 

yielded p0 = 0.12 ± 0.01 (Supplementary Fig. 4e, data averaged from 3 embryos). 

    (2) As described in Supplementary Note Section 2.1, we can use a Gaussian fit to extract 

the typical intensity I0 and the half-width w0 of the intensity distribution for positive mRNA spots 

(Supplementary Fig. 4b). If we assume that the binding and unbinding of each probe is 
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independent of all other probes, then the number of bound probes follows simple binomial 

statistics. If we further assume that the fluorescence from each probe has a fixed value A0, we 

can then express I0 and w0 as  

 𝐼0 = 𝑁set ∙ 𝑝0 ∙ 𝐴0 

𝑤0 = √𝑁set ∙ 𝑝0 ∙ (1 − 𝑝0) ∙ 𝐴0 
(66) 

Accordingly, the probe binding probability p0 can be estimated as 

 
𝑝0 =

1

𝑁set ∙ (
𝑤0
𝐼0
)2 + 1

 (67) 

This method yielded p0 = 0.08 ± 0.02 (Supplementary Fig. 4e, data averaged from 3 embryos). 

    (3) Assuming that the probe binding probability for different sequences is similar, we 

performed a two-color experiment similar to the one described in Supplementary Note Section 

1.1, where we labeled the same set of lacZ smFISH probes with two different colors, and 

applied them in equal molarity to the same embryo. To compare the signal from the two different 

channels, we identified mRNA spots that appeared in both channels (for spot matching 

procedure, see Supplementary Note Section 1.1), and plotted the 2D histogram of spot 

intensities (Supplementary Fig. 4c). To estimate p0 from the histogram, we consider the 

Pearson correlation coefficient, ρ, between two channels. Because probes with different colors 

compete to hybridize with the target sequence, we expect negative correlation between 

channels. To extract the correlation from experimental data, we fitted the histogram to a 2D 

Gaussian function, 

 𝑝(𝐼, 𝐽) = 𝐴𝑒−(𝑎(𝐼−𝐼0)
2−2𝑏(𝐼−𝐼0)(𝐽−𝐽0)+𝑐(𝐽−𝐽0)

2) (68) 

where I and J are the intensity values from the two channels, respectively. Applying this 

distribution function, we get 

 
𝜌 =

𝑏

2√𝑎𝑐
 (69) 

If we now assume that, for each channel, probe binding/unbinding follows binomial statistics 

with a probe binding probability of 0.5p0, then the two-color system follows multinomial statistics. 

As a result, we can write p0 as a function of the correlation coefficient, ρ (Evans et al., 2000), 

such that, 

 
𝑝0 =

−2𝜌

1 − 𝜌
 (70) 

Using this method, we obtained p0 = 0.11 ± 0.01 (Supplementary Fig. 4e, data averaged from 4 

embryos). 

    (4) Following the same assumption as in method #3, we created a set of smFISH probes for 

the lacZ gene, where probes corresponding to the 5' half of the gene were conjugated with one 

color, while those corresponding to the 3' half were conjugated with another color. We applied 

this probe set to the embryo and identified the mRNA spots that appear in each channel 

(Supplementary Fig. 4d). Next, we counted for each channel the fraction of spots that also 

appeared in the other channel. Assuming that probes of different colors bind independently, this 

conditional probability should be identical to the marginal probability of mRNA detected in a 

single channel: (P(1|2) = P(1), P(2|1) = P(2)). To relate this mRNA detection efficiency to p0, we 

again assume binomial statistics of probe binding,  to obtain 
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𝑃(1) = 𝑃(2) = ∑ (
𝑁half
𝑘
)𝑝0

𝑘(1 − 𝑝0)
𝑁half−𝑘

𝑁half

𝑘=𝑁th

 (71) 

where Nhalf denotes the number of probes with one color (half of a set), and Nth is the detection 

threshold for individual mRNA molecules. Based on our threshold setting (Supplementary Fig. 

4a), Nth roughly corresponds to half of the value of the positive smFISH peak, or Nall∙p0/2. By 

applying Equation (71), we obtained p0 = 0.09 ± 0.01 (Supplementary Fig. 4e, data averaged 

from 4 embryos). 

