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E1. Model details 

The model proposed in this study is based on a modification of a previously published one [E1]. For 

aspects that have been newly introduced in this study, we provide full details here. Where the model 

is unchanged with respect to the original version, we report modeling choices, and we redirect the 

reader to the reference study [E1] for details on their rationale. 

 

E1.1 Socio-demographic structure and its evolution 

The model reproduces the socio-demographic structure of Arkansas and its changes over time using 

individual based modeling [E2, E3]. A full validation of the socio-demographic model is reported in 

the reference study [E1]. 

Model population was initialized according to census data for Arkansas in year 2000 (2,673,400 

individuals) and spatially distributed according to the estimated population density [E4] over 219 

square cells covering the state territory. The spatial distribution of households, schools and 

workplaces was assumed proportional to the population density. 

The composition of households is allocated in such a way to match marginal distributions of 

household size and population age structure from census data, and to maintain realistic age 

differences between generations (parents and children) within them. School sizes by type, school 

attendance rates by school type, as well as the distribution of workplace establishments by size and 

the age-specific probability of being employed were used to populate schools and workplaces, 

based on publicly available data [E1]. The assignment of students to schools / workers to 

workplaces was done in such a way that the probability density function of commuting distances 

complies with a power law (as proposed in [E2]) with parameters of the power law estimated for the 

US and Europe in [E3, E5]. 

The demography and the network of contacts among individuals are updated at the end of each 

year: individuals come to life, grow older, generate new households, procreate and die; the 



 

 

processes of school enrolment (following the educational career), new employment, job loss and 

retirement are also modeled. The evolution of the socio-demographic structure was validated 

against Arkansas data and projections of the age structure in 2005 and 2030, and against the total 

number of births, deaths, marriages and divorces in 2001-2005 [E1]. 

 

E1.2 TB natural history 

The compartmental structure of the model is displayed in Figure 1 in the main text. Individuals are 

born Uninfected and move to the Recent infection compartment upon contact with an infectious 

individual (either Ip, In or Ix). Recent infection is asymptomatic and progresses to either of the 

following epidemiological outcomes: i) the host heals completely, clearing the pathogen via 

immune response, with a probability χ (individual moved back to the Uninfected class); ii) the host 

progresses to TB disease within a few years from infection episode [E6] (termed “primary TB”), 

with an age-dependent probability p(a); iii) the host develops LTBI with a residual probability 1– χ 

– p(a). Progression from the Recent infection class to any of the considered outcomes occurs with a 

rate k; the Recent infection compartment has the function to delay the emergence of TB, given that 

Mycobacterium tuberculosis are slow replicating bacteria and TB symptoms require up to several 

years to develop. Individuals with LTBI are asymptomatic and non-infectious, and are subject to an 

age-dependent risk ρ(a) of developing Active TB via endogenous reactivation [E6], even several 

years or decades after the infection episode. Individuals with LTBI can be re-infected by contact 

with a TB infectious case (i.e. an individual moves to the Reinfection compartment, having the 

same meaning and characteristics of Recent infection). Re-infected individuals exit their 

compartment with a rate k, just like first-time exposed, and either develop active TB (“exogenous 

reinfection”) within a few years or revert to the latent class. The probability of developing 

exogenous reinfection is lower than that of first-time exposed through an age-dependent coefficient 

σ(a), representing the probability of protection from TB-specific immune memory arising after first 



 

 

exposure to TB [E1, E6, E7]. 

Individuals with Active TB can develop infectious (pulmonary) or non-infectious (extrapulmonary) 

TB with a probability π . Individuals with infectious TB are assigned a differential infectiousness 

based on the age-specific proportion h(a) of being sputum smear positive, i.e. to have acid fast 

bacilli detected in their sputum, estimated from Arkansas surveillance data on TB sputum samples 

from 1997-2004 E[1]. Smear positive individuals are considered four times more infectious than 

smear negative ones based on estimates from literature [E8, E9]. Irrespectively of the site of TB and 

smear status, individuals with TB are passively diagnosed and cured with a rate γ, or die because of 

TB with a mortality rate μTB. Cured individuals move to the L compartment, given that it is not 

known whether TB treatment can completely clear the pathogen [E10, E11]. 

