
SUPPLEMENT TO “HYPOTHESIS TESTING FOR
HIGH-DIMENSIONAL SPARSE BINARY REGRESSION”

NOTATIONS

We begin by briefly summarizing notation. We recall the definition of our
chosen prior π for the sake of completeness. We choose π to be uniform
over all k sparse subsets of Rp with signal strength either A or −A. Let
M(k, p) be the collection of all subsets of {1, . . . , p} of size k. For each
m ∈ M(k, p), let ξm = (ξj)j∈m be a sequence of independent Rademacher
random variables taking values in {+1,−1} with equal probability. Given
A > 0 for testing (2.3), a realization from the prior distribution π on Rp
can be expressed as βξ,m =

∑
j∈mAξjej , where (ej)

p
j=1 is the canonical

basis of Rp and m is uniformly chosen from M(k, p). In the following we
will define m1,m2 to be two independent draws at random from M(k, p)
and ξ1 = (ξj1)j∈m, ξ2 = (ξj2)j∈m the corresponding draws of a sequence of
Radamacher random variables. Further we denote by m3 and m4 the set
valued random variables m3 := {j ∈ m1 ∩m2 : ξj1 = ξj2} and m4 := {j ∈
m1 ∩m2 : ξj1 = −ξj2}. Also φ,Φ and Φ denote the standard normal pdf, cdf
and survival functions respectively. We let Hypergeometric(N,m, n) denote
the hypergeometric distribution counting the number of red balls in n draws
from an urn containing m red balls out of N . Also throughout C will denote
generic positive constants whenever necessary.

PRELIMINARY LEMMAS

We will use the following results many times and hence present them as
useful lemmas.

The first result compares the hypergeometric distribution with a related
binomial distribution, which is in general simpler to work with.

Lemma A.1. If W ∼ Hypergeometric(N,m, n) and Y ∼ Bin(n, m
N−m)

then W is stochastically smaller than Y , i.e., P(Y ≥ t) ≥ P(X ≥ t) for all
t ∈ R. Moreover this implies that for any non-decreasing function g one has
E(g(W )) ≤ E(g(Y )).

Proof. The proof can be found in Arias-Castro, Candès and Plan (2011)
and follows by noting that if the balls are picked one by one without replace-
ment, then at each stage, the probability of selecting a red ball is smaller
than m/(N −m).
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The next result presents an inequality about the tail probability of a
binomial random variable (Carter and Pollard, 2004)

Lemma A.2. Let X ∼ Bin(n, 1
2) with n ≥ 28. Define

γ(ε) =
(1 + ε) log (1 + ε) + (1− ε) log (1− ε)− ε2

2ε4
=
∞∑
l=0

ε2l

(2l + 3)(2l + 4)
,

an increasing function. Suppose n
2 < k′ ≤ n − 1. Define ε = (2K − N)/N ,

where K = k′ − 1 and N = n− 1. Then there exists a λn such that 1
12n+1 <

λn <
1

12n and a constant C such that

P(X ≥ k′) = Φ(ε
√
N)eAn(ε)

where

An(ε) = −Nε4γ(ε)− 1

2
log (1− ε2)− λn−k + rk′

and

−C logN ≤ Nrk′ ≤ C

for all ε corresponding to the range n
2 < k′ ≤ n− 1.

The next lemma shows that any random draw of a subset of size k from
{1, . . . , p} can have at most one element in each block. The proof of the
lemma is similar to the proof of Lemma A.8 of Hall and Jin (2010) and is
omitted.

Lemma A.3. Let t1 < t2 < . . . < tk be k distinct indices randomly
sampled from {1, . . . , p} without replacement. Then for any 1 ≤ Q ≤ p we
have P(min1≤i≤k−1 |ti+1 − ti| ≤ Q) ≤ Qk(k + 1)/p.

The next Lemma is tailored towards controlling the contribution of the
ith row in the expression for E0(L2

π).

Lemma A.4. Suppose for the ith row of X one has |Si| ≤ Q and that the
elements of X are bounded by M in absolute value. Then for any β, β

′ ∼ π,

θ(xtiβ)θ(xtiβ
′
) + θ(−xtiβ)θ(−xtiβ

′
) ≤ θ2(QMA) + θ2(−QMA).

where θ is the distribution function of a symmetric random variable, i.e., θ
satisfies Equation 2.2.
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Proof. We begin by noting that for any i,

θ(xtiβ)θ(xtiβ
′
)+θ(−xtiβ)θ(−xtiβ

′
) ≤ sup

s1,s2∈[−MQ,MQ]
θ(s1A)θ(s2A)+θ(−s1A)θ(−s2A).

Hence by symmetry of the above supremum in s1, s2 and using the fact that
θ(z) + θ(−z) = 1 for all w, we have that

θ(xtiβ)θ(xtiβ
′
) + θ(−xtiβ)θ(−xtiβ

′
) ≤ max

s∈[0,MQ]
(θ(sA))2 + (1− θ(sA))2.

Now noting that (1−w)2 +w2 is an increasing function of w for w ≥ 1
2 and

using the fact that θ(sA) ≥ 1
2 for s ≥ 0, we have the desired result.

PROOF OF MAIN RESULTS

Proof of Theorem 3.1 . We will produce one prior π0 ∼ π for which
the theorem holds. Hence, for any other π∗ ∼ π, since one also has π∗ ∼ π0

we have the result holding by a similar proof. We begin by noting that

θ(xtiβ)θ(xtiβ
′
) + θ(−xtiβ)θ(−xtiβ

′
) ≤ 1 for all i,β,β

′
(A.1)

The proof of (A.1) follows from noting that for any two real numbers w1, w2,
one has by symmetry θ(w1)θ(w2)+θ(−w1)θ(−w2) ≤ sup

w∈R
[2θ2(w)−2θ(w)+1].

Since θ is a distribution function of a symmetric random variable as posed
by equation (2.2), it is easy to show that 2θ2(w)−2θ(w) + 1 is an increasing
function of w. Hence we have that the supremum equals 1 and thus proving
(A.1). Now, recall that it suffices to bound from below the second moment
E0(L2

π) where by Fubini’s Theorem

E0(L2
π) = 2n

∫∫ n∏
i=1

[
θ(xtiβ)θ(xtiβ

′
) + θ(−xtiβ)θ(−xtiβ

′
)
]
dπ(β)dπ(β

′
)

≤
∫∫

2
n−

n∑
i=1
I(min{|m1∩Si|,|m2∩Si|}=0)

dπ(β)dπ(β
′
)

=

∫∫
2

n∑
i=1
I(min{|m1∩Si|,|m2∩Si|}>0)

dπ(β)dπ(β
′
). (A.2)

The inequality in the second to last line above follows from noting that,
when i is such that one of Si ∩m1 or Si ∩m2 is empty, then the integrand
θ(xtiβ)θ(xtiβ

′
) + θ(−xtiβ)θ(−xtiβ

′
) = 1

2 , whereas for any other i, the inte-
grand is less than or equal to 1 by (A.1). Applying Lemma A.3 we obtain
that when α > 1

2 , i.e., k = p1−α � √p, it makes negligible difference by
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restricting π to Rp = {{t1, . . . , tk},min1≤i≤k−1 |ti+1 − ti| > σp} where by
assumption σp is such that σp � pε for all ε > 0. If we denote this restricted
prior by π0, then we have π0 ∼ π and Rπ0 = Rp. Now by elementary com-
binatorics,

|RNm1
(σp)| .

(
k

N

)
(2σp)

N

(
p−N
k −N

)
≤
(
k

N

)
(2σp)

N

(
p

k −N

)
.

Also by direct calculation,(
k
N

)(
p

k−N
)(

p
k

) =
1

N !

(
k!

(k −N)!

)2 (p− k)!

(p− k +N)!
.

1

N !

(
k2

p

)N
.

Hence from (A.2) and assumption of the Theorem we have that

E0(L2
π) ≤

(
p

k

)2 ∑
m1∈Rπ0

k∑
N=0

∑
m2∈RNm1

(σp)

2

n∑
i=1
I(min{|m1∩Si|,|m2∩Si|}>0)

(1 + o(1))

≤
(
p

k

)2 ∑
m1∈Rπ0

k∑
N=0

∑
m2∈RNm1

(σp)

2Nδp(1 + o(1))

.

(
p

k

) ∑
m1∈Rπ0

∞∑
N=0

2k
2

p σp2
δp
N

N !
(1 + o(1))

=

(
p

k

) ∑
m1∈Rπ0

e
2 k

2

p
σp2δp

(1 + o(1))

= e
2 k

2

p
σp2δp

(1 + o(1))

Since σp is a poly-logarithmic factor of p and k = p1−α with α > 1
2 , we

have that δp � log(p) implies that E0(L2
π) = 1 + o(1). Hence all tests are

asymptotically powerless as required.

Proof of Theorem 3.2. The proof relies on verifying the assumptions
and conditions of Theorem 3.1. To begin with we produce a prior that is
equivalent to π as follows. Let π0 be the restriction of π to
Rp = {{t1, . . . , tk},min1≤i≤k−1 |ti+1−ti| > σp} and let π0,1 be the restriction
of π0 to (

⋃
i/∈Ω

Si)
c where σp ≥ 2l∗ is such that σp � pε for all ε > 0. We note

that such a σp can be found since we have by assumption l∗ � pε for all
ε > 0. Since k = p1−α with α > 1

2 , by Lemma A.3 and the fact |
⋃
i/∈Ω

Si| � p
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we have that π0,1 ∼ π0 ∼ π. Since any draw from π0,1 does not intersect
with Si with i /∈ Ω, we have that

n∑
i=1

I(min{|m1 ∩ Si|, |m2 ∩ Si|} > 0) =
∑
i∈Ω

I(min{|m1 ∩ Si|, |m2 ∩ Si|} > 0).

Let m1 and m2 be two independent draws from π0,1 with m2 ∈ R̃Np (2σp). We
have that there must exist exactly N blocks Tj1 , . . . , TjN which have elements
from m1 and m2 σp-mututallyclose. In the rest of the M − N blocks there
is either no element of m1 or no element of m2. Hence the total number of

rows corresponding to I(min{|m1∩Si|, |m2∩Si|} > 0) equals
N∑
l=1

cjl ≤ Nc∗.

Hence we have

n∑
i=1

I(min{|m1 ∩ Si|, |m2 ∩ Si|} > 0) ≤ Nc∗

for the prior π0,1 ∼ π and all m1,m2 drawn from π0,1 with m2 ∈ R̃Np (2σp). So
by Theorem 3.1, we have that if c∗ � log(p) then all tests are asymptotically
powerless.

Proof of Theorem 3.3 . The proof follows by arguments similar to
that of Theorem 3.2 and hence is omitted.

Proof of Theorem 5.2. Since for each t > 0, Wp(t) is a normalized
mean of i.i.d random variables, by the union bound and Chebyshev’s In-
equality,

P(THC > log(p)) ≤
∑

t∈[1,
√

3 log(p)]∩N

P(Wp(t) > log(p))

≤ 2
√

3 log(p)
1

(log(p))2
= o(1)

Proof of Theorem 6.3. The proof of this theorem follows techniques
similar to the proof of Theorem 6.5. However, this can be proved from much
simpler combinatorial arguments and hence we provide the proof for the
sake of interest. We divide the proof of the theorem into three paragraphs,
namely, two-sided alternatives, one-sided alternative for sparse regime and
one-sided alternative for dense regime, which correspond to the three parts
of the theorem.
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Proof of Part(1): Two-Sided Alternatives.