    To summarize, all four methods above give similar estimates of the probe binding probability, 

p0 ~10% (Supplementary Fig. 4e). We next used this value to estimate the mRNA detection 

efficiency, PRNA. Assuming binomial statistics of probe binding, we obtain 

 

𝑃RNA = ∑ (
𝑁set
𝑘
) 𝑝0

𝑘(1 − 𝑝0)
𝑁set−𝑘

𝑁set

𝑘=𝑁th

 (72) 

where Nset is the number of probes in the full set. As mentioned above (method #4), Nth ≈ 

Nall∙p0/2. This yields a detection efficiency of ~80% for hb mRNA (0.87 ± 0.02 for method 1, 0.76 

± 0.11 for method #2, 0.80 ± 0.02 for method #3, 0.81 ± 0.03 for method #4; Supplementary 

Fig. 4f). 

    The above estimations are likely to be lower bounds rather than the actual values. This is due 

to the following reasons: (1) In method #1, we assumed that false-positive spots correspond to 

individual smFISH probes. However, it is possible that these spots correspond to multiple 

smFISH probes bound together. In addition, there is no guarantee that individual probes can be 

detected under the confocal imaging, therefore the weakest detectable spots may again 

correspond to multiple probes. As a result, we may have overestimated the intensity of a single 

smFISH probe, and underestimated p0. (2) In method #2, we assumed that the half-width w0 of 

the intensity distribution for positive mRNA spots arises solely from the stochasticity of probe 

binding. However, additional factors likely contribute to the variability in the fluorescence signal, 

for example the photon shot noise of individual smFISH probes (discussed in Supplementary 

Note Section 7.4). Thus, we may have overestimated the variance caused by stochastic probe 

binding, and underestimated p0. (3) Similarly, the fluctuation in single-probe intensity will also 

affects method #3, where the correlation coefficient is defined as the ratio between covariance 

and variance. Since different fluorophores emit independently, the fluctuations in single-probe 

fluorescence (for each channel) contribute to the variance but not the covariance of the spot 

intensity distribution. Thus, we may have underestimated the correlation coefficient and p0. (4) In 

method #4, we again did not consider the fluctuations in single-probe intensity in Equation (72), 

which lower our estimation of P(1|2) and p0.  

    A previous study (Little et al., 2013) reported that smFISH labeling of hb using 114 probes 

yielded an estimated mRNA detection efficiency of ~94%. Applying Equation (72) above using 

this number of probes suggests a probe binding probability of p0 ≈ 0.1. Thus, we estimate that 

our probe binding probability is comparable to that of (Little et al., 2013). The smaller number of 

smFISH probes used in the current work (48 versus 114) reflects our choice to target only the 

coding region of the hb gene and to maintain optimal probe design parameters (Raj et al., 

2008).  

 

8.2 Estimating the error in nascent mRNA quantification  
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To estimate the error in nascent mRNA quantification due to finite probe binding probability, we 

assume binomial distribution for all of the probe binding sites on nascent mRNAs at a given 

gene locus. Thus, 

 𝑛nas = 𝑁nas ∙ 𝑁set ∙ 𝑝0 

𝜎nas = √𝑁nas ∙ 𝑁set ∙ 𝑝0 ∙ (1 − 𝑝0) 
(73) 

 
𝜎nas
𝑛nas

= √
(1 − 𝑝0)

𝑁nas ∙ 𝑁set ∙ 𝑝0
 

(74) 

where nnas and σnas are the mean and standard deviation of the number of bound probes, 

respectively, Nnas is the number of nascent mRNAs, Nset is the total number of probes in the 

probe set, and p0 is the probe binding probability. Following our measurement of Nnas, we applied 

Equation (74) to each active hb locus within a single embryo, and calculated the average error 

in quantifying nascent mRNA, 〈σnas/nnas〉, to be ~10% for cycles 11-13 embryos, and ~13% for 

cycle 14 embryos (Supplementary Fig. 4g). 

 

8.3 Estimating the error in estimating model parameters 

When modeling hb transcription kinetics, errors in mRNA and protein quantification are 

expected to propagate into our estimation of kinetic parameters of the two-state model. 