 

E1.3 Epidemiological risks 

The functional forms of the age-specific risk of primary TB p(a) and the age-specific protection 

from previous infection σ(a) were assumed to be piece-wise linear functions, following [E6]. More 

specifically, they are assumed to be constant from age 0 to a1=10 years, linearly increasing from a1 

to a2=20 years, and constant again from a2 to 100. The slope of the curve in the linearly increasing 

segment is chosen in such a way that the function is continuous. The age-specific probability of 

smear-positive TB h(a) has the same general form[E6], but a1 is set to 5 years and a2 to 25 years 

based on available data from a molecular epidemiology study in Arkansas [E12]. The functional 

form of the reactivation risk ρ(a) increases linearly from 0 to a value r50 until the age of 50 and 

quadratically from age 51 to 100. This accelerated growth in the reactivation risk for the elderly was 

previously shown to be necessary to fit the age-specific profile of TB incidence in Arkansas [E1], 

and is consistent with assumptions taken by modelers for the reactivation risk of other chronic 

infections (e.g. for Varicella Zoster Virus [E13, E14]). 

 



 

 

E1.4 Contact investigation 

The contact investigation procedure is a novelty of the present model. The procedure is 

implemented in such a way to mimic the process defined by the guidelines of the United States 

Centers for Disease Control (CDC) [E15], that we briefly summarize hereafter. According to the 

CDC, a contact investigation should be initiated for infectious, smear positive cases with highest 

priority, and should be extended to smear negative or non-infectious cases only if resources are 

available. However, in Arkansas contact investigation of smear negative cases is performed with the 

same frequency and effort as smear positive (unpublished data). Upon initiation of an investigation, 

a list of contacts is solicited through interviews with the index case. When a contact of a new 

culture-positive case is identified, a protein-purified derivative skin test (PPD, also called tuberculin 

skin test or TST) or a serological test (Interferon-gamma Release Assay, IGRA) is done. If the test is 

positive, even though the person is well and asymptomatic, chest x-ray and clinical evaluations are 

made. If the test is negative, but time elapsed since the last exposure to the index case is less than 8 

weeks, a new test is repeated 8-10 weeks later [E15]. If the new test is positive, the contact can be 

evaluated for active TB. If active TB is excluded, the contact is considered infected with LTBI and 

offered treatment. 

We implemented the mentioned guidelines according to the diagram reproduced in Figure 2. Here 

we provide details on the workflow and on data sources for contact investigation parameters. 

Case management procedure (Figure 2A in the main text). In the model, for each infectious index 

case (diagnosed either passively or through contact investigation), a contact investigation is initiated 

with a probability that, in general, depends on the index’s smear status, estimated from the CDC 

Aggregate Reports on Program Evaluation (ARPE) [E16]. However, in the specific case of 

Arkansas, contact investigations are run with the same priority, independently of smear status: 

therefore, the same probability has been used. For non-infectious index cases, or if contact 

investigation has not been initiated, the case management routine is closed without further action. If 



 

 

an investigation is initiated, all individuals in the same household of the index case are listed as 

contacts (however, if the current index case was diagnosed during a contact investigatio n in 

household, members of the household are not listed because they have already been screened during 

contact investigation of the source case). If the index case has changed household within the last 

year, members of the previous household are also listed as contacts. Members of the same 

workplace are all listed as contacts if the number of colleagues is 20 or less. For larger workplaces, 

contacts are sampled randomly from workplace members in number proportional to the workplace 

size, so that the minimum number of listed contacts is 20 and the maximum number never exceeds 