We do the proof for logistic regression for the sake of clarity and note that
the proof for general binary regression is exactly same, because the proof
only uses the fact θ(x) + θ(−x) = 1 for the logistic distribution function
which is symmetric. Using Remark 6.1, the proof also holds for problem 6.2.
Although the following proof is carried out in the usual way of analyzing
the second moment of the likelihood ratio as in the proof of Theorem 6.6,
here we provide a more direct combinatorial proof.

For logistic regression, we have

Lπ = 2p
∫ p∏

j=1

eβjyj

1 + eβj
dπ(β) = 2p.

1

2k
1(
p
k

)∑
m,ξ

p∏
j=1

eβjyj

1 + eβj
.

Take any instance of (m, ξ), say, m = {j1, . . . , jk} ⊆ {1, . . . , p} and ξ =
{σ1, . . . , σk}, σl ∈ {−1, 1}, l = 1, . . . , k. Then

p∏
j=1

eβjyj

1 + eβj
=

(
1

2

)p−k ∏
j∈m

eβjyj

1 + eβj
.

Hence,

Lπ =
1(
p
k

)∑
m,ξ

∏
j∈m

eβjyj

1 + eβj

=
1(
p
k

) ∑
{i1,...,ik}⊆{1,...,p}

k∑
r=0

∑
{j1,...,jr}⊆{i1,...,ik}

eAyj1 · · · eAyjr eA(1−yjr+1
) · · · eA(1−yjk )

(1 + eA)k

where {jr+1, . . . , jk} = {i1, . . . , ik}∩{j1, . . . , jr}c. Now we claim that for any
subset {i1, . . . , ik} ⊆ {1, . . . , p},

k∑
r=0

∑
{j1,...,jr}⊆{i1,...,ik}

eAyj1 · · · eAyjr eA(1−yjr+1
) · · · eA(1−yjk )

(1 + eA)k
= 1

for any sample (y1, . . . , yp). To see this, given a sample (y1, . . . , yp) and a
subset {i1, . . . , ik} ⊆ {1, . . . , p} , the number of times the summand equals
eAl

(1+eA)k
is
(
k
l

)
for any l = 0, 1, . . . , k (because any yj is either 0 or 1)and this

exhausts the sum. Hence the total equals

k∑
r=0

∑
{j1,...,jr}⊆{i1,...,ik}

eAyj1 . . . eAyjr eA(1−yjr+1
) . . . eA(1−yjk )

(1 + eA)k
=

k∑
l=0

(
k
l

)
eAl

(1 + eA)k
= 1
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as claimed. Hence Lπ = 1 for any sample. Hence by noting that for any test
T , Riskπ(T ) ≥ 1− 1

2E0|Lπ − 1| ≥ 1 we have that all tests are powerless.

Proof of Part(2a): One-Sided Alternatives, Dense Regime.

We divide our proof into that of lower bound and upper bound.

Proof of Lower Bound. We will do the proof for general binary regression
i.e. E(Yj) = θ(βj), j = 1, . . . , p where θ is any distribution function of a
symmetric random variable, i.e., θ(x)+θ(−x) = 1 for all x and θ ∈ BC1(0).
Hence, by Remark 6.1, the proof for lower bound in problem 6.2 follows.
Note that one can express E0(L2

π) as follows:

E0(L2
π) = Em1,m2,ξ1,ξ2 [{4θ2(A)− 4θ(A) + 2}|m1∩m2| |ξ1+ξ2|

2 {4θ(A)θ(−A)}|m1∩m2| |ξ1−ξ2|2 ]

=
1

2
Em1,m2 [{4θ2(A)− 4θ(A) + 2}|m1∩m2| + {4θ(A)θ(−A)}|m1∩m2|]

≤ Em1,m2 [{4θ2(A)− 4θ(A) + 2}|m1∩m2|].

The last line is true because 4θ2(A) − 4θ(A) + 2 ≥ max{1, 4θ(A)θ(−A)}.
Now we note that |m1 ∩m2| ∼ Hypergeometric(p, k, k) which is stochasti-
cally smaller than Bin(k, k

p−k ) by Lemma A.1. Since 4θ2(A) − 4θ(A) + 2 ≥
max{1, 4θ(A)θ(−A)} one has that for Z ∼ Bin(k, k

p−k ),

E0(L2
π) ≤ Em1,m2 [{4θ2(A)− 4θ(A) + 2}|m1∩m2|] ≤ EZ [{4θ2(A)− 4θ(A) + 2}Z ]

=

[
p− 2k

p− k
+

k

p− k
(4θ2(A)− 4θ(A) + 2)

]k
=

[
1 +

k2

p−k (2θ(A)− 1)2

k

]k

=

[
1 +

k2

p−k (2Aθ
′
(0) +O(A2))2

k

]k
= 1 + o(1)

since p1−2αA→ 0

Proof of Upper Bound. The proof is similar to the proof of upper bound
in Theorem 6.5 in the main text and is based on comparing second moment
and variance of the test statistic under the alternative. Hence we skip the
details of the proof.

Proof of Part(2b): One-Sided Alternatives, Sparse Regime.

We give the proof for logistic regression and note that the proof for gen-
eral binary regression is exactly same because the proof uses only the fact
θ(x) + θ(−x) = 1 for the logistic distribution function which is symmetric.
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Using Remark 6.1, the proof also holds for problem 6.2. Although the fol-
lowing proof can be proved in the usual way of analyzing the second moment
of the likelihood ratio, here we provide a more combinatorial proof without
using Lemma A.1.

Note that we have by Fubini’s Theorem,

E0(L2
π) = 2p.

1

4
.

1(
p
k

)2 ∑
(m1,ξ1),(m2,ξ2)

(
1

2

)|m1∆m2|{ 1 + e2A

(1 + eA)2

}|m1∩m2| ξ1+ξ2
2
{

2eA

(1 + eA)2

}|m1∩m2| |ξ1−ξ2|2

= 2p.
1

4
.

1(
p
k

)2 k∑
r=0

∑
(m1,ξ1),(m2,ξ2):|m1∩m2|=r

(
1

2

)p−r { 1 + e2A

(1 + eA)2

}r ξ1+ξ2
2
{

2eA

(1 + eA)2

}r |ξ1−ξ2|
2

where (m1, ξ1), (m2, ξ2) are i.i.d.
First consider r = 0. Then m1 ∩ m2 = Φ. The number of such tuples

(m1,m2) is
(
p
k

)(
p−k
k

)
. For each such

(
p
k

)(
p−k
k

)
combinations of (m1, ξ1), (m2, ξ2)

the summand above equals (1
2)p. Hence total =

(pk)(
p−k
k )

(pk)
2 = 1 + o(1) by Stir-

ling’s Theorem since k << p.
Now consider any k > r ≥ 1. Then one has that the number of tuples for

which |m1 ∩m2| = r and ξ1 = ξ2 equals 2
(
p
r

)(
p−r
k−r
)(
p−k
k−r
)

and the number of

tuples for which |m1 ∩ m2| = r and ξ1 = −ξ2 also equals 2
(
p
r

)(
p−r
k−r
)(
p−k
k−r
)
.

Hence the total sum can be bounded by 2r 1
4

1

(pk)
2 2
(
p
r

)(
p−r
k−r
)(
p−k
k−r
)
{[ 1+e2A

(1+eA)2 ]r +

[ 2eA

(1+eA)2 ]r} ≤ 2r 1

(pk)
2

(
p
r

)(
p−r
k−r
)(
p−k
k−r
)

because [ 1+e2A

(1+eA)2 ]r+[ 2eA

(1+eA)2 ]r ≤ 2. Hence,

E0(L2
π) ≤

(
p
k

)(
p−k
k

)(
p
k

)2 +
k∑
r=1

2r
(
p
r

)(
p−r
k−r
)(
p−k
k−r
)(

p
k

)2
=

(
p
k

)(
p−k
k

)(
p
k

)2 +
2k(
p
k

) +
k−1∑
r=1

2r
(p− k) · · · (p− 2k + r + 1)

p · · · (p− k + 1)

k!k!

r!(k − r)!(k − r)!

≤
(
p−k
k

)(
p
k

) +
2k(
p
k

) +

k−1∑
r=1

2r
(p− k + 1)k−r

(p− k + 1)k [k···(k−r+1)]2

r!

≤
(
p−k
k

)(
p
k

) +
2k(
p
k

) +
k−1∑
r=1

2r
1

(p− k + 1)r
k2r

r!
≤
(
p−k
k

)(
p
k

) +
2k(
p
k

) +
k−1∑
r=1

(
2k2

(p− k + 1)

)r
1

rre−r

≤
(
p−k
k

)(
p
k

) +
2k(
p
k

) +
k−1∑
r=1

(
2ek2

(p− k + 1)

)r
=

(
p−k
k

)(
p
k

) +
2k(
p
k

) +
1− ( 2ek2

(p−k+1))k−1

1− 2ek2

(p−k+1)

− 1
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The last step holds because k2 � p since α > 1/2. For r = k we have the

factor
(
p
r

)(
p−r
k−r
)(
p−k
k−r
)

replaced by
(
p
k

)
. Now since 2k

(pk)
≤ ( 2k

p−k+1)k = o(1) and

1−( 2ek2

(p−k+1)
)k−1

1− 2ek2

(p−k+1)

= 1 + o(1) we have that E0(L2
π) ≤ 1 + o(1).

Proof of Theorem 6.5. We first present the proof of the lower bound.
We will estimate the second moment of the likelihood ratio as follows.

E0(L2
π) = 2−2k

(
p

k

)−2 ∑
m1,m2,ξ1,ξ2

(
1 + 4∆2

1− 4∆2

)r|m3|
(1− 4∆2)r|m1∩m2|

= E|m3|,|m1∩m2|

[(
1 + 4∆2

1− 4∆2

)r|m3|
(1− 4∆2)r|m1∩m2|

]

where m3 = {j ∈ m1 ∩ m2 : ξj1 = ξj2} . Now given |m1 ∩ m2|, |m3| ∼
Bin(|m1 ∩m2|, 1

2). Hence

E0(L2
π) (A.3)

= E|m1∩m2|

[(
1

2
+

1

2

(
1 + 4∆2

1− 4∆2

)r)|m1∩m2|
(1− 4∆2)r|m1∩m2|

]

= E|m1∩m2|

[(
1

2

)|m1∩m2| (
(1 + 4∆2)r + (1− 4∆2)r

)|m1∩m2|
]

= EZ

[(
1

2

)Z
(ar + br)Z

]
= EZ

[
2(r−1)Z(ar1 + br1)Z

]
where Z ∼ Hypergeometric(p, k, k) and a = (1 + 4∆2)r, b = (1− 4∆2)r and
(a1, b1) = (a/2, b/2). Thus a1 + b1 = 1 and hence (ar1 + br1)2r−1 ≥ 1. Now
since Z ∼ Hypergeometric(p, k, k), Z is stochastically smaller than W where
W ∼ Bin(k, k

p−k ). Hence

E0(L2
π) = EZ

[
2(r−1)Z(ar1 + br1)Z

]
≤ EW

[
2(r−1)W (ar1 + br1)W

]
=

[
1 +

k2

p−k (2r−1(ar1 + br1)− 1)

k

]k
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We complete our proof by showing that k2

p−k (2r−1(ar1 + br1) − 1) → 0 when

∆ �
√

p
1
2

kr and hence rendering all tests asymptotically powerless. To this
end, note that by Taylor series expansion up to 4th order around 0 and
analyzing the remainder, we have

k2

p− k
(2r−1(ar1 + br1)− 1) =

k2

p− k

(
192

∆4

4!
r(r − 1) +O(∆4r2)

)
= O

(
k2r2∆4

p

)
→ 0

where the last line holds since ∆ �
√

p
1
2

kr . This completes the proof of the
lower bound for problem 6.2. The proof of lower bound in 2.3 follows by
noting that θ(A) = 1

2 + ∆ and the fact that θ ∈ BC1(0).
Now we prove the upper bound. Recall TGLRT from (5.1). Once again we

will provide proof for problem 6.2. The proof of lower bound in problem 2.3
follows by noting that θ(A) = 1

2 + ∆ and the fact that θ ∈ BC1(0).

