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Supplementary Methods: 

Oral Glucose Tolerance Test (OGTT) and Insulin Tolerance Test (ITT): 

Glucose and insulin levels were determined during an OGTT (1g glucose kgbw
-1) in rats that had 

been deprived of food for 18h. EDTA blood (80 µl) was withdrawn before and after glucose 

administration (Miesel et al., 2012;Müller-Fielitz et al., 2012;Müller-Fielitz et al., 2014). For 

ITT, the glucose levels were monitored after insulin injections (0.6 IU kgbw
-1, s.c) in rats that 

had been deprived of food for 18h. Glucose was determined before and during a 360-min period 

in blood samples (Miesel et al., 2012;Müller-Fielitz et al., 2012;Müller-Fielitz et al., 2014). 

 

 

Leptin resistance test: 

For the leptin resistance test, we injected leptin (R&D Systems, Minneapolis, USA) at 8 a.m., 11 

a.m., 2 p.m., and 5 p.m. (100 µg kgbw
-1 s.c. each time) and at 8 p.m. (200 µg kgbw

-1 s.c.). The 

next day rats were treated with leptin again at 8 a.m. (100 µg kgbw
-1 s.c.), 11 a.m. (100 µg kgbw

-1 

s.c.), and 2 p.m. (200 µg kgbw
-1 s.c.). Body weight  and energy intake were determined (Müller-

Fielitz et al., 2015). We recently showed that neither food intake nor body weight was 

influenced by leptin compared to saline-treated controls when rats were fed with the CD. In 

contrast, food intake and gain in body weight gain were lessened when control-fed rats received 

leptin instead of saline injections, which clearly indicated leptin sensitivity under normal 



conditions (Müller-Fielitz et al., 2015). Hence, we waived the requirement of additional saline 

injections in the present study.  

 

RNA isolation and cDNA synthesis: 

Hypothalami were dissected according to Paxinos and Watson (Paxinos G & Watson C, 1998). 

The brains were adjusted to -10°C, and coronal sections were made 0.26 mm (at the optic 

chiasm) and 4.8 mm posterior to the bregma. In order to cut the hypothalamus apart, the slice 

was turned on its posterior surface and cut sagittally 2.6 mm lateral to the midline directly 

before the amygdala and horizontally 7.4 mm under the cortical surface. Total RNA from the 

hypothalami, visceral fat, livers, or skeletal muscles was extracted on the ABI PRISM 6100 

Nucleic Acid PrepStation (Applied Biosystems, Darmstadt, Germany). The amount of total 

RNA was determined using a RiboGreen RNA quantitation assay (Invitrogen, Karlsruhe, 

Germany). Isolation of genomic DNA was avoided by thorough treatment with DNase I. First-

strand cDNA was synthesized using oligo-(dT)15 primer and AMV Reverse Transcriptase 

(Invitrogen, Karlsruhe, Germany). cDNA was stored at -20°C until further analysis. 

 

Quantitative real-time PCR (qPCR): 

AT1A and AT1B receptors, ACE2, and Mas mRNA were determined in hypothalami and in 

visceral fat, skeletal muscle, and liver. mRNA steady-state levels of anorexigenic peptides [e.g., 

cocaine- and amphetamine-regulated transcript (CART), corticotropin-releasing hormone 

(CRH), and pro-opiomelanocortin (POMC)] and orexigenic peptides [e.g., prepro-orexin (PPO), 

neuropeptide Y (NPY), melanin-concentrating hormone (MCH), and agouti-related protein 

(AgRP)] were quantified in the hypothalami of the rats. Quantitative measurements of mRNA 

were performed by using SYBR green I as a fluorescent dye on the GeneAmp 7000 sequence 

detection system (Perkin-Elmer Applied Biosystems, Weiterstadt, Germany). DNA-specific 

primer sequences for AgRP, CART, MCH, NPY PPO, and CRF (Miesel et al., 2010), for AT1A 



and AT1B receptors (Raasch et al., 2004), and MAS (Santos et al., 2010) have been published 

elsewhere. For ACE2 we used the following primers (forward 5`-ACT GTC GGG CGG TCA 

TCA TC-3`, reverse 5`-GGT GGA GAA AAG CAA GGA GA-3`). All primers were obtained 

from Invitrogen. Copy number calculations were based on the cycle threshold method by using 

serial dilutions of known amounts of specific cDNA fragments to generate standard curves. 