200. This choice is based on the size distribution of a large contact investigation study in US 

workplaces [E17]. Individuals who have actually been infected by the index case have a high 

probability Z (set to 80% and subject to sensitivity analysis) of being named as contacts by the 

index case and thus are listed for enrollment in the program. This rule follows the assumption that 

infection is more likely for close contacts who share more time and space with the index case, and 

who are also more likely to be mentioned as contacts. If the index case has changed workplace 

within the last year, members of the previous workplace are also listed in the program following the 

same rules. If the index case was diagnosed during a contact investigation in the workplace, 

contacts in the same setting are not elicited. The procedure for school contacts is identical to that of 

workplace contacts. Finally, regarding contacts in the general population, only actually exposed 

contacts are enrolled in the program with probability Z. 

Trace, test and treat procedure (Figure 2A in the main text). For various reasons, not all contacts 

listed can always be traced for TB screening; therefore, for a fraction of contacts in the list the 

procedure ends with no further action. If the contact is actually traced (the observed probability is 

taken from [E16]), the epidemiological status is tested and action is taken accordingly. If the contact 

is in the susceptible class (i.e., uninfected), the algorithm will end with no further action.  

In a case of active disease, a traced individual has a high probability DSe of being correctly 



 

 

diagnosed and cured [E18]. In such a case, a traced individual is moved to the L class and a new 

case management procedure for elicitation of his contacts will be started. Although treatment for 

active TB is quite lengthy, symptoms (including cough, which is a main factor of infectiousness) 

generally disappear within the first few weeks after initiation of therapy. Therefore, we assume for 

simplicity that treatment is instantaneously effective. 

If the contact was recently or remotely infected, his PPD test will come out positive depending on 

the test sensitivity, LSe. In such a case, he can initiate and complete LTBI treatment with given 

probabilities. The contact is assumed to heal completely and moves to the susceptible compartment 

only if LTBI treatments are completed. Also in this case, cure is assumed to occur instantaneously, 

given that the few months of required LTBI therapy are a relatively short time span when compared 

to the decades long time scales of LTBI reactivation. In a case of a negative PPD test, a repetition of 

the test is performed in 8-10 weeks, during which time the individual’s epidemiological status may 

have changed. If a second PPD test is negative, the procedure ends with no further action.  

Parameters defining the performance of contact investigation strategies in Arkansas, reported in 

Table E1, were available from the Aggregate Reports on Tuberculosis Evaluation Programme [E16]. 

Parameters for the sensitivity of the PPD skin test and of clinical evaluation [E19] are reported in 

Table E2. 

 

 

 

 

 

 



 

 

Year Coverage (% of cases 

with elicited contacts) 

% missed 

contacts 

% LTBI treatments  

initiated 

% LTBI treatments 

completed 

2001 92.4* 34.8 48.1 53.2 

2002 92.4* 18.0 45.9 69.7 

2003 92.4† 15.5 69.6 55.8 

2004 92.7† 31.9 80.8 64.8 

2005 91.9† 15.1 87.9 57.0 

2006 92.4† 18.4 53.4 57.1 

2007 92.2† 10.2 82.4 58.8 

2008 93.3‡ 11.9 78.9 60.4 

2009 94.4‡ 15.6 76. 7 63.6 

2010 95.6‡ 6.7 83.2 69.2 

2011 96.7 9.7 90.8 70.0 

2015** 100 7.0 88.0 79.0 

Table E1: parameters for the contact investigation program deployed in Arkansas (from [E16]). 

* Assumed equal to data from 2003 

† Data from [E18] 

‡ Linearly interpolated between data from 2006 and from 2011 

** CDC targets used in the 2015 targets scenario [E18] 

 

 

 



 

 

Parameter Symbol Value Reference 

Senstitivity of TST test LSe 83% [E19] 

Sensitivity of TB diagnosis DSe 95% [E19] 

Fraction of exposed individuals who are listed as contacts Z 80% Assumption 

Table E2: time-invariant parameters for contact investigation. 