We will show that if tp →∞ at a sufficiently slow rate, the test is asymp-

totically powerful. It suffices to show supν∈ΘAk
Pν(TGLRT−p√

2p
≤ tp) → 0. We

will show that supν∈ΘAk

Eν(
TGLRT−p√

2p
)

tp
→ ∞ and

Varν(
TGLRT−p√

2p
)

(Eν(
TGLRT−p√

2p
))2
→ 0 when

A2kr√
p →∞.

Fix ν∗ ∈ Ξ∆
k . Under the measure Pν∗ , exactly k of the Zj ’s are distributed

as i.i.d Bin(r, 1
2 + ∆) and the rest of the p − k Zj ’s are distributed as i.i.d

Bin(r, 1
2). Let O = {j : β∗j 6= 0}. Hence we have, for j ∈ O,

Eν∗
[
(Zj −

r

2
)2
]

= r

(
1

4
−∆2

)
+ r2∆2 . (A.4)

For j ∈ Oc, Eν∗ [(Zj − r
2)2] = r

4 . Hence,

Eν∗(TGLRT−p√
2p

)

tp
=

4
r

[kr( 1
2
−∆2)+kr2∆2+(p−k) r

4
]−p√

2p

tp

=

p+4kr∆2− k∆2

4
−p√

2p

tp
&
kr∆2

tp
√
p
≈ krA2

√
ptp

. (A.5)

Since krA2
√
p → ∞ and tp can be chosen to grow to ∞ at a sufficiently slow

rate, (A.5) goes to infinity.
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Now we compute the variance. For j ∈ O,

Eν∗
(
Zj −

r

2

)4
= r

(
1

4
−∆2

)[
3r

(
1

4
−∆2

)
+ 6∆

(
1

2
+ ∆

)
− 8r∆2 + 6r∆2

]
+ r4∆4 .

Using the above and (A.4), a straightforward calculation yields that

∑
j∈O

Varν∗

(
4(Zj − r

2)2

r

)
= 16k

(
1

4
−∆2

)[
2

(
1

4
−∆2

)
+ 4r∆2 + 6∆

(
1

2
+ ∆

)
− 8∆2

]
.

Also, by another direct calculation

∑
j∈Oc

Varν∗

(
4(Zj − r

2)2

r

)
= 2(p− k)(1− 1

r
)

Combining the above two,

Varν∗

(
TGLRT − p√

2p

)
=

[
16k

(
1

4
−∆2

){
2

(
1

4
−∆2

)
+ 4r∆2 + 6∆

(
1

2
+ ∆

)
− 8∆2

}]
/2p

+ 2(p− k)(1− 1

r
)/2p

≤ 4p+ 32kr∆2

2p
=

2p+ 16kr∆2

p
.

Also
(
Eν∗(TGLRT−p√

2p
)
)2
≥ kr∆2

4p . Hence,

Varν∗(
TGLRT−p√

2p
)

(Eν∗(TGLRT−p√
2p

))2
≤ 4

2p+ 16kr∆2

kr∆2
→ 0

since k2r2∆4 � p.
Now note that if ν∗ had k1 elements which are greater than or equal

to A and k2 elements less than equal to −A, then a similar calculation

yields Varν∗(
TGLRT−p√

2p
) ≤ 2p+16kr∆2

p and (Eν∗(TGLRT−p√
2p

))2 ≥ kr∆2

4p where k =

k1 + k2 equals the number of nonzero coefficients in β∗. Hence we have
maxν∈Ξ∆

k
[Pν(TGLRT ≤ tp)] → 0 when α ≤ 1

2 and ∆2kr√
p → ∞. This proves

the GLRT is asymptotically powerful.

Proof of Theorem 6.6. We will provide an argument for problem 6.2.
The proof for problem 2.3 follows from noting that θ(A) = 1

2 + ∆.
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We will estimate the second moment of the likelihood ratio similar to
before. Following the same line of arguments as in proof of Theorem 6.5, we
note that

E0(L2
π) = EZ

[
2(r−1)Z{ar1 + br1}Z

]
where Z ∼ Hypergeometric(p, k, k)

≤

[
1 +

k2

p−k (2r−1(ar1 + br1)− 1)

k

]k
.

Now α > 1
2 implies that k2

p−k → 0. Also the quantity k2

p−k (2r−1(ar1 +br1)−1) =

O(k22r/p). Hence if r � log(p)
log(2) , we have that E0(L2

π)→ 1 and thus all tests
are asymptotically powerless.

Proof of Theorem 6.8. We will provide proof for the lower bound in
problem 2.3 where θ ∈ BC2(0). Using Remark 6.1, the proof also holds
for problem 6.2. Since directly bounding E0(L2

π) yields trivial bounds we
invoke a truncation trick which breaks down the analysis into parts related
to extreme tails and non-extreme tails of the Z-statistics. In particular, define
the interval

Hp =
(r

2
−
√

2 log(p)

√
r

4
,
r

2
+
√

2 log(p)

√
r

4

)
. (A.6)

and put

D = {Zl ∈ Hp, l = 1, . . . , p}, Zl =

r∑
s=1

y(l−1)r+s, l = 1, . . . , p. (A.7)

By Hölder’s inequality it can be shown that for proving a lower bound it
suffices to prove,

E0(Lπ IDc) = o(1), E0(L2
π ID) = 1 + o(1) . (A.8)

We first prove the first inequality of (A.8). Since IDc ≤
∑p−1

l=0 I(Zl+1∈Hc
p)

and

Lπ = 2n
∫ p∏

j=1

{
θ(βj)

θ(−βj)

}Zj
{θ(−βj)}rdπ(β)

we have

LπIDc ≤ 2n
∫ p∑

l=1

p∏
j=1

{
θ(βj)

θ(−βj)

}Zj
{θ(−βj)}rI(Zl ∈ Hc

p)dπ(β)
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Hence

E0(LπIDc)

≤ 2n
∫ p∑

l=1

E0

 p∏
j=1

{
θ(βj)

θ(−βj)

}Zj
{θ(−βj)}rI(Zl ∈ Hc

p)

 dπ(β)

= 2n
∫ p∑

l=1

E0

 p∏
j 6=l

{
θ(βj)

θ(−βj)

}Zj
{θ(−βj)}r

E0

[{
θ(βl)

θ(−βl)

}Zl
{θ(−βl)}rI(Zl ∈ Hc

p)

]
dπ(β)

= 2n
∫ p∑

l=1

 p∏
j 6=l

(
1

2

)r (
1 +

θ(βj)

θ(−βj)

)r
{θ(−βj)}r


× E0

[{
θ(βl)

θ(−βl)

}Zl
{θ(−βl)}rI(Zl ∈ Hc

p)

]
dπ(β)

= 2n
∫ p∑

l=1

(
1

2

)(p−1)r

E0

[{
θ(βl)

θ(−βl)

}Zl
{θ(−βl)}rI(Zl ∈ Hc

p)

]
dπ(β)

=

∫ p∑
l=1

2rE0

[{
θ(βl)

θ(−βl)

}Zl
{θ(−βl)}rI(Zl ∈ Hc

p)

]
dπ(β)

Letting m1
1 = {j ∈ m1 : ξj1 = +1} and m−1

1 = {j ∈ m1 : ξj1 = −1}, we have

E0(LπIDc)

≤
(
p

k

)−1

2−k2r
∑
m1,ξ1

[∑
j∈m1

1

E0

({ θ(A)

θ(−A)
}Zj
{
θ(−A)}rI(Zj ∈ Hc

p)
)

+
∑

j∈m−1
1

E0

({θ(−A)

θ(A)

}Zj
{θ(A)}rI(Zj ∈ Hc

p)
)

+
∑
j∈mc1

E0

({ θ(0)

θ(−0)

}Zj
{θ(−0)}rI(Zj ∈ Hc

p)
)]

=

(
p

k

)−1

2−k2r
∑
m1,ξ1

[∑
j∈m1

1

E0

({ θ(A)

θ(−A)

}Zj
{θ(−A)}rI(Zj ∈ Hc

p)
)

+
∑

j∈m−1
1

E0

({ θ(A)

θ(−A)

}r−Zj
{θ(−A)}rI(Zj ∈ Hc

p)
)

+
∑
j∈mc1

(1

2

)r
P0(Zj ∈ Hc

p)
]

= k{2θ(−A)}rE0

({ θ(A)

θ(−A)

}Z1

I(Z1 ∈ Hc
p)
)

+ (p− k)P0(Z1 ∈ Hc
p) (A.9)
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where we have used the fact that r−Zl
d
= Zl and that the set D in (A.7) is

symmetric in Zl and r − Zl.
Now by Lemma A.2 we have that (p − k)P(Z1 ∈ Hc

p) = o(1) since r �
log(p). To see this we put n = r and k′ = r

2 +
√

2 log(p)
√

r
4 in Lemma A.2

to obtain ε =
2
√

r
4

√
2 log(p)−1

r−1 = o(1) since r � log(p) and also ε
√
r → ∞.

This implies

P
(
Zl >

r

2
+
√

2 log(p)

√
r

4

)
= Φ(ε

√
n)e−(r−1)((1+ε) log (1+ε)+(1−ε) log (1−ε)−ε2)

≤ e−
4. 14 .2 log(p)

2

ε
√
r

erε
2−r(1+ε) log (1+ε) using Lemma ??

≤ e− log(p)

ε
√
r

erε
2−rε since log (1 + ε) ≥ ε

(1 + ε)

� 1

pε
√
r
. (A.10)

Hence (p − k)P(Z1 ∈ Hc
p) = o(1) as needed. Next we need to control

k{2θ(−A)}rE0{ θ(A)
θ(−A)}

Z1I(Z1 ∈ Hc
p). To this end note that

{ θ(A)

θ(−A)

}Z1

= e
Z1 log(

θ(A)
θ(−A)

)
= e

(2
θ′(0)
θ(0)

A+o(A2))Z1 = e(4θ′(0)A+o(A2))Z1 .

