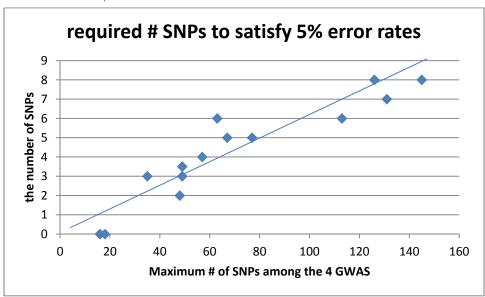
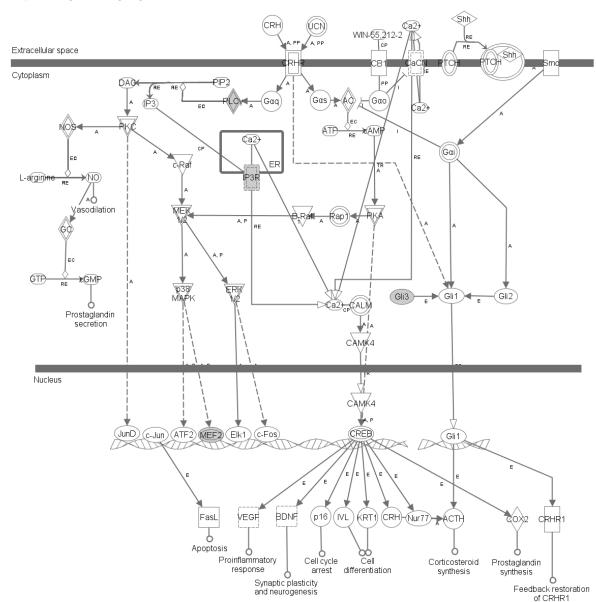

Supplementary Online Content


Nurnberger JI Jr, Koller DL, Jung J, et al; Psychiatric Genomics Consortium Bipolar Group. Identification of pathways for bipolar disorder: a meta-analysis. *JAMA Psychiatry*. Published online April 9, 2014. doi:10.1001/jamapsychiatry.2014.176.

- eFigure 1. Threshold for Study Entry Is Related to Gene Size
- eFigure 2. Corticotropin-Releasing Hormone Signaling
- eFigure 3. Cardiac β-Adrenergic Signaling
- eFigure 4. Phospholipase C Signaling
- eFigure 5. Glutamate Receptor Signaling
- eFigure 6. Endothelin 1 Signaling
- eFigure 7. Cardiac Hypertrophy Signaling
- **eTable.** Characteristics of 25 Genes Included in Simulation to Determine the Relationship Between Gene Size and Empirical *P* Value
- eBox. Summary of Steps in Pathway Analysis
- **eAppendix.** Psychiatric Genomics Consortium Bipolar Group Members and Affiliations

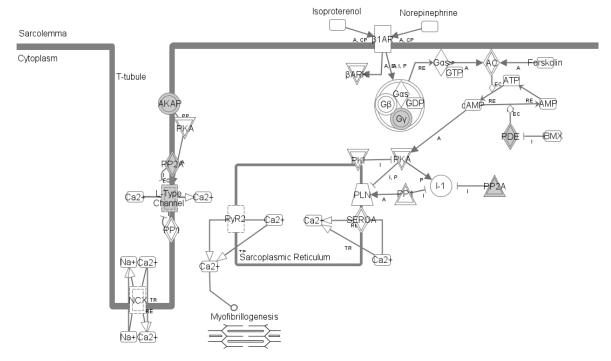
This supplementary material has been provided by the authors to give readers additional information about their work.