 

E1.5 Initialization 

A common assumption in mathematical models is that the disease is at epidemiological equilibrium 

at the beginning of simulations. For TB in low-burden countries, the steady-state assumption is 

clearly inaccurate, given that incidence has been declining for decades (with the exception of the 

HIV/AIDS epidemics). Recent research has shown that relaxing the equilibrium assumption in 

chronic infections may lead to dramatic consequences in epidemiological predictions [E20]. 

However, modeling non-equilibrium is often difficult, as it requires either of the two: implementing 

relevant sources of equilibrium perturbation over time, starting from a historical epoch where the 

equilibrium assumption is accurate (as in [E20]); or being able to accurately characterize the initial 

conditions, i.e. an epidemiological state of the system that can be used as a starting point. Here we 

follow the latter approach, exploiting available information from multiple empirical estimates to 

initialize model variables and reproduce the state of TB in Arkansas in 2000. Model simulations are 

run from this non-equilibrium state with no need for a burn-in period. The number of prevalent TB 

cases at the beginning of the simulation, corresponding to calendar year 2000, was established using 

the relative prevalence in US in 2000 ([E21]) multiplied by the Arkansas population in the same 

year. The age-specific distribution of TB prevalent cases in 2000 is unknown. Since these are cases 

not yet diagnosed, and given that the large majority of active TB is diagnosed within a year from 

onset, we used the age distribution of incidence in Arkansas in 1999 as a proxy for the age 

distribution of the initial TB prevalence [E22]. The initial age-specific LTBI prevalence was 



 

 

assigned using data from a large-scale LTBI prevalence study in the US in 1999-2000 [E23], 

weighting the relative contribution of foreign-born and US-born individuals by corresponding age-

specific subpopulation in Arkansas in 2000 from census data. 

 

E1.6 Foreign-born subpopulation 

Every individual initialized as latently infected is assigned a probability, estimated from data [E23] 

of being foreign-born. If a latently infected individual is initialized as foreign-born, all members of 

the same household are assumed to belong to the same group. For immigrants after 2001, the age-

specific number of incoming individuals with latent TB infection was calculated combining the 

observed average yearly number of immigrants in Arkansas (about 6,000 per year between 2000 

and 2010 [24]), the age distribution of new immigrants [24] and the corresponding age-specific 

prevalence of latently infected individuals in the foreign-born [E23]. Individuals sharing the same 

household with the newly arrived latently infected individual are also considered foreign-born. 

Immigrant individuals may be carriers of TB, with a probability estimated by combining 

information on the number of immigrants and the number of TB cases from foreign-born diagnosed 

within one year of arrival to the US in the period 2001-2010 [E22]. Due to lack of specific data, 

foreign-born households are assumed to have the same demographic characteristics as US-born. In 

addition, foreign-born individuals are assumed to mix homogeneously with the resident population 

in terms of schools, workplaces and community transmission. Finally, no difference in model 

disease parameters (namely, risks of primary TB and endogenous reactivation) is assumed between 

the US-born and foreign-born subpopulations. 

 

E1.7 Data 

The TB incidence in Arkansas for the period 2001-2011, both by year and by age groups [E22], was 

used to calibrate the model. 



 

 

Extensive model validation was done by comparing model predictions against several independent 

data sets that were not used during calibration: 

i) Proportion of clustered and non-clustered cases by age group, and size distribution of 

clusters from a recent molecular epidemiological study in Arkansas in 2004-2011 [E25]. 