Hence by Hölder’s Inequality for any f > 1 and complementary g > 1 such
that 1

f + 1
g = 1, one has

k{2θ(−A)}rE0

({ θ(A)

θ(−A)

}Z1

I(Z1 ∈ Hc
p)
)
≤ {kf{2θ(−A)}rfE0[e4θ′(0)AfZ1I(Z1 ∈ Hc

p)]}1/f

× {E0[egεZ1 ]}1/g (A.11)

where ε = o(A2). Our next task is hence to control kf{2θ(−A)}rfE0[e4θ′(0)AfZ1I(Z1 ∈
Hc
p)] for an appropriately chosen f > 1 and then subsequently bound {E0[egεZ1 ]}1/g

for the corresponding g > 1. We first analyze E0[e4θ′(0)AfZ1I(Z1 ∈ Hc
p)] for

arbitrary f > 1 and we will make the choice of the pair (f, g) clear later:

E0[e4θ′(0)AfZ1I(Z1 ∈ Hc
p)] = E0

[
e4θ′(0)AfZ1I

(
Z1 >

r

2
+
√

2 log p

√
r

4

)]
+ E0

[
e4θ′(0)AfZ1I

(
Z1 <

r

2
−
√

2 log p

√
r

4

)]
:= I1 + I2.
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We will analyze I1 in detail; the analysis of I2 is very similar and is omitted.
Since

I1 = e4θ
′
(0)f Ar

2 E0

e4θ
′
(0)f A

∗
2

Z1−
r
2√
r
4 I

(
Z1 >

r

2
+
√

2 log p

√
r

4

)

whereA∗ = A
√
r, we will first control E0

e4θ
′
(0)f A

∗
2

Z1−
r
2√
r
4 I

(
Z1 >

r
2 +
√

2 log p
√

r
4

) =

I ′1 (say). Denoting
Z1− r2√

r
4

by Wr, by the Komlos-Major-Tusnady strong em-

bedding theorem (Komlós, Major and Tusnády, 1975), there exists a version
of standard Brownian Motion Br on the same probability space as Wr such
that

P(|Wr −Br| ≥ C log(r) + s) ≤ Ke−λs (A.12)

where C,K, λ do not depend on r. For notational conveneience we will take
C = 1 w.l.o.g. Let x > 0 which we will choose appropriately later. Hence

I ′1 = E0

[
e

4θ
′
(0)f A∗

2
√
r
WrI

(
Z1 >

r

2
+
√

2 log p

√
r

4

)]
= E0

[
e4θ
′
(0)f A

2
(Wr)I(Wr >

√
2 log p

√
r)

× {I(|Wr −Br| ≤ log(r) + x) + I(|Wr −Br| > log(r) + x)}
]

:= I11 + I12.

Hence we will need to control both kf{2θ(−A)}rfe4θ
′
(0)f Ar

2 I11 and kf{2θ(−A)}rfe4θ
′
(0)f Ar

2 I12.
Now

I11

= E0[e4θ
′
(0)f A

2
(Wr)I(Wr >

√
2 log p

√
r)I(|Wr −Br| ≤ log(r) + x)]

≤ e4θ
′
(0)f A

2
(log(r)+x)E0[e4θ

′
(0)f A

2
BrI(Br >

√
2 log p

√
r − (log(r) + x))]

= e4θ
′
(0)f A

2
(log(r)+x)E0[e

4θ
′
(0)f A

∗
2
Br√
r I(

Br√
r
>
√

2 log p− (log(r) + x)√
r

)]

= e4θ
′
(0)f A

2
(log(r)+x)

∫ ∞
Tp

e4θ
′
(0)f A

∗
2
v− v

2

2

√
2π

dv where Tp =
√

2 log p− (log(r) + x)√
r

= e4θ
′
(0)f A

2
(log(r)+x)+2θ

′
(0)2f2(A∗)2

Φ(Tp − 2θ
′
(0)fA∗)
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≤ Ce{4θ
′
(0)f A

2
(log(r)+x)+2θ

′
(0)2f2(A∗)2−

T2
p−4θ

′
(0)2(A∗)2f2+4θ

′
(0)A∗fTp

2
} if Tp − 2θ

′
(0)fA∗ > 1

= Ce
{− log(p)(1−4θ

′
(0)
√
tf)− (log r+x)2

2r
+
√

2 log p(log r+x)

2
√
r

}
(A.13)

Since I11 is multiplied outside by {2θ(−A)}rfe4θ
′
(0)f Ar

2 we bound that coef-
ficient as follows:

{2θ(−A)}rfe4θ
′
(0)f Ar

2 = (2θ(−A)e2θ
′
(0)A)rf

= erf log (2θ(−A)e2θ
′
(0)A) = erf(log 2+log θ(A)+2θ

′
(0)A)

= e
rf{log 2+2θ

′
(0)A+log θ(0)+

θ
′
(0)

θ(0)
A(−1)− 1

2!
θ
′′

(0)θ(0)(−1)−θ
′
(0)2(−1)

θ(0)2
A2+o(A2)}

= erf{log 2+2θ
′
(0)A−log 2−2θ

′
(0)A−2θ

′
(0)2A2+o(A2)} since θ

′′
(0) = 0

= e{−f4θ
′
(0)2t log(p)+rfε′} where ε′ = o(A2) (A.14)

Finally collecting the terms from (A.13) and (A.14), we bound kf{2θ(−A)}rfe4θ
′
(0)f Ar

2 I11

as follows:

kf{2θ(−A)}rfe4θ
′
(0)f Ar

2 I11 ≤ Ce
− log(p){f(1−α−(1−2θ

′
(0)
√
t)2)+(f−1)}− (log r+x)2

2r
+
√

2 log p(log r+x)

2
√
r

+rfε′
.

(A.15)

Now since t < ρ∗binary(α), 1−α−(1−2θ
′
(0)
√
t)2 < 0. Hence we can choose f >

1 sufficiently close to 1 such that f(1−α−(1−2θ
′
(0)
√
t)2)+(f−1) < 0. We

note that since r � log(p), there exists a sequence ar,p →∞ such that r �
ar,p log(p). If we chose x = ar,p log(p) then Tp − 2θ

′
(0)A∗f > 1 as required

for the conclusions to hold since 4θ
′
(0)2t < 1 and r � ar,p log(p). Also again

since r � ar,p log(p) we have − log(p){f(1−α−(1−2θ
′
(0)
√
t)2)+(f−1)}−

(log r+x)2

2r +
√

2 log p(log r+x)
2
√
r

+ rfε′ ≤ −δ log(p) for some δ > 0 for sufficiently

large r, p. Hence for such x, we have kf{2θ(−A)}rfe4θ
′
(0)f Ar

2 I11 → 0. In
order to bound I12 from above we repeatedly apply the Cauchy-Schwarz
Inequality and use the fact that cosh (s) = 1 + s2/2 + o(s2) for small s as
follows:

I12 = E0[e4θ
′
(0)f A

2
WrI(Wr >

√
2 log p

√
r)I(|Wr −Br| > (log r + x))]

≤
{
E0[e4θ

′
(0)fAWrI(Wr >

√
2 log p

√
r)]P0(|Wr −Br| > (log r + x))

} 1
2

≤
{
E0[e8θ

′
(0)fAWr ]P0(Wr >

√
2 log p

√
r)(P0(|Wr −Br| > (log r + x)))2

} 1
4

=
{

(cosh (8θ
′
(0)fA))rP0(Wr >

√
2 log p

√
r)(P0(|Wr −Br| > (log r + x)))2

} 1
4
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=
{
er log (1+32θ

′
(0)2f2A2+o(A2))P0(Wr >

√
2 log p

√
r)(P0(|Wr −Br| > (log r + x)))2

} 1
4

≤
{
er(32θ

′
(0)2f2A2+o(A2))P0(Wr >

√
2 log p

√
r)(P0(|Wr −Br| > (log r + x)))2

} 1
4

≤ C
{
e{64θ

′
(0)2f2t log(p)−log(p)+

(log(p))2

r
− log log(p)

2
−2λx+rε

′′}
} 1

4

(A.16)

where ε
′′

= o(A2), the second last line uses the fact that log (1 + x) ≤ x for
x ≥ 0 and the last line follows from (A.10) and (A.12) for some constant C >

0. Recall from (A.14) that kf{2θ(−A)}rfe4θ
′
(0)f Ar

2 = e{−4θ
′
(0)2ft log(p)+rfε′+(1−α) log(p)}

where ε′ = o(A2). Hence by combining terms from (A.16) and (A.14), we
obtain that for a constant K depending on f, t and θ

′
(0),

kf{2θ(−A)}rfe4θ
′
(0)f Ar

2 I12 ≤ CeK log(p)−2λx.

Now since x = ar,p log(p) for some ar,p → ∞ such that r � ar,p log(p), it
follows that

kf{2θ(−A)}rfe4θ
′
(0)f Ar

2 I12 = o(1) (A.17)

as required.
Next considering the g-factor from (A.11) we have

{E0[egεZ1 ]}1/g = e
r
g

log ( 1+egε

2
)

where ε = o(A2)

= e
r
g

log (1+ egε−1
2

)
= e

r
g

log (1+
gε+g2ε2+o(g2ε2)

2
)

≤ e
r
g

log (1+
(2g+2g2)ε

2
)

= erεO(1) = eo(1) → 1 (A.18)

Hence collecting terms from (A.15),(A.17) and (A.18) in (A.11) we finish
proving E0(Lπ IDc) = o(1) which is the first inequality of (A.8).

Next we prove the second inequality in (A.8). Since definition of D does
not depend on β, it follows that

L2
πID = (LπID)2

= 22n

∫∫ p∏
j=1

{
θ(βj)θ(β

′
j)

θ(−βj)θ(−β′j)

}Zj {
θ(−βj)θ(−β′j)

}rI(Zj ∈ Hp)dπ(β)dπ(β)′.
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Hence by Fubini’s Theorem and independence of the Zj ’s,

E0(L2
πID) = 22n

∫∫ p∏
j=1

E0

[{ θ(βj)θ(β
′
j)

θ(−βj)θ(−β′j)

}Zj {
θ(−βj)θ(−β′j)

}r I(Zj ∈ Hp)
]
dπ(β)dπ(β′)

= 22n2−2k

(
p

k

)−2 ∑
m1,m2,ξ1,ξ2

p∏
j=1

E0

[{ θ(βj)θ(β
′
j)

θ(−βj)θ(−β′j)

}Zj {
θ(−βj)θ(−β′j)

}r I(Zj ∈ Hp)
]

(A.19)

For any two i.i.d draws (m1, ξ1) and (m2, , ξ2), set for j = 1, . . . , p

Tj = E0

[{ θ(βj)θ(β
′
j)

θ(−βj)θ(−β′j)

}Zj {
θ(−βj)θ(−β′j)

}r I(Zj ∈ Hp)
]
.

We divide into the following cases. For each j ∈ {1, . . . , p},

1. j ∈ mc
1 ∩mc

2: Tj =
P0(Zj∈Hp)

2r .

2. j ∈ m1 ∩mc
2 ∩ {l : ξl1 = 1}: Tj = E0

[{
θ(A)
θ(−A)

}ZjI(Zj ∈ Hp)
]
( θ(−A)

2 )r.

3. j ∈ m1 ∩mc
2 ∩ {l : ξl1 = −1}:

Tj = E0

[{ θ(A)

θ(−A)

}r−ZjI(Zj ∈ Hp)
]
(
θ(−A)

2
)r

= E0

[{ θ(A)

θ(−A)

}ZjI(Zj ∈ Hp)
]
(
θ(−A)

2
)r

since r − Zj
d
= Zj and the definition of the set D is also symmetric in

Zj and r − Zj for all Zj .