Α

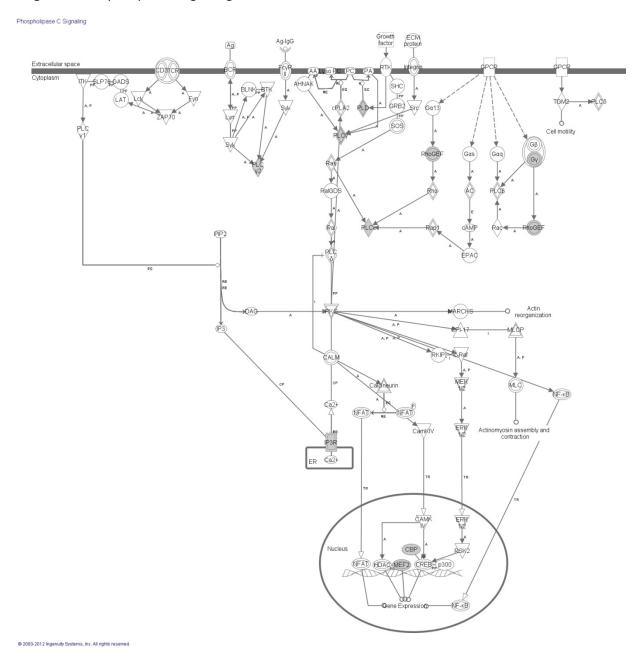

eFigure 1A shows the derivation of a regression equation to determine the empirical p value threshold for each gene entered into the pathway analysis. Four GWAS studies were simulated using 10,000

replications per study and permuting case and control status. The number of times that SNPs from a particular gene were found to reach a nominal p value of \leq .05 in 3 out of 4 GWAS datasets was found to be directly related to the maximum number of SNPs tested in that gene in any GWAS (an indirect measure of gene size). The relationship between maximum number of SNPs tested in a gene and the number of SNPs at nominal p \leq .05 necessary to achieve an empirical p \leq .05 is given by the regression line. eFigure 1B provides an expansion of that relationship to more precisely define the threshold for smaller genes.

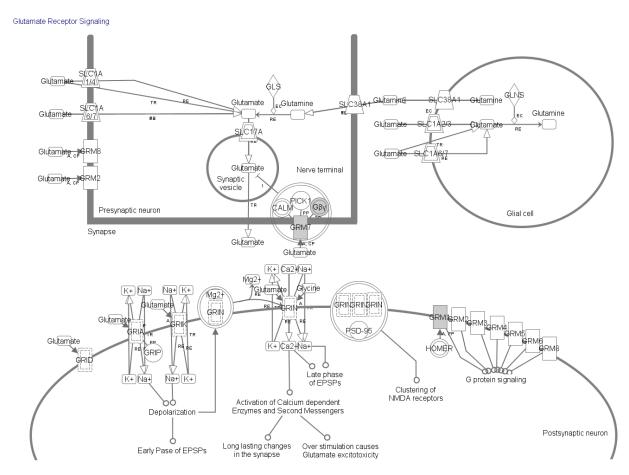
eFigures 2-7. These figures show the Canonical Pathway Diagrams for each of the selected pathways, as designated in Ingenuity Systems. The shaded molecules in each diagram indicate the specific genes, or gene-families, tagged by genes in the list of 226 in the Box of the present report.


eFigure 2. Corticotropin-Releasing Hormone Signaling

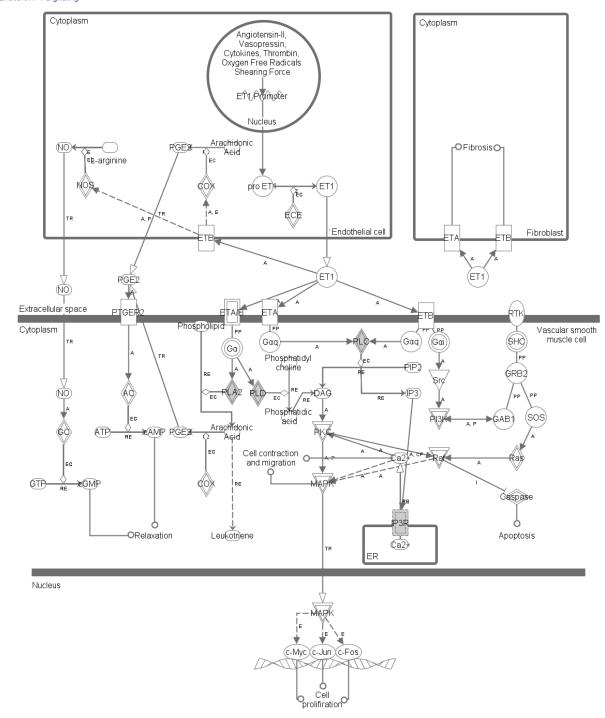
Corticotropin Releasing Hormone Signaling



