| Strain   | Relevant characteristics                                       | Source or reference |
|----------|----------------------------------------------------------------|---------------------|
| USDA110  | Non-HRS strain                                                 | USDA <sup>a</sup>   |
| NK5      | HRS field isolate from Nagakura, Niigata, Japan                | 1                   |
| NK6      | HRS field isolate from Nagakura, Niigata, Japan                | 1                   |
| USDA123  | HRS field isolate from USA                                     | 2                   |
| T2       | HRS field isolate from Tokachi, Hokkaido, Japan                | 3                   |
| USDA135  | HRS field isolate from USA                                     | 2                   |
| 2281     | HRS field isolate from Heilongjiang Province, China (USDA3622) | 4                   |
| NC6      | Non-HRS strain                                                 | 1                   |
| Kas1-4   | Non-HRS strain                                                 | 6                   |
| Kas2-2   | Non-HRS strain                                                 | 6                   |
| Tsu4-125 | Non-HRS strain                                                 | 6                   |
| Yam3-2   | Non-HRS strain                                                 | 6                   |
| Hok1-31  | Non-HRS strain                                                 | 6                   |
| Kag1-5   | Non-HRS strain                                                 | 6                   |
| Fuk1-11  | Non-HRS strain                                                 | 6                   |
| USDA122  | Non-HRS strain                                                 | 6                   |
| NC4      | Non-HRS strain                                                 | 6                   |
| NK2      | Non-HRS strain                                                 | 6                   |
| Kas1-7   | Non-HRS strain                                                 | 6                   |
| Yam3-7   | Non-HRS strain                                                 | 6                   |
| Hok10-2  | Non-HRS strain                                                 | 6                   |
| Fuk1-6   | Non-HRS strain                                                 | 6                   |
| Kag1-3   | Non-HRS strain                                                 | 6                   |
| S23321   | Non-symbiotic strain that does not nodulate soybean plants     | 7                   |

Table S1. Strains of soybean bradyrhizobia used in this study

<sup>*a*</sup> USDA, U.S. Department of Agriculture, Beltsville, MD.

| Strain  | RE           | Fragment size (kb)                                                       | Total fragment size (Mb) |
|---------|--------------|--------------------------------------------------------------------------|--------------------------|
| Non-HRS |              |                                                                          |                          |
| USDA110 | SmiI         | 2600, 2000, 1500, 1200, 1100, 330, 150, 120, 110                         | 9.1                      |
| HRS     |              |                                                                          |                          |
| NK5     | <i>Smi</i> I | 4500, 2100, 1100, 880, 440, 400, 380, 130                                | 9.9                      |
|         | PmeI         | 5000, 2000, 1000, 900, 500                                               | 9.4                      |
| NK6     | <i>Smi</i> I | 3500, 2100, 1800, 1200, 450, 430                                         | 9.5                      |
|         | PmeI         | 5000, 2500, 1400, 1100                                                   | 10.0                     |
| USDA135 | <i>Smi</i> I | 4600, 3300, 1400, 740, 640                                               | 10.7                     |
| 2281    | <i>Smi</i> I | 4600, 3300, 1300, 950                                                    | 10.2                     |
| USDA123 | <i>Smi</i> I | 4200, 1600, 1100, 650, 580, 500, 400, 380, 340, 270, 240, 200, 160       | 10.6                     |
|         | PmeI         | 4200, 3100, 2000, 1400                                                   | 10.7                     |
| T2      | <i>Smi</i> I | 2700, 1700, 1100, 1050, 950, 620, 490, 440, 390, 260, 240, 170, 140, 120 | 10.4                     |
|         | PmeI         | 4900, 2300, 1600, 1200                                                   | 10.0                     |

Table S2. Genome size of HRS strains of soybean bradyrhizobia estimated by pulsed-field gel electrophoresis<sup>a</sup>

<sup>*a*</sup> USDA110 was used as a control strain. RE: Restriction enzyme. The averages of total sizes of chromosome fragments were 9.65 Mb (NK5), 9.75 Mb (NK6), 10.65 Mb (USDA123), and 10.20 Mb (T2).