4. j ∈ mc
1 ∩m2 ∩ {l : ξl2 = 1}: Tj = E0

[{
θ(A)
θ(−A)

}ZjI(Zj ∈ Hp)
]
( θ(−A)

2 )r.

5. j ∈ mc
1 ∩m2 ∩ {l : ξl2 = −1}: Tj = E0

[{
θ(A)
θ(−A)

}ZjI(Zj ∈ Hp)
]
( θ(−A)

2 )r

by the symmetry argument made in case (3) above.

6. j ∈ m3∩{l : ξl1 = ξl2 = 1}: Tj = E0

[{
θ(A)
θ(−A)

}2ZjI(Zj ∈ Hp)
]
(θ(−A))2r.

7. j ∈ m3∩{j : ξl1 = ξl2 = −1}: Tj = E0

[{
θ(A)
θ(−A)

}2ZjI(Zj ∈ Hp)
]
(θ(−A))2r

again by the symmetry argument.

8. j ∈ m4: Tj = {θ(A)θ(−A)}rP0(Zj ∈ Hp).

Grouping the terms in (A.19) by the above cases and collecting terms,

E0(L2
πI(D))
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=
22n−2k(
p
k

)2 ∑
m1,m2
ξ1,ξ2

[ ∏
j∈mc1∩mc2

P0(Zj ∈ Hp)

2r

∏
j∈mc1∆mc2

E0

[{ θ(A)

θ(−A)

}Zj
I(Zj ∈ Hp)

](θ(−A)

2

)r

×
∏
j∈m3

E0

[{ θ(A)

θ(−A)

}2Zj
I(Zj ∈ Hp)

]
(θ(−A))2r

∏
j∈m4

{θ(A)θ(−A)}rP0(Zj ∈ Hp)
]

=
22n−2k(
p
k

)2 ∑
m1,m2
ξ1,ξ2

[ ∏
j∈mc1∩mc2

P0(Z1 ∈ Hp)

2r

∏
j∈mc1∆mc2

E0

[{ θ(A)

θ(−A)

}Z1

I(Z1 ∈ Hp)
]
(
θ(−A)

2
)r

×
∏
j∈m3

E0

[{ θ(A)

θ(−A)

}2Z1

I(Z1 ∈ Hp)
]
(θ(−A))2r

∏
j∈m4

{θ(A)θ(−A)}rP0(Z1 ∈ Hp)
]

=
22n−2k(
p
k

)2 ∑
m1,m2
ξ1,ξ2

[(P0(Z1 ∈ Hp)

2r

)|mc1∩mc2|(
E0

[{ θ(A)

θ(−A)

}Z1

I(Z1 ∈ Hp)
]
(
θ(−A)

2
)r
)|m1∆m2|

×
(
E0

[{ θ(A)

θ(−A)

}2Z1

I(Z1 ∈ Hp)
]
(θ(−A))2r

)|m3|(
{θ(A)θ(−A)}rP0(Z1 ∈ Hp)

)|m4|]
=

1

22k
(
p
k

)2 ∑
m1,m2
ξ1,ξ2

[(
P0(Z1 ∈ Hp)

)|mc1∩mc2|(E0

[{ θ(A)

θ(−A)

}Z1

I(Z1 ∈ Hp)
]
(2θ(−A))r

)|m1∆m2|

×
(
E0

[{ θ(A)

θ(−A)

}2Z1

I(Z1 ∈ Hp)
]
(2θ(−A))2r

)|m3|(
{4θ(A)θ(−A)}rP0(Z1 ∈ Hp)

)|m4|]
≤ 1

22k
(
p
k

)2 ∑
m1,m2
ξ1,ξ2

[(
E0

[{ θ(A)

θ(−A)

}2Z1

I(Z1 ∈ Hp)
]
(2θ(−A))2r

)|m3|

×
(
{4θ(A)θ(−A)}rP0(Z1 ∈ Hp)

)|m4|]
=

1

22k
(
p
k

)2 ∑
m1,m2
ξ1,ξ2

[{(E0

[{
θ(A)
θ(−A)

}2Z1

I(Z1 ∈ Hp)
]
(2θ(−A))2r

)
(
{4θ(A)θ(−A)}rP0(Z1 ∈ Hp)

) }|m3|

×
(
{4θ(A)θ(−A)}rP0(Z1 ∈ Hp)

)|m1∩m2|]
=

1(
p
k

)2 ∑
m1,m2

[1

2

(
{4θ(A)θ(−A)}rP0(Z1 ∈ Hp)

+ E0

[{ θ(A)

θ(−A)

}2Z1

I(Z1 ∈ Hp)
]
(2θ(−A))2r

)|m1∩m2|]
= EW

[1

2

(
{4θ(A)θ(−A)}rP0(Z1 ∈ Hp) + E0

[{ θ(A)

θ(−A)

}2Z1

I(Z1 ∈ Hp)
]
(2θ(−A))2r

)]W
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where W ∼ Hypergeometric(p, k, k). Now we observe that by Lemma A.1,

EW
[1

2

(
{4θ(A)θ(−A)}rP0(Z1 ∈ Hp) + E0

[{ θ(A)

θ(−A)

}2Z1

I(Z1 ∈ Hp)
]
(2θ(−A))2r

)]W
≤ EU

[1

2

(
{4θ(A)θ(−A)}rP0(Z1 ∈ Hp) + E0

[{ θ(A)

θ(−A)

}2Z1

I(Z1 ∈ Hp)
]
(2θ(−A))2r

)]U
where U ∼ Bin(k, k

p−k ), provided the following holds:

[1

2

(
{4θ(A)θ(−A)}rP0(Z1 ∈ Hp) + E0

[{ θ(A)

θ(−A)

}2Z1

I(Z1 ∈ Hp)
]
(2θ(−A))2r

)]
≥ 1 .

(A.20)

Hence under the inequality (A.20) we have

E0(L2
πI(D))

≤ EU
[1

2

(
{4θ(A)θ(−A)}rP0(Z1 ∈ Hp) + E0

[{ θ(A)

θ(−A)

}2Z1I(Z1 ∈ Hp)
]
(2θ(−A))2r

)]U
=
{

1 +
k

p− k

([1

2

(
{4θ(A)θ(−A)}rP0(Z1 ∈ Hp)

+ E0

[{ θ(A)

θ(−A)

}2Z1I(Z1 ∈ Hp)
]
(2θ(−A))2r

)]
− 1
)}

Hence in order to prove the second inequality of (A.8) it suffices to verify
the inequality (A.20) and prove

k2

p

([1

2

(
{4θ(A)θ(−A)}rP0(Z1 ∈ Hp) + E0

[{ θ(A)

θ(−A)

}2Z1I(Z1 ∈ Hp)
]
(2θ(−A))2r

)]
− 1
)

= o(1) .

(A.21)

We first verify (A.21). We note that

k2

p

([1

2

(
{4θ(A)θ(−A)}rP0(Z1 ∈ Hp) + E0

[{ θ(A)

θ(−A)

}2Z1I(Z1 ∈ Hp)
]
(2θ(−A))2r

)]
− 1
)

:= E1 + E2 + E3 . (A.22)

where

E1 =
k2

2p
{4θ(A)θ(−A)}rP0(Z1 ∈ Hp),

E2 =
k2

2p
E0

[{ θ(A)

θ(−A)

}2Z1I(Z1 ∈ Hp)
]
(2θ(−A))2r
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and

E3 =
k2

p
.

Since α > 1
2 , trivially E3 = o(1). Hence it suffices to prove that E1 = o(1)

and E2 = o(1). To this end, first note that

E1 =
k2

2p
{4θ(A)θ(−A)}rP0(Z1 ∈ Hp) ≤

k2

p
{4θ(A)θ(−A)}r

=
k2

p
er log(4θ(A)θ(−A)) =

k2

p
er(2θ

′
(0)A−2θ

′
(0)2A2−2θ

′
(0)A−2θ

′
(0)2A2+o(A2))

=
k2

p
er(−4θ

′
(0)2A2+o(A2)) = o(1) (A.23)

as required. Next we control E2 as follows:

E2 =
k2

2p
E0

[{ θ(A)

θ(−A)

}2Z1I(Z1 ∈ Hp)
]
(2θ(−A))2r

≤ k2

p
E0

[{ θ(A)

θ(−A)

}2Z1I(Z1 ∈ Hp)
]
(2θ(−A))2r

=
k2

p
E0

[
e

2Z1 log{ θ(A)
θ(−A)

}I(Z1 ∈ Hp)
]
(2θ(−A))2r

= E0

[
e2Z1(4θ

′
(0)A+ε)I(Z1 ∈ Hp)

]
(2θ(−A))2r where ε = o(A2)

≤
{
E0

[
e8θ
′
(0)AZ1I(Z1 ∈ Hp)(2θ(−A))2r k

2

p

]f}1/f{
E0

[
e2gεZ1

]}1/g
.

(A.24)

where the last line is by Hölder’s Inequality for any f > 1 and comple-
mentary g > 1 such that 1

f + 1
g = 1. Our next task is hence to control

E0

[
e8θ
′
(0)AZ1I(Z1 ∈ Hp)(2θ(−A))2r k2

p

]f
for an appropriately chosen f > 1

and then subsequently bound
{
E0

[
e2gεZ1

]}1/g
for the corresponding g > 1.

We first analyze E0

[
e8θ
′
(0)AZ1I(Z1 ∈ Hp)(2θ(−A))2r k2

p

]f
for arbitrary f > 1

and we will make the choice of the pair (f, g) clear later. To that end, we
have

E0

[
e8θ
′
(0)AfZ1I(Z1 ∈ Hp)(2θ(−A))2rf

]
= E0

[
e8θ
′
(0)AfZ1(2θ(−A))2rf

{
I
(
Z1 ≤

r

2
+
√

2 log p

√
r

4

)
+ I

(
Z1 ≥

r

2
−
√

2 log p

√
r

4

)}]
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:= I1 + I2 − I3 (A.25)

where I1 = E0

[
e8θ
′
(0)AfZ1(2θ(−A))2rf{I(Z1 ≤ r

2 +
√

2 log p
√

r
4)}
]

and I2 =

E0

[
e8θ
′
(0)AfZ1(2θ(−A))2rf{I(Z1 ≥ r

2 −
√

2 log p
√

r
4)}
]

and I3 is the remain-

der. We will analyze I1 in detail; the analysis of I2 is very similar and is
omitted. The proof of I3 = o(1) is easier and can be also done following
similar techniques and is hence also omitted. Recalling the definition of

Wr :=
Z1− r2√

r
4

, we have

E0

[
e8θ
′
(0)AfZ1I

(
Z1 ≤

r

2
+
√

2 log p

√
r

4

)]
= e4θ

′
(0)fArE0

[
e4θ
′
(0)fAWrI

(
Wr√
r
≤
√

2 log p

)]
Arguing similarly as in proof of the first inequality of (A.8), it can be shown

that it suffices to analyze e4θ
′
(0)fArE0

[
e4θ
′
(0)fABr{I(Br√

r
≤
√

2 log p)}
]

where

Br is the version of Brownian Motion on the same probability space as Wr

satisfying (A.12). Of course in the proof of the first inequality of (A.8)
we went through complete details in choosing an appropriate x > 0 which
calibrates the degree of approximation between Wr and Br. However we
note that the same choice of x as before goes through and the essence of the

proof boils down to controlling e4θ
′
(0)fArE0

[
e4θ
′
(0)fABr{I(Br√

r
≤
√

2 log p)}
]
.