Here, a cluster is defined as at least two cases diagnosed within a year from each other, 

caused by mycobacterial isolates sharing the same molecular typing, independently of 

known epidemiological links; clusters may include secondary cases and span across 

multiple years, however the temporal distance between diagnoses of any two cases with 

same genotype will be lower than one year. Clustered cases correspond roughly to 

recently transmitted cases, while non-clustered cases are assumed to represent non-

circulating genotypes derived from reactivation of old infections. 

ii) Proportion of TB cases in foreign-born individuals, over time (2001-2011) and by time 

of sojourn in the USA (2005-2011) [E22]. 

iii)  Secondary rates of TB disease and LTBI prevalence in household and workplace 

contacts of index cases from two large-scale US based studies [E17, E26]. 

 

E2. Calibration 

E2.1 Choices for fixed parameters 

 μT  (TB death rate): set to 0.133 yrs−1, based on the ratio between the yearly TB deaths and 

the estimated prevalent cases [E21]. 

 π (probability of pulmonary TB), set to 87% from surveillance data for Arkansas in 2001-

2011 [E22]; 

 χ (rate of clearance for recent TB infections), set to 68% from previous estimates [E1] 

 σc and σa (protection from exogenous re-infection given by previous infection in children 

and adults respectively) set to 0 and 40% respectively from previous estimates [E1, E6] 



 

 

 

E2.2 Choice of objective function for calibration 

Model calibration is obtained by searching for the optimal value of an objective function F between 

model predictions and calibration data, defined on the domain of all possible combinations of 

parameter values θ. A standard choice for F would be the likelihood; however, such a choice was 

not effective to obtain a good fit in this study, for two main reasons. First, calibration data are two 

different aggregations (by calendar year and by age group) of the same notification incidence data, 

and a likelihood function is difficult to define rigorously in this case; second, TB cases are rare in 

the population and the likelihood assumes very low levels, which are extremely sensitive to 

stochastic noise. Therefore, we choose F as the mean root relative squared error between each data 

point and the corresponding model prediction: 
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where Yi is the observed yearly incidence (i=2001:2011) and Zj is the observed incidence for age 

group j, while yi(θ) and zj(θ) represent the equivalent quantity predicted by the model, which 

depends on the parameter set θ. Ny=11 and Nz=7 are the number of data points for respectively the 

yearly and age-group specific incidence. This choice for the error function is supported by the need 

to combine heterogeneous data sources for model fitting. In practice, F selects parameter sets 

having a small relative error on each data point, independently of its absolute value. Thus, F can be 

approximately interpreted as the average percentage error for each data point. 

 

E2.3 Calibration procedure 

In a low burden setting, TB cases in the population are relatively rare and therefore subject to broad 



 

 

stochastic variability. In this context, one should not look for a single parameter set that perfectly 

matches calibration data, but rather expect to find a region of parameter values that sufficiently 

approximates the observed trends in data. Therefore, we apply a heuristic procedure that does not 

aim to find the global maximum of the 9-dimensional parameter space on which our model is 

defined, but rather to identify a region of parameter values that meets two conditions. First, that 

model predictions in the region correspond to independent observations not used for calibration (as 

shown in Figure 4 in the main text); and second, that model predictions are robust in the identified 

region of optimal parameter values. Under these premises, estimated parameter values should not be 

interpreted strictly in terms of their biological value but only as a general indication of the order of 

magnitude of the phenomenon that they represent. 

A simplified version of the calibration procedure used in this study is shown in Figure E1 for a 2-

dimensional parameter space. For graphical convenience, we show a case where we search for 

regions that maximize an objective function, rather than minimizing an error; however the two 

problems are equivalent up to the sign of the objective function (e.g., minimizing F is equivalent to 

maximizing -F). The calibration procedure follows the following steps, corresponding to panels in 

Figure E1. 

A) The unknown objective function F, defined over all possible combinations of values for the 

k model parameters, is measured at M points (parameter configurations) over a broad 

dominion of possible values. This broad dominion was defined using literature estimates and 

preliminary model simulations (reported in Table E3). The M points are chosen through an 

efficient technique of parameter space exploration called Latin Hypercube Sampling (LHS) 

[E27].  

