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Supplementary Information 

As explained in the main text, one motivation for shielding using a longitudinal-mu-near-zero (LMNZ) 

metamaterial is the difficulty associated with designing high-𝜇 metamaterials. In addition, a second problem 

plagues solutions relying on high-𝜇 shielding: the permeability of ferrites typically begins to fall rapidly at 

frequencies above 30 MHz, which leads to a “frequency gap” between high-permeability and high-conductivity 

based solutions for quasi-static magnetic field screening. This gap is particularly pronounced for TE-polarized 

magnetic field sources, for which the magnetic field transmission coefficient is almost entirely independent of the 

complex dielectric constant (in the quasi-static limit), and therefore screening solutions based on effective 

electrical conductivity are very inefficient. 

Transmission and Reflection in Anisotropic Medium 

To simplify the analysis leading to eq.1 in the main text, we restrict our attention to cases where the incoming 

wave is either TE or TM. Furthermore, we’ll assume the only components of 𝜀 and 𝜇 that matter are the transverse 

component of 𝜀 (along 𝑦̂) and the longitudinal component of 𝜇 (along 𝑧̂). In general, 
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Considering the geometry shown below for S-polarization (TE), we observe the only electric field component is 

𝐸𝑦, and the only magnetic field components are 𝐻𝑥 and 𝐻𝑧. 

Figure S1 S-polarized (TE) wave incident on a slab 



 

Maxwell’s equations for this scenario can be written as: 
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 (1.2) 

and we combine these to yield: 
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We note only the components 𝜀𝑦, 𝜇𝑥, and 𝜇𝑧 enter the equation, as is expected for an S-polarized wave. For 

soluaions of the form exp )(y x zE iq x iq z  we obtain the dispersion relation 
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course, the wave solution has the corresponding dispersion relation 2 2 2

x zk k    . We now divide the space into 

three regions as depicted in Figure S1: free-space for an0 dz z    , and anisotropic medium for 0 z    . 

Assuming the wave is incident on the slab from the left, the solutions for each region are: 

I : ( , )

II : ( , )

III : ( , )

x xz z

x xz z

x z

ik x ik xik z ik z

y

ik x ik xiq z iq z

y

ik x iq z

y

x z e e e e

x z ae e e e

x z te

E r

E

e

b

E










  (1.4) 

where we used the continuity of transverse moment ( x xq k ) and the fact there is only an outgoing wave on the 

right side. There are now four unknowns left to solve for (a,b,r, and t) and two boundaries at which yE  and its 

derivative must be continuous. Alternatively, yE and xH must be continuous, such that we have enough 

conditions to solve for t and r in terms of y ,  x , z ,   ,  and  .  This provides the Fresnel formula for a 

wave at oblique angles of incidence to an anisotropic slab (and in the same manner we can compute the 

solutions for the TM case). To solve for a and b  we complete the boundary value problem, where for the z   

interface we have: 



( )

( )

1
1

2

1
1

2

z z

z z

i k qx z

z

i k qx z

z

a t

b

k
e

q

k
e

q
t







 

 
 

 

 
 








  (1.5) 

 

and for the 0z  interface we have: 
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Combining the above yields eq(1) in the main text (where we replace zq  with q ): 
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Additional Characteristics of the LMNZ Shielding Regime 

As shown by eq.3, the performance of the metamaterial shield is roughly determined by its thickness relative 

to the wavelength of operation, and by 𝜇𝑧
′′. Interestingly, the shielding effect can be obtained regardless of the 

sign of 𝜇𝑥
′  . Very similar expressions can be obtained assuming, for example, that 𝜇𝑥

′  equals -1 or any negative 

value not too close to zero, and regardless of the magnitude of 𝜇𝑥
′′ . The strong anisotropy of magnetic permeability 

is, on the other hand, critical for the |𝑞| →  ∞ shielding regime to exist, as this effect is not present when both 𝜇𝑥 

and 𝜇𝑧 are small; this phenomenon is illustrated in Figure S2. The longitudinal mu-near-zero (LMNZ) regime is 

therefore fundamentally different from the MNZ regime studied in references [3,17]. One may notice that the 

LMNZ regime is a “topological transition” between the definite (all-positive or all-negative) and indefinite 

permeability regime, which has been shown to have some peculiar electromagnetic properties both with respect 

to far-field and near-field phenomena [s1]. 