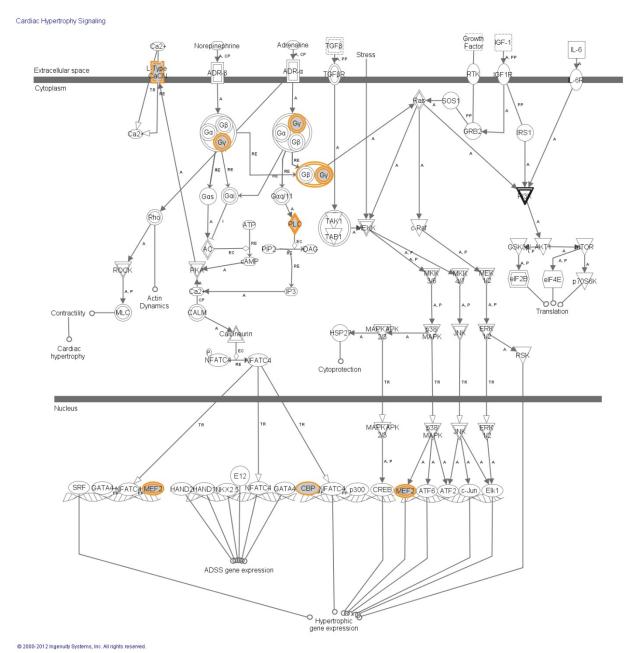
eFigure 3. Cardiac β -Adrenergic Signaling


Cardiac β-adrenergic Signaling

eFigure 4. Phospholipase C Signaling



eFigure 5. Glutamate Receptor Signaling



eFigure 6. Endothelin 1 Signaling

Endothelin-1 Signaling

eFigure 7. Cardiac Hypertrophy Signaling

eTable. Characteristics of 25 Genes Included in Simulation to Determine the Relationship Between Gene Size and Empirical P Value

Gene	GAIN	STEP	Wellcome	German	GENE_SIZE(bp)	mean # of SNPs among 4 GWAS	Maximum # of SNPs among 4 GWAS	the required # of SNPs <0.05 for a global 5% FPE
A2BP1	1049	544	614	856	1,694,208	766	1049	45
ADCY2	131	74	82	116	433,851	101	131	7
CNTNAP2	696	372	438	558	2,304,637	516	696	34
CSMD1	1420	685	793	1597	2,059,453	1124	1597	62
DLG2	383	206	233	366	2,172,259	297	383	21
GRM7	334	182	210	300	880,416	257	334	17
KCNMA1	310	178	203	217	768,218	227	310	16
NPAS3	431	209	235	370	864,923	311	431	19
OPCML	415	192	222	413	1,117,528	311	415	19
PARK2	490	247	283	456	1,380,244	369	490	24
PTPRG	268	137	170	236	733,330	203	268	14
SLIT3	297	160	177	267	635,062	225	297	15
CDK6	49	25	33	42	231,706	37	49	3.5
DDEF2/ASAP2	48	26	38	31	198,918	36	48	2
FER1L3/MYOF	67	33	59	63	175,888	56	67	5
TP53I11	35	20	26	33	18,709	29	35	3
C150RF53	16	8	8	9	3,440	10	16	1
CHST8	49	33	38	46	151,553	42	49	3
FBN2	77	43	53	71	280,134	61	77	5
LGMN	18	7	9	18	44,895	13	18	1
MYLK4	63	38	38	56	87,291	49	63	6
NCAM1	145	94	103	93	317,163	109	145	8
NTNG1	113	55	80	81	341,846	82	113	6
PLA2R1	57	38	47	45	121,109	47	57	4
PRKCB	126	69	88	97	384,632	95	126	8

- 1) We derived a list of 966 genes with 2 SNPs at p <0.05 in 3 out of four GWAS datasets (N = 5253 cases and 6874 controls).
- 2) We used 10,000 permutations of phenotype in the four GWAS datasets in order to extract 226 genes from the 966 that were each empirically significant at p<0.05.
- 3) We ran the 226 genes through an Ingenuity pathway analysis and obtained 16 pathways.
- 4) We ran the 16 pathways in a separate GWAS dataset (PGC2, an independent set of several thousand cases and controls). 6/16 pathways showed p<.05 and FDR<.05.
- 5) We compared gene-level results from a multicenter gene expression analysis (N=919 genes) with the gene-level results from our own analysis (N=226 genes), observing an overlap of 9 genes, three of which were among the genes driving the pathway results (chi-square p < 0.005).