Now

E0

[
e4θ
′
(0)fABrI

(
Br√
r
≤
√

2 log p

)]
= E0

[
e

4θ
′
(0)fA∗ Br√

r I
(
Br√
r
≤
√

2 log p

)]
=

∫ √2 log p

−∞
e4θ
′
(0)fA∗v e

− v2

2√
2π

dv

=

∫ √2 log p

−∞

1√
2π
e−

1
2

(v2−8θ
′
(0)fA∗v+16θ

′
(0)2f2(A∗)2)e8θ

′
(0)2f2(A∗)2

dv

= Φ(
√

2 log p− 4θ
′
(0)fA∗)e8θ

′
(0)2f2(A∗)2

Considering the expression for I1 in (A.25), we have the following:

e4θ
′
(0)fAr(2θ(−A))2rf = e−4θ

′
(0)2(A∗)2f+rfε′ where ε′ = o(A2)

since θ
′′
(0) = 0. Hence we have, as in the proof of the first inequality of

(A.8),

I1 . e(1−2α)f log(p)+8θ
′
(0)2(A∗)2f2−4θ

′
(0)(A∗)2f+rfε′Φ(

√
2 log p− 4θ

′
(0)fA∗)
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= e{(1−2α)f+16θ
′
(0)2f2t−8θ

′
(0)ft} log(p)+rfε′Φ(

√
2 log p− 4θ

′
(0)fA∗)

Now the behavior of the bounds on Φ(s) is different depending on whether
s ≥ 0 or s < 0 and we have Φ(s) ≤ 1 when s ≥ 0 and Φ(s) < φ(s) if s < 0.
But
√

2 log p− 4θ
′
(0)fA∗ Q 0 accordingly as t R 1

16θ′ (0)2f2 . Hence we divide

our analysis into two parts according to the range of t.

When t ≤ 1
16θ′ (0)2f2 , i.e.,

√
2 log p− 4θ

′
(0)fA∗ ≥ 0 we have

I1 . e{(1−2α)f+16θ
′
(0)2f2t−8θ

′
(0)ft} log(p)+rfε′

Now the coefficient of log(p) in the above exponent is

f
[
(1− 2α) + 8θ

′
(0)2t (2f − 1)

]
= 2f

[(
1

2
− α

)
+ 4θ

′
(0)2t (2f − 1)

]
= 8fθ

′
(0)2

[
1
2 − α

4θ′(0)2
+ t (2f − 1)

]

For α ≤ 3
4 , since t < ρ∗binary(α) =

α− 1
2

4θ′ (0)2 , we have there exists δ1(α, t) > 0

such that
1
2
−α

4θ′ (0)2 + t(2f − 1) < 0 whenever f = 1 + δ with δ ≤ δ1(α, t).

For α > 3
4 , since t ≤ 1

16θ′ (0)2f2 ,
α− 1

2

4θ′ (0)2 is monotone increasing in α and

ρ∗binary(3
4) =

3
4
− 1

2

4θ
′
(0)2 = 1

16θ
′
(0)2f2 , we have that there exists δ2(α, t) > 0 such

that
1
2
−α

4θ′ (0)2 + t(2f − 1) < 0 whenever f = 1 + δ with δ ≤ δ2(α, t).

When t > 1
16θ′ (0)2f2 we have

I1 . e{(1−2α)f+16θ
′
(0)2f2t−8θ

′
(0)ft} log(p)+rfε′φ(

√
2 log p− 4θ

′
(0)fA∗)

= ef log(p)(1−2α−8θ
′
(0)2t−1+8θ

′
(0)
√
t)+log(p)(f−1)+rfε′

= ef log(p)(1−2α−8θ
′
(0)2t−1+8θ

′
(0)
√
t)+log(p)(f−1)+rfε′

= ef log(p){2(1−α)−2(1−2θ
′
(0)
√
t)2}+(f−1) log(p)+rfε′

Since t < ρ∗binary(α), 2(1− α)− 2(1− 2θ
′
(0)
√
t)2 < 0 and hence there exists

δ3(α, t) > 0 such that f{{2(1−α)−2(1−2θ
′
(0)
√
t)2}+(f−1) < 0 whenever

f = 1 + δ with δ ≤ δ3(α, t).

Hence choosing f = 1 + δ with δ = min{δ1(α, t), δ2(α, t), δ3(α, t)} yields
I1 = o(1) as required. Controlling the corresponding g-factor in (A.24) is
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similar to that in (A.11) and can be done along the lines of deriving (A.18).

Next we prove (A.20). We note that it suffices to prove that E0

[{
θ(A)
θ(−A)

}2Z1I(Z1 ∈

Hp)
]
(2θ(−A))2r →∞. As before

E0

[{ θ(A)

θ(−A)

}2Z1I(Z1 ∈ Hp)
]
(2θ(−A))2r

= E0

[
e

2Z1 log{ θ(A)
θ(−A)

}I(Z1 ∈ Hp)
]
(2θ(−A))2r

= E0

[
e(4θ

′
(0)+ε)A2Z1I(Z1 ∈ Hp)

]
(2θ(−A))2r where εA = o(A2)

= e(4θ
′
(0)+ε)Ar(2θ(−A))2rE0

[
e(4θ

′
(0)+ε)AWrI(Z1 ∈ Hp)

]
.

Now,

E0

[
e(4θ

′
(0)+ε)AWrI(Z1 ∈ Hp)

]
≥ E0

[
e(4θ

′
(0)+ε)AWrI(|Wr −Br| ≤ (log r + x))I(−

√
2 log p

√
r ≤Wr ≤

√
2 log p

√
r)

≥ e−(4θ
′
(0)+ε)(log r+x)AE0

[
e(4θ

′
(0)+ε)ABrI(|Wr −Br| ≤ (log r + x))

× I(−
√

2 log p
√
r + (log r + x) ≤ Br ≤

√
2 log p

√
r − (log r + x))

]
= e−(4θ

′
(0)+ε)(log r+x)AE0

[
e

(4θ
′
(0)+ε)A∗ Br√

r

I(−
√

2 log p
√
r +

(log r + x)√
r

≤ Br√
r
≤
√

2 log p− (log r + x)√
r

)
]

− e−(4θ
′
(0)+ε)(log r+x)AE0

[
e

(4θ
′
(0)+ε)A∗ Br√

r

I(−
√

2 log p
√
r +

(log r + x)√
r

≤ Br√
r
≤
√

2 log p− (log r + x)√
r

)

× I(|Wr −Br| > (log r + x))
]

:= S1 − S2 .

(A.26)

Hence it is enough to prove that e(4θ
′
(0)+ε)Ar(2θ(−A))2rS1 →∞ and e(4θ

′
(0)+ε)Ar(2θ(−A))2rS2 =

O(1).

Now

S1 := e−(4θ
′
(0)+ε)(log r+x)AE0

[
e

(4θ
′
(0)+ε)A∗ Br√

r
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I(−
√

2 log p
√
r +

(log r + x)√
r

≤ Br√
r
≤
√

2 log p− (log r + x)√
r

)
]

= e−(4θ
′
(0)+ε)(log r+x)Ae

1
2

(4θ
′
(0)+ε)2(A∗)2

Φ
(
√

2 log p− (log r+x)√
r
−(4θ

′
(0)+ε)A∗)

.

(A.27)

Also

e(4θ
′
(0)+ε)Ar(2θ(−A))2r = e−4θ

′
(0)2A2r+ro(A2)+εAr = e−4θ

′
(0)2A2r+ro(A2).

(A.28)

Hence by (A.27) and (A.28) we have

e(4θ
′
(0)+ε)Ar(2θ(−A))2rS1 = e{

1
2

(4θ
′
(0)+ε)2(A∗)2−(4θ

′
(0)+ε)(log r+x)A−4θ

′
(0)2A2r+ro(A2)}

× Φ
(√

2 log p− (log r + x)√
r

− (4θ
′
(0) + ε)A∗

)
.

(A.29)

The behavior of the above quantity depends on Φ(η) where η =
√

2 log p−
(log r+x)√

r
− (4θ

′
(0) + ε)A∗. Hence we divide our study in the following cases.

First suppose t ≤ 1
16θ
′
(0)2 . If ε = −δ < 0, then η ≥

√
2 log pδ

4θ
′
(0)
− (log r+x)√

r
.

Hence Φ(η) ≥ 1
2 + o(1). Hence from (A.29) we have

e(4θ
′
(0)+ε)Ar(2θ(−A))2rS1

≥ (
1

2
+ o(1))e{

1
2

(4θ
′
(0)+ε)2(A∗)2−(4θ

′
(0)+ε)(log r+x)Ar−4θ

′
(0)2A2r+ro(A2)}

= (
1

2
+ o(1))e4θ

′
(0)(A∗)2+κ−(4θ

′
(0)+ε)(log r+x)A+ro(A2) where |κ| � log(p)

= (
1

2
+ o(1))e8tθ

′
(0) log(p)+κ−(4θ

′
(0)+ε)(log r+x)A+ro(A2).

(A.30)

Now (4θ
′
(0)+ε)(log r+x)A < 5θ

′
(0)(log r+x)

√
2 log p√

r
� log(p) if x = ar,p log(p)

is such that ar,p → ∞ ensuring both r � ar,p log(p) and
ar,p log(p)

√
2 log p√

r
�

log(p). Thus e(4θ
′
(0)+ε)Ar(2θ(−A))2rS1 ≥ ec log(p) for some c > 0 and hence

diverges.

If ε > 0, then η ≥ −
√

2 log pε

4θ′ (0)
− (log r+x)√

r
and hence −η ≤

√
2 log pε

4θ′ (0)
+

(log r+x)√
r
� τ for some divergent τ �

√
log(p). Hence, by Lemma ??,

Φ(η) = Φ(−η) ≥ (1− 1

τ2
)
φ(τ)

τ
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≥ φ(τ)

2τ
for sufficiently large r, p

=
e−τ

2/2

τ
√

2π
.

Hence similar to the calculations in deriving (A.30) we have

e(4θ
′
(0)+ε)Ar(2θ(−A))2rS1 ≥

e−τ
2/2

τ
√

2π
e8tθ

′
(0) log(p)+κ−(4θ

′
(0)+ε)(log r+x)A+ro(A2)

≥ e−τ
2/2

τ
√

2π
ec log(p) for some c > 0

=
ec log(p)−τ2/2

τ
√

2π

≥ ec
′ log(p)√
log(p)

for some c′ > 0 since τ �
√

log(p)

→∞.
(A.31)

Now suppose 1
16θ′ (0)2 < t < ρ∗binary(α). If ε = −δ < 0, then η <

√
2 log pδ

4θ′ (0)
−

(log r+x)√
r

. If η ∈ (−2,
√

2 log pδ

4θ′ (0)
− (log r+x)√

r
) then since Φ(η) ≥ Φ(−2) we have by

the same argument as in (A.30) that e(4θ
′
(0)+ε)Ar(2θ(−A))2rS1 → ∞. Now

suppose η ≤ −1. Then once again using the fact that Φ(η) = Φ(−η) and
Lemma ?? we have that

e(4θ
′
(0)+ε)Ar(2θ(−A))2rS1

= e{
1
2

(4θ
′
(0)+ε)2(A∗)2−(4θ

′
(0)+ε)(log r+x)A−4θ

′
(0)2A2r+ro(A2)}Φ(−η)

≥ (1− 1

η2
)
φ(η)

−η
e{

1
2

(4θ
′
(0)+ε)2(A∗)2−(4θ

′
(0)+ε)(log r+x)A−4θ

′
(0)2A2r+ro(A2)}

=
(1− 1

η2 )

−η
e{log(p)(1−2(1−2θ

′
(0)
√
t)2)+κ′}

(A.32)

where |κ′| � log(p). Now

inf
1

16θ
′
(0)2

<t<ρ∗binary(α)
{1− 2(1− 2θ

′
(0)
√
t)2} ≥ inf

t<ρ∗binary(α)
{1− 2(1− 2θ

′
(0)
√
t)2}

= 1− 2(1− 2θ
′
(0)
√
ρ∗binary(α))2



27

= 1− 2(1− 2θ
′
(0)

√
(1−

√
1− α)2

4θ′(0)2
)2

= 1− 2(1− (1−
√

1− α))2 = 2α− 1 > 0

since α > 1
2 . Hence from (A.32) we have that

e(4θ
′
(0)+ε)Ar(2θ(−A))2rS1 ≥

3

−4η
ec
′′ log(p) for some c′′ > 0

→∞

since |η| . log(p). This completes the proof of e(4θ
′
(0)+ε)Ar(2θ(−A))2rS1 →

∞.