Another notable feature of the LMNZ shielding regime is its surprisingly high bandwidth. Consider a 

frequency at which the real part of longitudinal permeability is detuned from zero, and the loss tangent is one: 

𝜇𝑧 = 𝜇′′(1 + 𝑖)/√2 = 𝜇′′𝑒𝑖𝜋/4. At that frequency, the transmission coefficient (2) becomes  
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The pre-exponential factor in this expression is different from the corresponding factor in Eq.2 by only 21/4 ≈

1.2,  and the exponential coefficient is different only by a factor of   1/4cos 8 2 2 1.1  . The transmission 

coefficient is therefore very flat as a function of frequency near the LMNZ point. 

 

 

 

Figure S2 | |𝒒| →  ∞ shielding regime vs. 𝝁𝒙 and 𝝁𝒛. |q|, |T|, and |R| are plotted for a layer that is 𝝀/𝟐𝟓𝟎 thick, 

as a function of 𝝁𝒛
′  and 𝝁𝒙

′  for 𝒌𝒙 < 𝒌𝟎 (top row) and 𝒌𝒙 > 𝒌𝟎 (bottom row). To observe the  |𝒒| →  ∞ shielding 

regime the metamaterial layer must exhibit anisotropic permeability: only 𝝁𝒛
′  should be near-zero (left). 

Transmission (center) may still decrease when 𝝁𝒙
′  is near-zero as well, but |𝑻| →  𝟎 is observed only in the regions 

where |𝒒| →  ∞ .  



Rotationally-Symmetric Simulations of a Coil Enclosed by a Shell 

To confirm the simple analytic argument, we use a 2D rotationally-symmetric COMSOL geometry to simulate 

a transmitting coil enclosed by an isotropic shell composed of three planar slabs, as shown in Fig. S3A. Here the 

axis of symmetry lies along the 𝑧̂-axis and the transmitting coil loop is simulated as a 1A point current source a 

distance 𝑟 = 1cm from the axis of symmetry.  First, we sweep the relative permeability of the slabs from low 

values (𝜇′ = 0.01) to high values (𝜇′ = 100) . We then repeat this calculation with diagonally anisotropic slabs 

and sweep only the component of 𝜇 normal to each slab across the same range of values (Fig. S3B). In both cases 

𝜇′′ is kept at ideal value of zero.  In Fig. S3C we show the magnetic field norm, integrated along the arc portion 

of the external simulation boundary, for both cases. First, we observe that a shell with isotropic permeability can 

achieve effective shielding not only when 𝜇′ is very high, but also when 𝜇′  is near zero. Second, we note that for 

low values of 𝜇′, shielding with the LMNZ slabs is almost as effective as with the isotropic slabs. 

 

 

Supplementary References 

1. Harish N. S. Krishnamoorthy, Zubin Jacob, Evgenii Narimanov, Ilona Kretzschmar, Vinod M. Menon, 

“Topological transitions in metamaterials,” Science 336 no. 6078 pp. 205-209. 

 

Figure S3 | Transmission through isotropic and longitudinal mu-near-zero metamaterials. A Tx coil 
surrounded by a shell composed of three planar slabs is simulated using COMSOL’s rotationally-symmetric 
geometry. The magnetic fields in the domain (dB scale) are shown for isotropic 𝜇-near-zero (A) and longitudinal 
𝜇-near-zero (B) shells. In (C) we show Hnorm integrated along the domain’s external arc as a function of the 
relative permeability for both the isotropic (solid blue line) and longitudinal (dotted orange line) layers. The 
values are normalized by the 𝜇 = 1 case. 