Expression values were normalized to the amount of total RNA/sample(Bustin, 2002). 

 

 

Supplementary discussion on hypothalamic expression of (an-)orexigenic peptides: 

Expression of hypothalamic (an-)orexigenic peptides did not reflect the lower food intake of TG 

rats or TEL-treated rats. Such an incoherence between food intake and hypothalamic mRNA 

levels of (an-)orexigenic peptides was already found previously (Müller-Fielitz et al., 

2012;Müller-Fielitz et al., 2014). We only once demonstrated that hypothalamic levels of the 

orexigenic peptides MCH and PPO decreased after TEL in parallel to weight loss, reduction of 

energy intake, restoration of leptin sensitivity, and normalization of pSTAT3 signaling (Müller-

Fielitz et al., 2015). The latter study clearly differed in duration of treatment (3 weeks versus 3 

months) and the fact that no functional phenotyping (e.g., indirect calorimetry, stress tests, 

glucose or insulin tolerance tests when rats were partially food-deprived) was performed prior to 

measuring peptide expression. Thus, we assume that caution should be exercised regarding the 

significance of (an-)orexigenic peptides as a biochemical surrogate parameter for food intake 

when functional tests influencing food intake have been performed before quantification. 

 

 



Suppl. Tab. 1: Nutrition composition of chocolate and cookie bars. 

 calorie 
value 

(kJ g-1) 

carbo-
hydrates 

(%) 

fat 
(%) 

protein 
(%) 

fiber 
(%) 

 

Bounty 19.7 58 25 4 2 Mars GmbH, Viersen, Germany 

Knoppers 22.9 52 33 9 3 August Storck KG, Berlin 
Germany 

Lion 20.6 66 23 5 1 Nestlé Deutschland AG, Frankfurt, 
Germany 

Prinzen Rolle 20.6 68 21 6 3 Mars GmbH, Viersen, Germany 

Snickers 20.2 60 23 9 2 Griesson - de Beukelaer GmbH & 
Co. KG, Polch, Germany  

Twix 20.7 65 24 5 1 Mars GmbH, Viersen, Germany 

 
 



Suppl. Tab. 2: mRNA levels of orexigenic (PPO, NPY, MCH, AgRP) and anorexigenic petides 

(POMC, CART, CRH) in hypothalami of Sprague Dawley (SD) rats or transgenic rats (TG) 

overexpressing Ang(1-7) that received control diet or cafeteria diet (CD). 

 SDcontrol SDCD TGcontrol TGCD  

AgRP 4.2±0.3 3.6±0.3 5.0±0.5 5.6±0.2 † 

MCH (x 104) 93.1±3.5 99.9±4.0 92.5±4.8 97.4±4.3  

NPY (x 104) 11.8±0.6 12.0±0.7 13.5±1.3 12.8±0.8  

PPO (x 104) 62.4±2.2 77.1±3.5* 69.1±4.9 70.6±2.5  

CART (x 104) 73.3±2.6 90.4±3.9* 76.3±4.1 82.6±2.9  

CRH (x 104) 1.1±0.1 1.3±0.1 1.2±0.1 1.3±0.1  

POMC (x 104) 18.2±1.8 20.6±1.6 18.3±2.6 21.6±1.0  

 
mRNA levels are expressed as copies ng-1 RNA. Means+SEM, n=11-14. Statistical analysis was 
performed 2-ANOVA followed by Bonferroni post test.* p<0.05 vs. control of corresponding 
controls; † p<0.05 vs. strains 
 



Suppl. Tab. 3: mRNA levels of orexigenic (PPO, NPY, MCH, AgRP) and anorexigenic petides 

(POMC, CART, CRH) in hypothalami of rats of CD-fed SD rats  that were treated with TEL (8 

mg kg-1 d-1) or TEL plus A779 (24 or 72 μg kg-1 d-1) while controls received vehicle+saline. 