Pamela Sklar, MD, PhD^{1,2}; Stephan Ripke, MD^{3,4}; Laura J. Scott, PhD⁵; Ole A. Andreassen, MD, PhD^{6,7}; Sven Cichon, PhD⁸⁻¹¹; Nick Craddock, PhD¹²; Howard J. Edenberg, PhD¹³; John I. Nurnberger Jr, MD, PhD^{14,15}; Marcella Rietschel, MD¹⁶; Douglas Blackwood, MD, PhD^{17,18}; Aiden Corvin, MD, PhD¹⁹; Matthew Flickinger, MS⁵; Weihua Guan, PhD⁵; Morten Mattingsdal, PhD^{6,20}; Andrew McQuillin, PhD²¹; Phoenix Kwan, MS⁵; Thomas F. Wienker, MD²²; Mark Daly, PhD^{3,4}; Frank Dudbridge, PhD²³; Peter A. Holmans, PhD^{12,24}; Danyu Lin, PhD²⁵; Margit Burmeister, PhD²⁶; Tiffany A. Greenwood, PhD²⁷; Marian L. Hamshere, PhD^{12,24}; Pierandrea Muglia, MD²⁸; Erin N. Smith, PhD²⁹; Peter P. Zandi, PhD³⁰; Caroline M. Nievergelt, PhD²⁷; Rebecca McKinney, BA²⁷; Paul D. Shilling, PhD²⁷; Nicholas J. Schork, PhD³¹; Cinnamon S. Bloss, PhD²⁹; Tatiana Foroud, PhD¹³; Daniel L. Koller, PhD¹³; Elliot S. Gershon, MD³²; Chunyu Liu, PhD³²; Judith A. Badner, MD, PhD³²; William A. Scheftner, MD³³; William B. Lawson, MD, PhD³⁴; Evaristus A. Nwulia, MD³⁴; Maria Hipolito, MD³⁴; William Coryell, MD³⁵; John Rice, PhD³⁶; William Byerley, MD³⁷; Francis J. McMahon, MD³⁸; Thomas G. Schulze, MD^{16,38,39}; Wade Berrettini, MD, PhD⁴⁰; Falk W. Lohoff, MD⁴⁰; James B. Potash, MD³⁰; Pamela B. Mahon, PhD³⁰; Melvin G. McInnis, MD⁴¹; Sebastian Zöllner, MD^{5,41}; Peng Zhang, PhD^{5,41}; David W. Craig, PhD⁴²; Szabocls Szelinger, MD⁴²; Thomas B. Barrett, MD⁴³; René Breuer¹⁶; Sandra Meier¹⁶; Jana Strohmaier, PhD¹⁶; Stephanie H. Witt, PhD¹⁶; Federica Tozzi, MD²⁸; Anne Farmer, MD⁴⁴; Peter McGuffin, MD⁴⁴; John Strauss, MD⁴⁵; Wei Xu⁴⁶; James L. Kennedy, MD⁴⁷; John B. Vincent, PhD⁴⁵; Keith Matthews, MD⁴⁸; Richard Day, MD⁴⁸; Manuel A. Ferreira, PhD^{2,4,49}; Colm O'Dushlaine, PhD^{3,4}; Roy Perlis, MD^{2,4}; Soumya Raychaudhuri, MD, PhD^{2,4}; Douglas Ruderfer, PhD^{2,4}; Phil H. Lee, PhD²; Jordan W. Smoller, MD^{2,4}; Jun Li, PhD⁴⁸; Devin Absher, PhD⁵¹; William E. Bunney, MD⁵²; Jack D. Barchas, MD⁵³; Alan F. Schatzberg, MD⁵⁴; Edward G. Jones, MD⁵⁵; Fan Meng, PhD⁵⁶; Robert C. Thompson, PhD⁵⁶; Stanley J. Watson, MD⁵⁶; Richard M. Myers, MD⁵¹; Huda Akil, PhD⁵⁶; Michael Boehnke, PhD⁵; Kimberly Chambert, MSc⁴; Jennifer L. Moran, PhD⁴; Edward M. Scolnick, MD⁴; Srdjan Djurovic, PhD^{6,57}; Ingrid Melle, MD, PhD^{6,7}; Gunnar Morken, MD, PhD^{58,59}; Michael Gill, MD¹⁹; Derek Morris, PhD¹⁹; Emma Quinn, MSc¹⁹; Thomas W. Mühleisen^{8,9}; Franziska A. Degenhardt, PhD^{8,9}; Manuel Mattheisen, MD, PhD^{60,61,62}; Johannes Schumacher⁸; Wolfgang Maier, MD⁶³; Michael Steffens, PhD²²; Peter Propping, MD, PhD⁸; Markus M. Nöthen, MD^{8,9}; Adebayo Anjorin, MBChB, MSc, MRCPsych²¹; Nick Bass, MD, MRCPsych²¹; Hugh Gurling, MD, FRCPsych²¹; Radhika Kandaswamy, PhD²¹; Jacob Lawrence, MBBS, MRCPsych²¹; Kevin McGhee, PhD^{17,18}; Andrew M. McIntosh, MD^{17,18}; Alan W. McLean, PhD^{17,18}; Walter J. Muir, DSc^{17,18}; Benjamin S. Pickard, PhD^{17,18}; Gerome Breen, MSc^{44,63}; David St. Clair, MD⁶⁴; Sian Caesar⁶⁵; Katherine Gordon-Smith, PhD^{12,65}; Lisa Jones, PhD, MBPsS⁶⁵; Christine Fraser¹²; Elaine K. Green, PhD¹²; Detelina Grozeva, MSc¹²; Ian R. Jones, MRCPsych, PhD¹²; George Kirov, PhD¹²; Valentina Moskvina^{12,24}; Ivan Nikolov, MD¹²; Michael C. O'Donovan, PhD, FRCPsych¹²; Michael J. Owen, PhD¹²; David A. Collier, PhD⁴⁴; Amanda Elkin⁴⁴; Richard Williamson⁴⁴; Allan H. Young, MD^{48,66}; I. Nicol Ferrier, MD⁴⁸; Kari Stefansson, MD⁶⁷; Hreinn Stefansson, PhD⁶⁷; Þorgeir E. Þorgeirsson, PhD⁶⁷; Stacy Steinberg⁶⁷; Ómar Gustafsson, PhD⁶⁷; Sarah E. Bergen, PhD^{2,4}; Vishwajit Nimgaonkar, MD, PhD⁶⁸; Christina Hultman, PhD⁶⁹; Mikael Landén, MD, PhD^{69,70}; Paul Lichtenstein, PhD⁶⁹; Patrick F. Sullivan, MD⁷¹, Martin Schalling, MD, PhD⁷²; Urban Osby, MD, PhD⁷²; Lena Backlund, MD, PhD⁷³; Louise Frisén, MD, PhD⁷²; Niklas Langstrom, MD⁷⁰; Stéphane Jamain, PhD^{74,75,76,77}; Marion Leboyer, MD^{74,75,76,77}; Bruno Etain, MD, PhD⁷⁴⁻⁷⁷; Frank Bellivier, MD, PhD^{74,75,76,77}; Hannes Petursson, PhD⁷⁸; Engilbert Sigurðsson, MD, PhD⁷⁸; Bertram Müller-Mysok, MD, PhD⁷⁹; Susanne Lucae, MD, PhD⁷⁹; Markus Schwarz, MD⁸⁰; Janice M. Fullerton, PhD^{81,82}; Peter R. Schofield, MD^{81,82}; Nick Martin, PhD⁴⁹; Grant W. Montgomery, PhD⁴⁹; Mark Lathrop, PhD⁸³; Högni Óskarsson, MD⁸⁴; Michael Bauer, MD, PhD⁸⁵; Adam Wright⁸⁶; Philip B. Mitchell, MB, BS, MD⁸⁶; Martin Hautzinger, PhD⁸⁷; Andreas Reif, MD⁸⁸; John R. Kelsoe, MD^{27,89}; Shaun M. Purcell, PhD^{1,2,4}

