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MATERIALS AND METHODS 
 
Indole Recrystallization/Purification: Commercial indole was purified by recrystallization 
using chloroform/petroleum ether and the pure compound was characterized by 1H and 13C 
NMR. 1H NMR (500 MHz, CDCl3) δ 6.62 (s, 1H), 7.14-7.17 (t, 1H, J = 7.5 Hz), 7.20-7.26 (m, 
2H), 7.40 (d, 1H, J = 8 Hz), 7.68 (d, 1H, J = 7.5 Hz), 8.09 (s, 1H); 13C NMR (500 MHz, CDCl3) 
δ 102.66, 111.04, 119.85, 120.75, 122.02, 124.13, 127.89, 135.81; mp = 52-54 ºC.   Further, the 
purity was confirmed by reverse-phase HPLC using 4.6 mm × 25 cm vydac-C18 column eluted 
with a gradient from 30 to 100% CH3OH in 30 min, the flow rate was 1 mL/min, and monitored 
at 254 nm, RT = 14.65 min. The purity level was > 99%. 

Electrophoretic Mobility Shift Assay: Gel retardation assays were performed using in vitro 
translated human AHR, mouse AHR and ARNT protein generated via TnT® Coupled 
Reticulocyte Lysate Systems according to manufacturer’s protocol (Promega, Madison, WI). 
Human AHR in vitro translations were supplemented with sodium molybdate to a final 
concentration of 1.25 mM to enhance stability of the receptor/HSP90 complex. Four microliters 
each of AHR and ARNT proteins were combined with 1.5 µL of HEDG buffer (25 mM HEPES, 
1 mM EDTA, 10 mM sodium molybdate, and 10% glycerol), with the addition of indicated 
treatments (0.5 µL) and incubated at room temperature for 15 min. Following treatment 
incubation, 2x106 cpm of 32P-DRE oligonucleotides were added to each reaction and incubated at 
room temperature for an additional 15 min. After addition of 2 µL of 0.25% xylene cyanol in 
20% (w/v) Ficoll to the reaction mixture, samples were loaded onto a 6% non-denaturing DNA 
retardation gel (Invitrogen, Carlsbad, CA) and separated by electrophoresis. The gels were fixed 
in a 7:1:1:1 water:methanol:acetic acid:glycerol solution for 20 min, dried for 60 min, and then 
subjected to autoradiography for analysis. 

Chimpanzee AHR cDNA synthesis: The codon-optimized chimpanzee AHR cDNA was 
synthesized by GenScript (Piscataway, NJ) and cloned into the HindIII and XhoI sites of 
pcDNA3, a mammalian expression vector. 

 
 
 
 



Real time PCR Primers 
Human 
CYP1A1-F-5’-TAC CTC AGC CAC CTC CAA GAT-3’ 
CYP1A1-R-5’-GAG GTC TTG AGG CCC TGA TT-3’ 
CYP1B1-F-5’-TGC CTG TCA CTA TTC CTC ATG CCA -3’ 
CYP1B1-R-5’-ATC AAA GTT CTC CGG GTT AGG CCA -3’ 
AHR-F-5’-GAA GAT GGT GAT GGG ATT TC-3’ 
AHR-R-5’-GAA GGT GAA GGT CGG AGT -3’ 
IL6-F-5’-AAA TTC GGT ACA TCC TCG ACG-3’ 
IL6-R-5’-AGT GCC TCT TTG CTG CTT TCA -3’ 
L13A-F-5’-CCT GGA GGA GAA GAG GAA AGA GA-3’  
L13A-R-5’-GAG GAC CTC TGT GTA TTT GTC AA -3’ 
Mouse 
Cyp1a1-F-5’-CTC TTC CCT GGA TGC CTT CAA-3’ 
Cyp1a1-R-5’-GGA TGT GGC CCT TCT CAA ATG -3’ 
Cyp1b1-F-5’- GCT AGC CAG CAG TGT GAT GAT ATT-3’ 
Cyp1b1-R-5’-GGT TAG CCT TGA AAT TGC ACT GAT -3’ 
Ahr-F-5’-GCG TCA GCT ACC TGA GGG CCA-3’ 
Ahr-R-5’-GGG CCA TGG GCT TCG TCC AC-3’ 
L13a-F-5’-TTC GGC TGA AGC CTA CCA GAA AGT-3’ 
L13a-R-5’-GCA TCT TGG CCT TTT TCC GTT-3’ 
 