B) A threshold is set on the M objective values obtained and the range of exploration is 

restricted to the hypercube (a rectangle, in two dimensions, shown at the bottom of the 

graph) enclosing parameter sets above this threshold (shown as darker points in Figure E1). 



 

 

We set as threshold the w-th percentile of the distribution of errors. 

C) A new batch of M points is sampled in the restricted region, corresponding values of the 

objective function are calculated and the same percentile threshold is set on the new 

distribution of value. The region of exploration is further restricted. 

D) A third batch of M parameter configurations is sampled in the further restricted region; the 

highest 100 scoring parameter sets (across the three batches) are used throughout the main 

text (shown in green in Figure E1); a final restriction of the parameter space (green area in 

Figure E1) defines the best fitting hypercube, enclosing such highly scoring parameter sets. 

Figure E1 shows that the procedure allows the identification of a region of the parameter space that 

is in the neighborhood of a maximum. At each step, the adopted threshold is defined as w=10th 

percentile of the M=10,000 values of the objective function obtained in the current batch of 

sampling. The value of F was calculated as the average for each parameter set over 10 stochastic 

simulations. The boundaries for the best-fitting hypercube are reported in Figure E4 and used as the 

interval of parameter variability in the main text and sensitivity analysis (section E4). All model 

results reported in the main text are based on 100 stochastic simulations, chosen on the basis that 

the average of all relevant epidemiological quantities stabilized completely after about 10-15 

stochastic simulations. Thus, the stochastic variability of the model is sufficiently represented in the 

provided error intervals. 

 



 

 

  

Figure E1. Simplified stochastic realization of the calibration procedure on a 2-dimensional 

parameter set. A) Objective function and initial exploration over the whole dominion of plausible 

parameter values; B) first selection of best-fitting parameters and corresponding sub-region of the 

parameter space; C) Sampling of the selected sub-region, second selection of best-fitting parameters 

and corresponding sub-region of the parameter space; D) Sampling of the newly selected sub-region 

and final selection of the best-fitting parameter sets. 

 



 

 

  Description Unit Min Max Reference 

k Rate of progression to outcome yrs-1 0.2 3 [E1] 

γ Passive detection and treatment rate yrs-1 1 2 [E22] 

pc Probability of primary TB in children (<10 yo) % 1 20 [E6] 

pa Probability of primary TB in adults (>20 yo) % 6 20 [E6] 

r Mean reactivation rate yrs-1 5 ∙ 10-4 2.0 ∙ 10-3 [E28] 

rm Slope of reactivation rate for <50 yo yrs-2 5 ∙ 10-5 2.0 ∙ 10-3 [E1] 

βH Transmissibility (households) yrs-1 1 30 Preliminary runs 

βP Transmissibility (schools and workplaces) yrs-1 1 30 Preliminary runs 

βR Transmissibility (casual contacts) yrs-1 1 30 Preliminary runs 

Table E3: initial ranges for the exploration of free model parameters.  

 

E3. Interpretation of parameter estimates 

Figure E2 shows the boxplots of the 100 best-fitting parameter values, normalized in such a way to 

represent a percentage of the original range of exploration specified in Table E3. Below and above 

the boxplots are reported the minimum and maximum values selected. Some parameters (γ, k, r and 

rm) are estimated with a relative precision, whereas those relative to transmission and, even more, 

primary TB (βH, βP, βR, pa, pc) have a wider range of variability. This is likely due to the positively 

correlated effects of transmission rates and probability of primary TB, so that an increase of the 

former can be compensated by a decrease of the latter. 



 

 

 

Figure E2. Boxplots representing the distribution of best fitting parameters, normalized with respect 

to the original range of exploration: on the vertical axis, 0 corresponds to the minimum, 100 to the 

maximum. Numbers reported at each end of each boxplot represent the minimum and maximum 

parameter value estimated by the model. 

 

Hereafter we provide an intuitive interpretation to the values of free model parameters in Figure E2. 