- ¹Division of Psychiatric Genomics, Department of Psychiatry, Mount Sinai School of Medicine, New York, New York
- ²Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- ³Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
- ⁴Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- ⁵Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, Michigan
- ⁶NORMENT, KG Jebsen Center, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- ⁷Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- ⁸Institute of Human Genetics, University of Bonn, Bonn, Germany
- ⁹Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
- ¹⁰Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- ¹¹Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
- ¹²MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- ¹³Department of Biochemistry and Molecular Biology, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- ¹⁴Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
- ¹⁵Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
- ¹⁶Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health Mannheim, University of Heidelberg, Mannheim, Germany
- ¹⁷Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
- ¹⁸The Institute of Genetics and Molecular Medicine, University of Edinburgh Molecular Medicine Centre, Western General Hospital, Edinburgh, UK
- ¹⁹Neuropsychiatric Genetics Research Group, Department of Psychiatry and Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
- ²⁰Sorlandet Hospital HF, Kristiansand, Norway
- ²¹Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
- ²²Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
- ²³London School of Hygiene and Tropical Medicine, University of London, London, UK
- ²⁴Biostatistics and Bioinformatics Unit, Cardiff University School of Medicine, Cardiff, UK
- ²⁵Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina
- ²⁶Department of Human Genetics, Department of Psychiatry, Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
- ²⁷Department of Psychiatry, University of California, San Diego, La Jolla, California
- ²⁸Neurosciences Centre of Excellence in Drug Discovery, GlaxoSmithKline Research and Development, Verona, Italy
- ²⁹The Scripps Translational Science Institute and Scripps Health, La Jolla, California
- ³⁰Department of Mental Health, Johns Hopkins University and Hospital, Baltimore, Maryland
- ³¹J. Craig Venter Institute, La Jolla, California
- ³²Department of Psychiatry, University of Chicago, Chicago, Illinois
- ³³Rush University Medical Center, Chicago, Illinois
- ³⁴Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC
- ³⁵Department of Psychiatry, University of Iowa, Iowa City, Iowa
- ³⁶Washington University School of Medicine, St Louis, Missouri
- ³⁷Department of Psychiatry, University of California, San Francisco School of Medicine, San Francisco, California
- ³⁸National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
- ³⁹Department of Psychiatry, University Göttingen, Göttingen, Germany
- ⁴⁰Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
- ⁴¹Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
- ⁴²The Translational Genomics Research Institute, Phoenix, Arizona
- ⁴³Portland Veterans Affairs Medical Center, Portland, Oregon
- ⁴⁴Social, Genetic and Developmental Psychiatry (SGDP) Centre, The Institute of Psychiatry, King's College London, London, UK