 
mCcl20_3.1kb DRE Oligo EMSA Sequence 
Ccl20-3.1kb DRE-F-5’-TTG TGT GTG TGC GTG TGT GCG TGT GTT AC-3’ 
Ccl20-3.1kb DRE-R-5’-TGT AAC ACA CGC ACA CAC GCA CAC ACA C-3’ 



 

 

Supplementary Table 1. Surface energy of binding (ΔH, kcal/mol) for 3MI and IND molecules 
into the mouse and human AHR PASB after second round of docking. 

 

 Mouse Human 

Indole -0.09 -0.58 

3MI -0.37 -1.76 

 

 



 

Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1: Molecular structure of AHR Ligands and Indoles. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2: Indole marginally activates the AHR in a rat cell line. Indole dose-response 
assessment for AHR-dependent transcriptional activity in H4-II-E1.1(Rat) reporter cell line. The 
cells were treated as indicated for 4 h; followed by lysis and measurement of luciferase activity.  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3: Purified indole induces AHR transcriptional activity. (A) Comparison of AHR 
dependent luciferase activity of recrystalized and HPLC pure indole and (B) purified indole 
compared with commercial indole within HepG2 (40/6) cells. Cells were treated as indicated for 
4 h; followed by lysis and measurement of luciferase activity.  

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4: AHR antagonist GNF351 suppresses indole mediated induction of CYP1A1 mRNA. 
Expression of AHR target gene CYP1A1 within Caco2 cells was determined through qPCR 
analysis following 4 h of treatment with DMSO (Vehicle), TCDD (10 nM), or indole (IND) at 
the indicated dose with or without 1 h pretreatment with known AHR antagonist GNF351 (200 
nM). 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5: Indole fails to induce AHR target genes in mouse Hepa 1 cells. Expression of AHR-
responsive (A) Cyp1a1, (B) Cyp1b1, and (C) Ahr within Hepa 1 cells was determined through 
qPCR analysis following 4 h of treatment with DMSO (Vehicle), TCDD (10 nM), or indole at 
the indicated dose. 

 



 

 

 

 

Figure S6: Western blot analysis of hAHR vs mAHR liver expression in C57BL/6J versus 
Taconic© AHR humanized mouse. Positive controls for human and mouse AHR were generated 
through in vitro translations. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7: Mono-substituted indoles are poor inducers of mouse AHR transcriptional activity. 
(A) Hepa 1.1 reporter cells were treated as indicated for 4 h with the indicated microbial indole 
and (B) methyl indole derivatives, cells were lysed, and luciferase activity was measured. (C) In 
vitro translated mAHR/ARNT gel shift assay displaying treatment capacity to transform mouse 
AHR to AHR/ARNT/DNA complex.  Indole (IND), 3-methyl indole (3-MI), 2-methyl indole (2-
MI), 1-methyl indole (1-MI) and indirubin (IR). 

 



 

 

 

 

 

Figure S8: In silico modeling of a single indole molecule binding within hAHR ligand binding 
pocket.  In silico modeling of (A) indole, (B) 3-methyl indole, or (C) 2-methyl indole binding 
within the human AHR ligand binding domain. 

 

 

 

 



 

 

 

 

Figure S9: The chimpanzee AHR binds to and is activated by indole. (A) In vitro translated 
AHR/ARNT gel shift assay displaying indole capacity to transform chimpanzee AHR to 
AHR/ARNT/DNA complex compared to murine AHR.  (B) In silico modeling of favorable 
binding of two indole molecules within the chimpanzee AHR ligand-binding domain. (C) Amino 
acid sequence comparison between the chimpanzee, human, and mouse AHR ligand binding 
domain. 

 

 

 