Once again, we note that these values should not be considered strictly as model predictions, given 

the high stochastic noise in data. 

 k defines the exponential rate at which an exposed individual exits the E0 compartment 

(representing the acute phase after the transmission episode where the clinical outcome is 

not yet determined). There is a 50% probability that the individual has become susceptible, 

latently infected, or infectious after a time t = log(2)/k = 6.2-12.2 months from the infection 

episode. This is consistent with timings of the immune response according to immunological 

models [E7, E29] that estimate a time of about 200 days before the infection outcome is 



 

 

defined. It is also consistent with the notion that the majority of TB cases occur within 1 

year from infection, but that a significant proportion occur within two or more years [E6]. 

 γ defines the exponential rate at which an individual is passively diagnosed and cured. With 

current estimates, there is a 50% probability that the individual has been passively diagnosed 

within a time t = log(2)/ γ = 4.4-4.85 months from the onset of disease. 

 pc and pa are the proportion of infections that result in primary (i.e. recently transmitted, as 

opposed to reactivated) TB. Between 2.2% and 14.3%of infections result in TB in children 

below 10 years, and between 7.1% and 19.1% in adults above 20 years. For ages between 10 

and 20 years, intermediate values are taken. Vynnycky and Fine [E6], give an estimate of 

respectively 4.6% in children and 14.8% in adults for UK. 

 r is the average risk of reactivation for individuals with LTBI; if an individual is infected 

with LTBI at birth and lives up to 100 years, his lifetime risk of developing TB by 

endogenous reactivation is between 8.56% and 8.59%. This is close to estimates by 

Horsburgh et al. [E28], who measure this risk at about 8.7% for the US born population. 

According to the same study, the risk of reactivation is not distributed uniformly across ages, 

but is about 3.8 times higher at ages above 50 years with respect to ages below 50 [E28]. In 

this model, we assume that the risk increases slowly until 50 years, and then with a higher 

pace after 50. rm defines how quickly the risk increases in younger ages, and since the 

average over all ages is fixed by r, it also defines how quickly the risk must increase at older 

ages in order to give an average value equal to r. The predicted ratio of the average 

reactivation risks in individuals aged 50-80 years against that in <50 years is about 3.92, 

very close to estimates by Horsburgh and colleagues. With current best estimates, we obtain 

the curves for the reactivation risk by age shown in Figure E3. The figure also shows the 

described effect of increasing values for rm. 

 



 

 

 

Figure E3. Estimates of the age-specific risk of endogenous reactivation in individuals with LTBI, 

and the effect of increasing values of the shape parameter rm for fixed values of r (average of the 

risk over all ages). 

 

 βH, βP and βR define the potential of transmission of infectious individuals in the different 

settings (H: households; P: schools and workplaces; R: casual contacts). Current estimates 

result in a 15.6-47.5% probability per week that exactly one member of the same household 

of a smear-positive TB case will be exposed, a 14.4-60.6% probability per week that exactly 

one member of the same workplace or school will be exposed, and a 29.5-70.3% probability 

that exactly one member the same geographic cell will be exposed through casual contacts. 

For contacts of smear negative TB cases, these probabilities become 3.7-10.2%, 3.4-12.6% 

and 6.7-14.2% respectively. These figures derive from index cases that encounter on average 

many more random individuals than those that they encounter at home. Therefore, while the 

average individual probability of being infected is lower for random contacts than for 

household contacts, the model estimates more individuals exposed in the general population 

rather than within household. About 13.6% (95-percentile interval 9.1-19.6%) of recently 

Effect of rm 

Effect of rm 



 

 

transmitted TB cases are predicted to be due household transmission, 23.2% (13.1-35.1%) to 

school or workplace transmission, and 64.1% (47.3-84.7%) to transmission from other 

contacts. 