Specifically, we consider below the effect of three types of errors: (1) The error in quantifying 

nascent mRNA; (2) The error in identifying active transcription sites; and (3) The error in 

quantifying nuclear Bcd concentration.  

    To characterize how the errors above propagate into our estimation of model parameters, we 

simulated our experimental data as follows. We created a “virtual embryo” containing 700 

nuclei, evenly distributed on the AP axis (x = 0.25-0.75 EL). Bcd concentration in the nuclei 

follows an exponential gradient, 𝐶(𝑥) = 𝐶max𝑒
−𝑥/𝑑 with Cmax = 75 nM and d = 0.225 EL (see Fig. 

SN3). To simulate hb transcription, we created two hb gene loci in each nucleus, and applied a 

Gillespie algorithm of the two-state model with the following parameters: TEL = 2.5 min, kOFF = 

0.9 min−1, kINI = 32 min−1, kON = k1 C
h
 / (C

h
 + C50

h
) + k0, k1 = 1.2 min−1, k0 = 0.05 min−1, h = 6, C0 = 

10 nM (see Supplementary Fig. 12). After 5 minutes of transcription, we recorded the number 

of nascent mRNA molecules at each gene locus. We then applied different type of quantification 

errors to this data set.  

    As discussed in Supplementary Note Section 8.2, the finite binding probability by smFISH 

probes leads to errors in quantifying nascent mRNA. To test how this error propagates into our 

model of hb transcription kinetics, we simulated the smFISH labeling and quantification 

processes. First, we multiplied the number of nascent mRNAs at each hb locus by 48, to 

calculate the number of probe binding sites. We then applied a binomial statistics with p0 = 0.1 

to estimate the number of bound probes. Following our method of quantifying the smFISH signal 

(see Supplementary Note Section 2.2), we used the typical signal of a single mRNA (Np0, N = 

48) to calibrate the measured nascent mRNA level, and then filtered the value using a threshold 

of Nth = 3 mRNAs (see Supplementary Note Section 2.2) to distinguish active from inactive 

loci. With this new set of single-locus data, we then performed parameter estimation for the two-

state model (see Supplementary Note Section 6.4), and compared the resulting parameter 

values (h, C50, k1, k0, kOFF, kINI) with the original setting (see the preceding paragraph). We found 

that for all parameters (except for k0, whose absolute value is small), the deviation from the 

original setting was ≤ 15% (Fig. SN10a). 



SUPPLEMENTARY NOTE 
 

 

    Another source of error we considered is due to the specific choice of intensity threshold for 

detecting active transcription sites (Nth, see Supplementary Note Section 2.2). The value of 3 

mRNAs was chosen to avoid false classification of two closely-spaced individual mRNAs as a 

transcription site. We varied the value of Nth between 1 and 4 mRNAs and performed the same 

fitting procedure as described in the preceding paragraph. We found that among all kinetic 

parameters (except for k0, whose absolute value is small), k1 and kOFF were the main species that 

vary with Nth. For both of them, the deviation from the original setting  was less than 20% for Nth 

≤ 4 (Fig. SN11a). 

    Finally, we estimated the effect of errors in quantifying nuclear Bcd concentration. These in 

turn are due to two factors: (1) the inaccuracy in estimating the single-Bcd fluorescence (see 

Supplementary Note Section 3), and (2) fluctuations of antibody labeling, e.g. heterogeneity in 

the number of antibodies labeling each Bcd molecule. The former factor only leads to a scaling 

factor in Bcd quantification, while not affecting the distribution of nascent mRNAs. Thus, it only 

affects h and C50, but not the other k’s. Here we mainly consider the latter factor, which results in 

an error between Bcd concentration and the immunofluorescence signal. In analyzing hb 

statistics, nuclei may be assigned to the wrong Bcd bin, affecting the two-state fitting procedure. 