Next we prove e(4θ
′
(0)+ε)Ar(2θ(−A))2rS2 = O(1). To this end note, that

by the Cauchy-Schwarz Inequality,

S2

≤ e−(4θ
′
(0)−ε)(log r+x)A(E0[e(8θ

′
(0)−2ε)A∗V ]P0(|Wr −Br| > (log r + x)))1/2 where V ∼ N(0, 1)

≤ (e
−(4θ

′
(0)−ε) (log r+x)√

r

√
2t log(p)+(8θ

′
(0)−2ε)2t log(p)−λx

)1/2 by Equation (A.12)

(A.33)

Hence from (A.33) and (A.28) we have that e(4θ
′
(0)+ε)Ar(2θ(−A))2rS2 → 0

since x = ar,p log(p) where ar,p was chosen to diverge at a slow enough rate.
This completes the verification of (A.20) and hence proves the theorem.

Proof of Theorem 6.10. We will provide proof for the lower bound
in problem 2.3 where θ ∈ BC2(0). Using Remark 6.1, the proof also holds
for problem 6.2. To analyze the power of the Higher Criticism test, we need
to define the following quantities. Let 1

2 + δ = θ(A). Also define S1 to be a
generic Bin(r, 1

2 + δ) random variable and let B1,B1 respectively denote the
distribution function and survival function of S1. Then

B1(t) = P(
|S1− r2 |√

r
4

≤ t), B1(t) = 1− B1(t) .

The proof of the rest of the theorem relies on the following lemma.

Lemma A.5. Let r � log(p) and t > ρ∗logistic(α). Then there exists s ∈
[1,
√

3 log(p)] such that

1. k√
p

B1(s)−B(s)√
B(s)(1−B(s))

� log(p)
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2. (p−k)B(s)(1−B(s))+kB1(s)(1−B1(s))

k2(B1(s)−B(s))2 → 0

Now we return to the proof of the main result. For any z ∈ [1,
√

3 log(p)]∩
N, THC ≥ Wp(z) where Wp(z) =

√
p

Fp(z)−B(z)√
B(z)(1−B(z))

. Hence by Chebysev’s in-

equality it suffices to prove that there exists s ∈ [1,
√

3 log(p)] such that

uniformly in β ∈ ΘA
k ,

Eβ(Wp(s))√
2 log log(p)

→ ∞ and
Varβ(Wp(s))

(Eβ(Wp(s)))2 → 0 when t >

ρ∗logistic(α). Fix β∗ ∈ ΘA
k ; thus β∗ has 0 in p − k locations, A in k1 loca-

tions (say) and −A in k − k1 = k2 locations. Now note that by symmetry
P(|Bin(r, 1

2 + δ) − r
2 | > t) = P(|Bin(r, 1

2 − δ) −
r
2 | > t) for all t > 0. Hence

it is easy to show that irrespective of k1, k2, Eβ∗(Wp(s)) = k√
p

B1(s)−B(s)√
B(s)(1−B(s))

and Varβ∗(Wp(s)) = p−k
p + k

p
B1(s)(1−B1(s))

B(s)(1−B(s))
. Hence to show

Eβ(Wp(s))
log(p) → ∞

it suffices to show k√
p

B1(s)−B(s)√
B(s)(1−B(s))

�
√

log(p) which is true by item 1 of

Lemma A.5. Similarly to show that
Varβ(Wp(s))

(Eβ(Wp(s)))2 → 0 it suffices to show that

(p−k)B(s)(1−B(s))+kB1(s)(1−B1(s))

k2(B1(s)−B(s))2 → 0 which is also true by item 2 of Lemma

A.5. This completes the proof.

Proof of Lemma A.5. By inspecting the expressions, it suffices to prove
k√
p

B1(s)−B(s)√
B(s)(1−B(s))

→ ∞ as some positive power of p. Put s = b2
√

2q log(p)c

where q = min{4tθ′(0)2, 1
4}. By the choice of q, s ∈ [1,

√
3 log(p)] ∩ N. Now
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by the Berry-Esseen approximation and Mill’s Ratio,

k
√
p

B1(s)− B(s)√
B(s)(1− B(s))

≈ p
1
2
−α

Φ

(
s− rδ√

r
4

)
√

Φ(s)
≈ p

1
2
−α

Φ

(
s− rθ

′
(0)A√
r
4

)
√

Φ(s)

= p
1
2
−α

Φ

(√
2q log(p)

√
r−
√

2t log(p)θ
′
(0)
√
r√

r
4

)
√

Φ

(√
2q log(p)

√
r√

r
4

)

= p
1
2
−α

Φ
(√

8q log(p)−
√

8t log(p)θ
′
(0)
)

√√√√Φ

(√
2q log(p)√

1
4

)

≈ e
1
2
−α− 8

2
log(p)(

√
q−
√
tθ
′
(0))2+ 8

4
q log(p)

= p
1
2
−α+2q−4(

√
q−
√
tθ
′
(0))2

.

The exponent of p above is given by

1

2
− α+ 2q − 4(

√
q −
√
tθ
′
(0))2 =: f(q) say .

The function f(q) is maximized at q = 4tθ
′
(0)2 for t ≤ 1

16θ′ (0)2 . The max-

imum value is (1
2 − α) + 4tθ

′
(0)2 > 0 since t > ρ∗binary(α). For t > 1

16θ′ (0)2

if we put q = 1
4 , then f(q) = (1 − α) − (1 − 2

√
tθ
′
(0))2 > 0 since t >

max{ρ∗binary(α), 1
16θ′ (0)2 }. Hence taking s =

√
2q log(p) where q = min{4tθ′(0)2, 1

4}
proves the lemma.

Proof of Proposition 6.11. Set V(j) = |Z − r
2 |(j) so that

sup
t∈[V(p−j),V(p−j+1))

√
p

Fp(t)− B(t)√
B(t)(1− B(t))

= sup
t∈[V(p−j),V(p−j+1))

√
p

j
p − B(t)√

B(t)(1− B(t))

=
√
p

j
p − inft∈[V(p−j),V(p−j+1)) B(t)√

inft∈[V(p−j),V(p−j+1)) B(t)(1− inft∈[V(p−j),V(p−j+1)) B(t))
.
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Now B(t) is a decreasing function of t and thus inft∈[V(p−j),V(p−j+1)) B(t)) ≥
B(V(p−j+1))) = q(j). Therefore we obtain that

sup
t∈[V(p−j),V(p−j+1))

√
p

Fp(t)− B(t)√
B(t)(1− B(t))

=
√
p

j
p − inft∈[V(p−j),V(p−j+1)) B(t)√

inft∈[V(p−j),V(p−j+1)) B(t)(1− inft∈[V(p−j),V(p−j+1)) B(t))

≤ √p
j
p − q(j)√

q(j)(1− q(j))

since c−x√
x(1−x)

is a decreasing function of x ∈ [0, 1] for c ∈ [0, 1] and the proof

is done.

Proof of Theorem 6.12. We will provide proof for the lower bound
in problem 2.3 where θ ∈ BC2(0). Using Remark 6.1, the proof also holds
for problem 6.2. As in proof of Theorem 6.8, we denote by B

′
jr the version

of Brownian Motion approximating W
′
jr where W

′
jr = Wjr

√
r and we can

choose B
′
jr independent for j = 1, . . . , p. Let Bjr =

B
′
jr√
r

. For any tp > 0,

P( max
1≤j≤p

|Wjr| ≤ tp) = P( max
1≤j≤p

|Wjr −Bjr +Bjr| ≤ tp)

≥ P( max
1≤j≤p

|Wjr −Bjr|+ max
1≤j≤p

|Bjr| ≤ tp)

≥ P
(

max
1≤j≤p

|Bjr| ≤ tp −
log(r) + x√

r

)
+ o(1)

for some x > 0. By a similar token we can show that P(max1≤j≤p |Wjr| ≤
tp) ≤ P(max1≤j≤p |Bjr| ≤ tp + log(r)+x√

r
) + o(1) for the same x above. Now

by Lemma 11 of Arias-Castro, Candès and Plan (2011) we have that

P( max
1≤j≤p

|Bjr| ≤ κp +
s√

2 log(p)
)→ e−e

−s

as p→∞ where κp =
√

2 log(p)− log log(p)+4π−4

2
√

2 log(p)
. Hence if r � (log(r))2 log(p)

then log(r)+x√
r

= o(1)√
2 log(p)

for appropriately chosen x. Therefore, by following

the arguments of Lemma 11, Lemma 12 and proof of Theorem 5 of Arias-
Castro, Candès and Plan (2011) we have the result when r � (log(r))2 log(p)
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if we can choose x appropriately. We choose it to be the same as our choice
in the proof of Theorem 6.8. To be precise, since r � log(p), there exists
a sequence ar,p → ∞ such that r � ar,p log(p). Take x = ar,p. We skip the
rest of the details.

Proof of Theorem 7.1. We divide the proof into proofs of lower bound
and upper bound respectively.

Part 1 : Proof of Lower Bound. For the purpose of brevity assume that
X = [Xt

1 : Xt
2]t where X1 is an n∗ × p matrix whose rows comprises exactly

of the rows in Ω∗ and X2 is an n∗ × p matrix whose rows consists of the
rows of X with more than one non-zero element in its support. Note that,
this can always be achieved by a permutation of the rows of X and hence
this does change the validity of the theorem. Let

f(X1,β,β
′
) =

∏
i∈Ω∗

[
θ(xtiβ)θ(xtiβ

′
) + θ(−xtiβ)θ(−xtiβ

′
)
]

and
f(X2,β,β

′
) =

∏
i/∈Ω∗

[
θ(xtiβ)θ(xtiβ

′
) + θ(−xtiβ)θ(−xtiβ

′
)
]
.

Note that by Lemma A.4, we have that f(X1,β,β
′
) ≤

[
θ2(QA) + θ2(−QA)

]n∗
for any realizations β,β′ from π:

E0(L2
π) = 2n

∗+n∗

∫∫
f(X1,β,β

′
)f(X2,β,β

′
)dπ(β)dπ(β

′
) (A.34)

≤ 2n∗
[
θ2(QA) + θ2(−QA)

]n∗
2n
∗
∫∫

f(X1,β,β
′
)dπ(β)dπ(β

′
).