 

E4. Sensitivity analysis with respect to model calibration 

Figures E4-E6 report the outputs of individual model simulations for 100 stochastic simulations of 

the best 100 parameter sets. In each figure, data points are arranged in a sort of Manhattan graph, in 

such a way that outputs corresponding to different stochastic realizations of a given parameter set are 

arranged on a vertical line (shown as light blue dots). The average output for each parameter set is 

reported with a blue dot within the Manhattan graph. On the side of each block, we report the average 

model output with corresponding 95-percentile interval, along with observed values where 

appropriate. Differently from figures in the main text, the 95-percentile interval for model output is 

calculated only on parameter-specific average output, so to represent inter-parameter variability 

decoupled from stochastic variability (included in the main text figures). The figures show that the 

stochastic variability is consistently more important than inter-parameter variability for most 

calibration and validation variables, but not for the main model predictions relative to the 

effectiveness of contact investigation, where the two effects are comparable. 

 

 

 



 

 

Figure E4. A) TB incidence over time (2001-2011) in Arkansas comparing model and data. B) TB 

incidence by age groups in Arkansas, average 2001-2011. 

 

Figure E5. A) fraction of clustered TB over total of cases for the whole population and restricted by 

age group; B) distribution of cluster sizes; C) proportion of TB in foreign-born individuals over 

time; D) proportion of TB in foreign-born individuals by time of sojourn in the US for years 2005-

2011; E) prevalence of secondary TB cases in household and workplace contacts of smear positive 



 

 

index cases; F) prevalence of LTBI in household and workplace contacts of smear positive index 

cases. 

 

Figure E6. Percentage of avoided TB cases (A) and deaths (B) with respect to a passive diagnosis 

program by different contact tracing programs. 

 

Figure E7 shows the values of the Partial Rank Correlation Coefficients (PRCCs) [E27] calculated 

between parameter values and relevant model predictions (proportion of avoided cases and proportion 

of avoided deaths for the Arkansas contact tracing program). Model parameters are sorted by the 

absolute value of their PRCCs with respect to the considered output. The figure shows the robustness 

of predictions with respect to uncertainty of parameter values in the best-fitting region, certified by 

the low, statistically non-significant (p-values > 0.05) values, for all parameters. 

 

 

Figure E7. Partial Rank Correlation Coefficients between free model parameters and relevant 



 

 

model outputs. 

 

E5 Sensitivity analysis with respect to contact tracing parameter values 

A sensitivity analysis was also performed to evaluate model robustness with respect to uncertainty 

in contact investigation parameters. In particular, we run the model by fixing free parameter values 

to the best-scoring parameter set, and used N=1,000 sets of values for parameters reported in Table 

E2, chosen uniformly over ranges reported in Table E4. 

Symbol Min Max Reference 

LSe 70% 90% E17 

DSe 90% 100% E17 

Z 50% 100% Assumption 

Table E4. Range of variability of contact tracing parameter values used for sensitivity analysis. 

Figure E8 shows that the estimated effectiveness of the contact investigation actually implemented 

by the Arkansas Department of Health is about as sensitive on these parameters as it is on free model 

parameters. 

 

Figure E8. Sensitivity of the estimated percentage of avoided TB cases and deaths  in the Arkansas 



 

 

contact investigation program with respect to uncertainty in values of program parameters. 

 

Figure E9 shows the PRCCs between contact tracing parameter values and corresponding prediction. 

In this case, parameter Z is most strongly correlated with the output. Given that Z represents the 

efficiency in identification of “random” contacts, this is not surprising as the majority of transmit ted 

cases is suggested by the model to occur in the general community. A lower, but statistica lly 

significant, PRCC value is assigned also to the diagnostic sensitivity of TB screening. This is 

consistent with the notion that missed diagnoses will bring to increased opportunities for continuing 

the TB transmission chain. 

 

 

Figure E9. Partial Rank Correlation Coefficients between parameters of contact tracing and 

relevant model outputs. 
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