To quantify this effect, we added to our simulation a Bcd measurement step, in which we 

applied a Gaussian error to the measurement. As a simple case, we assumed that the noise 

amplitude, σ, is proportional to the real Bcd concentration, C, of each nucleus (e.g. the relative 

noise amplitude, σ/C, is a constant). We next repeated the fitting procedure as above, and 

binned the data using the “measured” Bcd concentration. Based on our measurement of single-

Bcd fluorescence intensity (Fig. 1c), the relative noise amplitude for single-Bcd quantification is 

~30%, resulting in an even smaller value for the error in estimating Bcd concentration. By trying 

different values of σ/C, we found that the deviation of the kinetic parameters from the original 

setting was ≤ 20% for σ/C ≤ 20%. (Fig. SN10b). 
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Figure SN1. Measuring optical aberrations.

SUPPLEMENTARY NOTE

(a) Intensity profiles for samples of uniformly mixed fluorophores, using a 63× oil immersion 
objective. Each profile was obtained by averaging measurements from 6 different areas of the 
sample, with each measurement first normalized by the maximal intensity. (b) The distribution of 
distance between smFISH spots from different channels. Left: Alexa 488 vs. TAMRA, data from 
>20,000 spots in a single cycle 12 embryo. Right: TAMRA vs. Alexa 647, data from >20,000 spots 
in a single cycle 12 embryo. Two groups of spot pairs were recognized from the distribution. A 
distance threshold was used to identify inter-channel spot pairs corresponding to the same 
mRNA. (c) The distribution of spatial mismatch in the z dimension for inter-channel spot pairs 
corresponding to the same mRNA (the same data set as in Panel b). (d) The relation between the 
inter-channel spatial mismatch and spot position in x and y dimensions. Upper four plots: Alexa 
488 vs. TAMRA, data from >20,000 spots in a single cycle 12 embryo. Lower four plots: TAMRA 
vs. Alexa 647, data from >20,000 spots in a single cycle 12 embryo. Data from individual spot 
pairs (gray) was binned along the x or y axis (black, mean ± S.E.M.) and fitted to a linear function 
(red).
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Figure SN2. The nuclear segmentation.

a

DNA 

b

(a) Automated segmentation of nuclei. Left: At each image plane, the DNA signal was used to 
identify nuclear boundaries (white). Scale bar, 2 μm. Right: The nuclear boundaries from different 
image planes were stitched together to reconstruct each nucleus in 3D. (b) Comparison of the 
nuclear-to-cytoplasmic area ratio between different nuclear cycles. Data from 31 embryos, cycles 
10-14. Gray, individual embryos. Red, mean value. Pink area, 95% confidence interval. Blue area, 
±1 standard deviation.

SUPPLEMENTARY NOTE



11 12 13 14
0

0.1

0.2

0.3

Cycle

D
ec

ay
 le

ng
th

 (E
L)

 

 Data
Ref. 1
Ref. 2-4

a

0 0.5 1
0

0.5

1

1.5

2
x 104

In
te

ns
ity

 (A
.U

.)

 

Data

Fit
Bin

Cycle 12

AP position (EL)

e

0 0.5 1
0

0.5

1

1.5

2

2.5
x 104

In
te

ns
ity

 (A
.U

.)

 

Data

Fit
Bin

Cycle 11

AP position (EL)

0 0.5 1
 

Data

Fit
Bin

0

0.2

0.4

0.6

0.8

1.0
x 104

In
te

ns
ity

 (A
.U

.)

Cycle 13

AP position (EL)
0 0.5 1

AP position (EL)

 

Data

Fit
Bin

0

0.5

1

1.5
x 104

In
te

ns
ity

 (A
.U

.)

Cycle 14

b

c d

Figure SN3. The spatial profile of Bcd immunofluorescence.

SUPPLEMENTARY NOTE

(a) – (d) The exponential gradient of nuclear Bcd immunofluorescence along the AP axis of 
individual wild-type embryos during cycles 11-14. Data from individual nuclei (gray) was binned 
along the AP axis (black, mean ± S.E.M.) and fitted to an exponential function (red). (e) A 
comparison of the exponential decay length between different cycles. Our data (red; cycle 11, 7 
embryos; cycle 12, 9 embryos; cycle 13, 7 embryos; cycle 14, 7 embryos) shows good agreement 
with the literature (Blue: [1] Abu-Arish et al. 2007. Gray: [2] Houchmandzadeh et al. 2002; [3] 
Gregor et al. 2007; [4] Little et al. 2011). Error bars indicate S.E.M.
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Figure SN4. The robustness of fitting the gene regulation function.