Now, using θ(A) = 1
2 + ∆ we have that A2 �

√
p

kr∗ implies ∆2 �
√
p

kr∗ since
θ ∈ BC2(0). Following the exact arguments as in the proof of lower bound
Theorem 6.5, one has

2n
∗
∫∫

f(X1,β,β
′
)dπ(β)dπ(β

′
) = E0

[(
1 + 4∆2

1− 4∆2

)∑
j∈m3

rj

(1− 4∆2)
∑
j∈m1∩m2

rj

]

= E0

[ ∏
∈m1∩m2

(
1 + 4∆2

1− 4∆2

)rjI(j∈m3)

(1− 4∆2)rj

]

= E0

 ∏
j∈m1∩m2

1

2

(
(1 + 4∆2)rj + (1− 4∆2)rj

)
≤ E0

[(
1

2

)|m1∩m2| (
(1 + 4∆2)r

∗
+ (1− 4∆2)r

∗
)|m1∩m2|

]
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where the second to the last line follows since given j ∈ m1 ∩ m2, I(j ∈
m3) ∼ Bernoulli(1

2), independent for all j and the last line follows from
noting that for any λ ∈ (0, 1), (1+λ)x+(1−λ)x is an increasing function of
x ≥ 1. Hence following the same argument as in Theorem 6.5 after equation
A.3, we have that there exists a constant C > 0 such that

2n
∗
∫∫

f(X1,β,β
′
)dπ(β)dπ(β

′
) ≤

(
1 + C

k2r∗2∆4

p

k

)k
→ 0 (A.35)

since ∆ �
√√

p
kr∗ . Hence, by A.34 and A.35 we have E0(L2

π) = 1 + o(1) if

2n∗
[
θ2(QA) + θ2(−QA)

]n∗ = 1 + o(1).
However, since θ ∈ BC2(0), there exists a constant C1 > 0 such that

θ2(QA) + θ2(−QA) ≤ 1
2(1 + C1Q

2A2). Hence

2n∗
[
θ2(QA) + θ2(−QA)

]n∗
= O

((
1 + C1

Q2A2n∗
n∗

)n∗)
Now by assumption, A2 �

√
p

kr∗ and Q2n∗
r∗ � p

1
2
−α = k√

p , one has that

C1Q
2A2n∗ → 0 and hence 2n∗

[
θ2(QA) + θ2(−QA)

]n∗ = 1+o(1) as required.
This completes the proof of the lower bound.

Part 2 : Proof of Upper Bound. We begin by noting that when n∗ = 0,
then the proof follows along the same lines as the power analysis argument
of GLRT in Theorem 6.5 by using the fact rj ≥ r∗ � log(p) for all j =
1, . . . , p. The proof then immediately follows by noting that the definition
of the GLRT does not depend on n∗ and solely depends on the observations
corresponding to indices in Ω∗, i.e, on (yi,x

t
i)i∈Ω∗ and does not even consider

the data corresponding to X2.

Proof of Theorem 7.2. The proof follows from Theorem 3.2 and is
omitted.

Proof of Theorem 7.4. We divide the proof into the proof of lower
bound and upper bound respectively.

Part 1 : Proof of Lower Bound. Define the intervals for j = 1, . . . , p:

Hp,j =
(rj

2
−
√

2 log(p)

√
rj
4
,
rj
2

+
√

2 log(p)

√
rj
4

)
. (A.36)
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and put

D = {Zj ∈ Hp,j , j = 1, . . . , p}, Zj =
∑
i∈Ωj

yi, l = 1, . . . , p. (A.37)

By Hölder’s inequality it can be shown that for proving a lower bound it
suffices to prove,

E0(Lπ IDc) = o(1), E0(L2
π ID) = 1 + o(1) . (A.38)

We first prove the first equality of (A.38). Since {yi, i /∈ Ω∗} is independent
of {Zj , j = 1, . . . , p}, we have by a calculation similar to proof of Theorem
6.8,

E0(Lπ IDc) ≤
(
p

k

)−1

2−k
∑
m1,ξ1

[ ∑
j∈m1

1

E0

(
2rj{ θ(A)

θ(−A)
}Zj{θ(−A)}rI(Zj ∈ Hc

p,j)

)

+
∑

j∈m−1
1

E0

(
2rj{ θ(A)

θ(−A)
}r−Zj{θ(−A)}rI(Zj ∈ Hc

p,j)

)

+
∑
j∈mc1

2rj (
1

2
)rjP0(Zj ∈ Hc

p,j)
]

=

(
p

k

)−1∑
m1

[ ∑
j∈m1

(2θ(−A))rjE0

(( θ(A)

θ(−A)

)Zj
I(Zj ∈ Hc

p,j)
)

+
∑
j∈mc1

P0(Zj ∈ Hc
p,j)
]
.

(A.39)

Now note that, by the same argument as proof of A.10, we have by an
application of Lemma A.2,

∑
j∈mc1

P0(Zj ∈ Hc
p,j) ≤ 2

∑
j∈mc1

e− log(p)

εj
√
rj

erjε
2
j−rjεj

where εj =
2
√
rj
4

√
2 log(p)−1

rj−1 . Hence there exists a constant C > 0 which

does not depend on j such that εj ≤ C
√

2 log p
rj

. Therefore, rjε
2
j − rjεj ≤

C
√

2 log p(C
√

2 log p − rj) ≤ C
√

2 log p(C
√

2 log p − r∗). Also,there exists a
constant c > 0, not depending on j such that εj

√
rj ≥ c

√
2 log p. Thus

∑
j∈mc1

P0(Zj ∈ Hc
p,j) ≤ 2

C
√

2 log p(C
√

2 log p− r∗)(p− k)

pc
√

2 log p
→ 0 (A.40)
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since r∗ � log(p).

Next we control the term
∑

j∈m1
(2θ(−A))rjE0

((
θ(A)
θ(−A)

)Zj
I(Zj ∈ Hc

p,j)
)

.

To this end note that, by a proof similar to that of controlling A.11, one has
using r∗ � log(p) and t < ρ∗binary(α) that there exists a sequence of real num-

bers λp = o(1) which does not depend j such that k(2θ(−A))rjE0

((
θ(A)
θ(−A)

)Zj
I(Zj ∈

Hc
p,j)
)
≤ λp. In particular, this sequence can be taken to be polynomially

p, as the proof of Theorem 6.8 suggests. This implies that

∑
j∈m1

(2θ(−A))rjE0

(( θ(A)

θ(−A)

)Zj
I(Zj ∈ Hc

p,j)
)

=
1

k

∑
j∈m1

k(2θ(−A))rjE0

(( θ(A)

θ(−A)

)Zj
I(Zj ∈ Hc

p,j)
)
≤ λp.

(A.41)

Hence, by A.39, we have using A.40 and A.41 that

E0(Lπ IDc) = o(1)

as required. This completes the proof of the first equality of (A.38). Next
we prove the second claim of (A.38). Arguing similarly as in analysis of
equation A.19 in proof of Theorem 6.8 and using Lemma A.4 we have that

E0(L2
πID)

≤ 2n∗
[
θ2(QA) + θ2(−QA)

]n∗
× Em1∩m2

{ p∏
j=1

[1

2

(
{4θ(A)θ(−A)}rjP0(Zj ∈ Hp,j)

+ E0

[{ θ(A)

θ(−A)

}2ZjI(Zj ∈ Hp,j)
]
(2θ(−A))2rj

)]I(j∈m1∩m2)}
.

As in proof of claim A.20 in Theorem 6.8, we have that for any j = 1, . . . , p,[1

2

(
{4θ(A)θ(−A)}rjP0(Zj ∈ Hp,j)+E0

[{ θ(A)

θ(−A)

}2ZjI(Zj ∈ Hp,j)
]
(2θ(−A))2rj

)]
≥ 1

since r∗ � log(p) and t < ρ∗binary(α). Let

j∗ = argmax
j
{1

2

(
{4θ(A)θ(−A)}rjP0(Zj ∈ Hp,j)+E0

[{ θ(A)

θ(−A)

}2ZjI(Zj ∈ Hp,j)
]
(2θ(−A))2rj

)
}
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and let r = rj∗ , Z = Zj∗ , Hp = Hp,j∗ . Hence, one has with U ∼ Bin(k, k
p−k )

and ϕn,p = 2n∗
[
θ2(QA) + θ2(−QA)

]n∗ , that

E0(L2
πID)

≤ ϕn,pEm1∩m2

{ p∏
j=1

[1

2

(
{4θ(A)θ(−A)}rP0(Z ∈ Hp)

+ E0

[{ θ(A)

θ(−A)

}2ZI(Z ∈ Hp)
]
(2θ(−A))2r

)]I(j∈m1∩m2)}
= ϕn,pEm1∩m2

{[1

2

(
{4θ(A)θ(−A)}rP0(Z ∈ Hp)

+ E0

[{ θ(A)

θ(−A)

}2ZI(Z ∈ Hp)
]
(2θ(−A))2r

)]|m1∩m2|}
≤ ϕn,pEU

[1

2

(
{4θ(A)θ(−A)}rP0(Z ∈ Hp) + E0

[{ θ(A)

θ(−A)

}2ZI(Z ∈ Hp)
]
(2θ(−A))2r

)]U
= ϕn,p

{
1 +

k

p− k

([1

2

(
{4θ(A)θ(−A)}rP0(Z ∈ Hp)

+ E0

[{ θ(A)

θ(−A)

}2ZI(Z ∈ Hp)
]
(2θ(−A))2r

)]
− 1
)}

(A.42)

where the second to the last line follows from Lemma A.1. Using the fact
that r = rj∗ ≥ r∗ � log(p), one has by similar argument as in the proof of
A.21 in Theorem 6.8 that

E0(L2
πID) = ϕn,p(1 + o(1))

when t < ρ∗binary(α). Hence the verification of the second claim in (A.38) will

be complete if we prove that ϕn,p = 1 + o(1). Now, since θ ∈ BC2(0), there
exists a constant C1 > 0 such that θ2(QA) + θ2(−QA) ≤ 1

2(1 + C1Q
2A2).

Hence

ϕn,p = 2n∗
[
θ2(QA) + θ2(−QA)

]n∗
= O

((
1 + C1

Q2A2n∗
n∗

)n∗)
Now by assumption, A2 = 2t log(p)

r∗ with t < ρ∗binary(α) and Q2n∗
r∗ � log(p),

one has that C1Q
2A2n∗ → 0 and hence 2n∗

[
θ2(QA) + θ2(−QA)

]n∗ = 1 +
o(1). This justifies second equality of (A.38) and hence completes the proof
of Theorem 7.4.
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Part 2 : Proof of Upper Bound. We begin by noting that when n∗ = 0,
then the proof follows by very similar way as the power analysis argument
of the Higher Criticism test in Theorem 6.10 by using the fact rj ≥ r∗ �
log(p) for all j = 1, . . . , p and hence we omit the details. The proof then
immediately follows by noting that the definition of the Higher Criticism test
does not depend on n∗ and solely depends on the observations corresponding
to indices in Ω∗, i.e, on (yi,x

t
i)i∈Ω∗ and does not even consider the data

corresponding to X2.
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