 vehicle +saline TEL+saline TEL+A77924µg TEL+A77972µg 

AgRP 100±4* 116±4 140±13 138±13 

MCH 100±7 104±6 119±14 145±15* 

NPY 100±5* 114±6 117±8 116±6 

PPO 100±8 96±4 103±9 130±10* 

CART 100±14 76±10 67±6 68±5 

CRH 100±7* 137±12 122±6 135±7 

POMC 100±4 93±6 107±12 105±7 

 
mRNA levels are expressed as % of SDcontrol. Means+SEM, n=11-12. Statistical analysis was 
performed by Wilcoxon Signed-Rank Test.* p<0.05 vs. TEL+saline 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Suppl. Fig. 1: Systolic blood pressure (SBP), heart rate (HR), left ventricular weight, and AngII 
plasma concentration in SD (open bars) or TG rats (closed bars) depending on chow or CD 
feeding. Means+SEM, n=11-14. * p<0.05. 
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Suppl. Fig. 2: Body weight and energy intake are enhanced by CD feeding in older SD but not 
in TG rats (Protocol 2). A: Time-dependent increase in body weight. B: gain in body weight 
within the 12-week feeding period. C: Time-dependent energy intake. D: cumulative energy 
intake: open bars depict energy intake originating from chow intake whereas shaded bars 
represent energy intake from chocolate/cookie bars. Means±SEM, n=11-14. * p<0.05. † intake 
of chocolate/cookie bars: p<0.05 vs. SDCD; ‡ chow-intake: p<0.05 vs. SDCD.  
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Suppl. Fig. 3: Histological findings of livers from control- or CD-fed SD and TG rats. 
Means±SEM, n=11-14. * p<0.05 vs. control. Tissue specimens were evaluated in a blinded 
manner based on and scored for hepatocytes with steatosis.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Suppl. Fig. 4: mRNA levels of components of the ACE2, Mas, and AT1A and AT1b receptors 
in hypothalami of rats of protocol 2 (control- or CD-fed SD and TG rats) and protocol 3, 
respectively (CD-fed SD rats that were treated with TEL [8 mg kg-1 d-1] or TEL plus A779 [24 
or 72 μg kg-1 d-1] while controls received vehicle+saline). Means±SEM.  
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Suppl. Fig. 5: mRNA levels of MAS and ACE2 in different metabolic tissues of rats of protocol 
2 (control- or CD-fed SD and TG rats) and protocol 3, respectively (CD-fed SD rats that were 
treated with TEL [8 mg kg-1 d-1] or TEL plus A779 [24 or 72 μg kg-1 d-1] while controls 
received vehicle+saline). Means±SEM.  
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Suppl. Fig. 6: Insulin response is impaired by CD feeding in SD but not in TG rats (Protocol 2). 
A: Fasting glucose levels; B: Glucose plasma concentrations after insulin injections (0.6 IU 
insulin kgbw

-1, s.c.). The AUC (C), the minimal glucose levels (D), the time points of minimal 
glucose levels (E) and the half-life of glucose decline (F) were higher in SDCD than in SDcontrol, 
indicating impaired glucose control. A strain difference could be observed for all parameters. 
Means±SEM, n=11-14, * p<0.05.  
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Suppl. Fig. 7: Systolic blood pressure (SBP, A), heart rate (HR, B), left ventricular weight (C), 
and AngII plasma concentration (D) in CD-fed SD rats that were treated for 4 weeks with 
telmisartan (8 mg kg-1 d-1) or telmisartan plus A779 (14 or 72 µg kg-1 d-1, by osmotic 
minipumps). Controls received vehicle and saline. Means±SEM, n=11-12. * p<0.05 vs. 
vehicle+saline.  
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Suppl. Fig. 8: Energy expenditure (EE; A-C) respiratory ratio (RER, D-F), locomotion (G-I) 
and energy intake (K-M) during indirect calorimetry measurements. Animals were housed for 3 
days in calorimetry cages, but only the data of the 3rd day are depicted. Mean values during light 
and dark periods were calculated for EE (B, C), RER (E, F) and locomotion (H, I), whereas total 
energy intake was depicted specifically considering light (L) and dark periods (M). 
Means±SEM, n=12, * p<0.05 vs. vehicle+saline.  
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