- ⁴⁵Molecular Neuropsychiatry and Development Laboratory, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- ⁴⁶Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario, Canada
- ⁴⁷Psychiatric Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- ⁴⁸Division of Neuroscience, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
- ⁴⁹QIMR Berghofer Medical Research Institute, Brisbane, Australia
- ⁵⁰Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
- ⁵¹HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
- ⁵²Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California
- ⁵³Department of Psychiatry, Weill Medical College, Cornell University, New York, New York
- ⁵⁴Psychiatry and Behavioral Science, Stanford University School of Medicine, Palo Alto, California
- ⁵⁵Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, Davis, California
- ⁵⁶Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan
- ⁵⁷Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- ⁵⁸Department of Psychiatry, St Olavs Hospital, Trondheim, Norway
- ⁵⁹Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
- ⁶⁰Department of Biomedicine, Aarhus University, Aarhus, Denmark
- ⁶¹The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
- ⁶²Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark
- ⁶³Department of Psychiatry, University of Bonn, Bonn, Germany
- ⁶⁴University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, UK
- ⁶⁵Department of Psychiatry, School of Clinical and Experimental Medicine, Birmingham University, Birmingham, UK
- ⁶⁶University of British Columbia Institute of Mental Health, Vancouver, British Columbia, Canada
- ⁶⁷deCODE genetics, Reykjavík, Iceland
- ⁶⁸Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- ⁶⁹Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- ⁷⁰Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- ⁷¹Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina
- ⁷²Department of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- ⁷³Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- ⁷⁴INSERM, U955, Psychiatrie Génétique, Créteil, France
- ⁷⁵Université Paris Est, Faculté de Médecine, Créteil, France
- ⁷⁶Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital H. Mondor–A. Chenevier, Département de Psychiatrie, Créteil, France
- ⁷⁷ENBREC Group, Fondation FondaMental, Créteil, France
- ⁷⁸Division of Psychiatry, Landspitali University Hospital, University of Iceland, Reykjavik, Iceland
- ⁷⁹Max Planck Institute of Psychiatry, Munich, Germany
- ⁸⁰Psychiatric Center Nordbaden, Wiesloch, Germany
- ⁸¹Neuroscience Research Australia, Sydney, Australia
- ⁸²University of New South Wales, Sydney, Australia
- ⁸³Centre National de Génotypage, Evry, France
- ⁸⁴Therapeia, Reykjavik, Iceland
- ⁸⁵Department of Psychiatry and Psychotherapy, ENBREC Group, University Hospital Carl Gustav Carus, Dresden, Germany
- ⁸⁶School of Psychiatry, University of New South Wales and Black Dog Institute, Sydney, New South Wales, Australia
- ⁸⁷Department of Clinical and Developmental Psychology, Institute of Psychology, University of Tübingen, Tübingen, Germany
- ⁸⁸Department of Psychiatry, University of Würzburg, Würzburg, Germany
- ⁸⁹Department of Psychiatry, Special Treatment and Evaluation Program (STEP), Veterans Affairs San Diego Healthcare System, San Diego, California