SUPPLEMENTARY NOTE

(a) – (d) Comparing parameters extracted from the gene regulation function using different 
binning criteria. The x axis of each plot discriminates equal-population binning (left) and 
equal-concentration-interval binning (right). Data is from the hb gene in wild-type embryos (cycle 
11, 7 embryos; cycle 12, 9 embryos; cycle 13, 7 embryos; cycle 14, 7 embryos). Error bars 
represent S.E.M.
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Figure SN5. Extracting the plateau levels of Bcd enrichment.

SUPPLEMENTARY NOTE

Left: The Bcd binding curves for the hb gene (red, data from 9 wild-type embryos, cycle 12) and 
the bcd3-lacZ reporter gene (blue, data from 23 transgenic embryos, cycles 11-14). Right: The 
distributions of Bcd enrichment values from all data points on each binding curve (hb, red dots; 
bcd3-lacZ, blue dots). Each distribution was fitted to a sum of Gaussian functions (lines) to extract 
the mean and width of each enrichment plateau. The plateau of Bcd enrichment at bcd3-lacZ, 
measured at high Bcd concentration (arrow), was used to rescale Bcd enrichment at other genes.
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Figure SN6. The robustness of measuring the Bcd binding curve.

SUPPLEMENTARY NOTE

Comparing the Bcd binding curve at the hb gene using different binning criteria (data from 9 
embryos, cycle 12). Top, equal-population binning. Bottom, equal-concentration-interval binning. 
Lines, mean values. Shading, S.E.M.
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Figure SN7. The contribution function for modeling the distribution of nascent mRNA numbers.

SUPPLEMENTARY NOTE

(a) The contribution function of the lacZ gene. The observed smFISH signal for a nascent 
transcript is plotted as a function of the initiation time of the transcript. The signal, represented as 
the number of bound smFISH probes, is proportional to the length of the nascent transcript 
(bottom schematic). (b) The contribution function of the hb gene. Because the smFISH probes 
only cover the coding region of the gene, the observed smFISH signal of a nascent hb transcript 
is a piecewise-linear function of the initiation time, which only varies with the initiation time in a 
particular time window. 
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Figure SN8. Validating the accuracy of the finite state projection method.
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SUPPLEMENTARY NOTE

(a) – (d) A comparison of the distribution of number of nascent mRNAs obtained using the 
Gillespie simulation (gray) with the results of the finite state projection method (red). The two 
computational methods agree well over the full range of kinetic parameters tested.
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Figure SN9. The three-state model.

c

SUPPLEMENTARY NOTE

(a) A general three-state model of transcription. The gene stochastically switches between three 
different states, with transition rates kij (i, j = 1, 2, 3). In each state, transcription is stochastically 
initiated at rate kINI,i (i = 1, 2, 3). Transcript elongation occurs deterministically with speed VEL. 
Once elongation is completed, the transcript is released from the gene locus. (b) Modeling two hb 
alleles in the same nucleus using a correlated three-state model. State 1 and state 2 represent 
“nuclear” states that are shared by the two alleles. Both states are silent. State 3 represents an 
active gene state of individual alleles. (c) The calculated correlation coefficient between two hb 
loci in the same nucleus, as a function of nuclear Bcd concentration. The model described in 
Panel b was simulated. The simulation agrees qualitatively with the experimental data 
(Supplementary Figure 8c).
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Figure SN10. Error estimation for the two-state model parameters.

b

SUPPLEMENTARY NOTE

(a) Estimated error (deviation from the pre-set value) in the extracted kinetic parameters as a 
function of the threshold for detecting active transcription sites, Nth (data from a single virtual 
embryo, 700 nuclei, AP positions 0.25-0.7 EL, no Bcd quantification noise). (b) Estimated error 
(deviation from the pre-set value) in the extracted kinetic parameters as a function of the noise in 
Bcd quantification (data from a single virtual embryo, 700 nuclei, AP positions 0.25-0.7 EL, Nth = 
3).
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