| Strain   | HRS or<br>non-HRS strains | Average<br>length (bp) | Total reads | GC content<br>(%) | Mapped<br>reads (%) | Not<br>mapped<br>reads (%) | Average<br>coverage | Maximum<br>coverage |
|----------|---------------------------|------------------------|-------------|-------------------|---------------------|----------------------------|---------------------|---------------------|
| NK5      | HRS group A               | 225                    | 2,170,102   | 62.3              | 80                  | 20                         | 42                  | 13,947              |
| NK6      | HRS group A               | 218                    | 2,496,052   | 63.4              | 81                  | 19                         | 47                  | 10,097              |
| USDA135  | HRS group B               | 214                    | 1,752,256   | 62.6              | 63                  | 37                         | 25                  | 10,197              |
| 2281     | HRS group B               | 220                    | 2,436,194   | 62.1              | 63                  | 37                         | 35                  | 16,642              |
| Τ2       | HRS group C               | 229                    | 1,553,580   | 63.4              | 58                  | 42                         | 21                  | 3,375               |
| USDA123  | HRS group C               | 218                    | 2,030,892   | 63.4              | 58                  | 42                         | 27                  | 4,659               |
| USDA110  | non-HRS                   | 221                    | 1,545,842   | 63.8              | 99                  | 1                          | 37                  | 98                  |
| NC6      | non-HRS                   | 226                    | 2,173,812   | 63.3              | 90                  | 11                         | 48                  | 497                 |
| Kas1-4   | non-HRS                   | 232                    | 1,611,664   | 61.8              | 98                  | 2                          | 38                  | 99                  |
| Kas2-2   | non-HRS                   | 233                    | 1,404,884   | 62.4              | 93                  | 7                          | 32                  | 253                 |
| Tsu4-125 | non-HRS                   | 223                    | 1,816,360   | 62.2              | 93                  | 7                          | 40                  | 381                 |
| Yam3-2   | non-HRS                   | 210                    | 1,349,040   | 62.6              | 95                  | 5                          | 28                  | 140                 |
| Hok1-31  | non-HRS                   | 224                    | 2,174,490   | 61.9              | 95                  | 5                          | 49                  | 385                 |
| Kag1-5   | non-HRS                   | 216                    | 2,963,944   | 61.4              | 92                  | 8                          | 62                  | 626                 |
| Fuk1-11  | non-HRS                   | 217                    | 2,473,576   | 62.0              | 92                  | 8                          | 52                  | 570                 |
| USDA122  | non-HRS                   | 227                    | 2,192,500   | 62.2              | 92                  | 8                          | 48                  | 652                 |
| NC4      | non-HRS                   | 212                    | 3,391,300   | 61.6              | 91                  | 9                          | 69                  | 676                 |
| NK2      | non-HRS                   | 229                    | 2,347,168   | 61.9              | 92                  | 8                          | 52                  | 523                 |
| Kas1-7   | non-HRS                   | 228                    | 2,368,846   | 61.9              | 91                  | 9                          | 52                  | 565                 |
| Yam3-7   | non-HRS                   | 231                    | 2,225,346   | 61.9              | 92                  | 8                          | 50                  | 483                 |
| Hok10-2  | non-HRS                   | 230                    | 1,462,946   | 62.4              | 91                  | 9                          | 32                  | 332                 |
| Fuk1-6   | non-HRS                   | 224                    | 1,958,166   | 62.4              | 93                  | 8                          | 43                  | 477                 |
| Kag1-3   | non-HRS                   | 228                    | 960,644     | 63.1              | 92                  | 8                          | 21                  | 200                 |

Table S3. Parameters of genome sequences of HRS strains and coverage statistics of their mapping to the USDA110 genome<sup>a</sup>

<sup>a</sup>The MiSeq reads of the non-HRS strain USDA110 were also mapped to the genomes of USDA110 (5) and those of the six HRS strains.

|                    | IS             |                       |         |     |        |        |          |        |         |        | Non-H   | IRS st | ain |        |        |         |        |        |         |         |                    |
|--------------------|----------------|-----------------------|---------|-----|--------|--------|----------|--------|---------|--------|---------|--------|-----|--------|--------|---------|--------|--------|---------|---------|--------------------|
| Name in this study | ISFinder       | Synonyms <sup>a</sup> | USDA110 | NC6 | Kas1-4 | Kas2-2 | Tsu4-125 | Yam3-2 | Hok1-31 | Kag1-5 | USDA122 | NC4    | NK2 | Kas1-7 | Yam3-7 | Hok10-2 | Fuk1-6 | Kag1-3 | Fuk1-11 | Average | Standard deviation |
| ISRj1              | ISRj1          | RSα                   | 18      | 15  | 18     | 14     | 12       | 19     | 12      | 14     | 11      | 11     | 10  | 11     | 12     | 11      | 10     | 10     | 12      | 12.9    | 2.9                |
| ISRj2              | ISRj2          | RSβ                   | 18      | 16  | 13     | 16     | 15       | 23     | 13      | 14     | 15      | 17     | 15  | 15     | 15     | 13      | 14     | 16     | 18      | 15.6    | 2.4                |
| ISFK1              | ISFK1          | FK1                   | 8       | 7   | 7      | 7      | 5        | 7      | 6       | 6      | 6       | 6      | 6   | 6      | 6      | 7       | 6      | 6      | 7       | 6.4     | 0.7                |
| IS <i>1632</i>     | IS <i>1632</i> | IS <i>1632</i>        | 3       | 2   | 2      | 4      | 4        | 3      | 4       | 11     | 2       | 2      | 3   | 2      | 2      | 2       | 4      | 2      | 3       | 3.2     | 2.2                |
| ISBj6_B            | ISBj6_B        | ISB20                 | 3       | 3   | 3      | 6      | 12       | 3      | 10      | 8      | 4       | 4      | 3   | 4      | 4      | 3       | 3      | 4      | 4       | 4.8     | 2.7                |
| ISB27              |                | ISB27                 | 4       | 4   | 3      | 3      | 2        | 4      | 3       | 4      | 3       | 3      | 3   | 3      | 4      | 3       | 3      | 3      | 3       | 3.2     | 0.6                |
| ISBj2              | ISBj2          | ISBj2                 | 12      | 12  | 11     | 23     | 25       | 17     | 17      | 20     | 14      | 15     | 14  | 16     | 15     | 14      | 14     | 14     | 14      | 15.7    | 3.8                |
| ISBj3              | ISBj3          | ISBj3                 | 5       | 5   | 4      | 0      | 1        | 2      | 0       | 2      | 2       | 2      | 2   | 2      | 2      | 2       | 2      | 2      | 2       | 2.2     | 1.4                |
| ISBj4              | ISBj4          | ISBj4                 | 7       | 7   | 6      | 6      | 5        | 5      | 5       | 7      | 4       | 3      | 3   | 4      | 4      | 5       | 3      | 3      | 4       | 4.8     | 1.4                |
| ISBj5              | ISBj5          | ISBj5                 | 6       | 5   | 5      | 5      | 5        | 8      | 5       | 8      | 4       | 5      | 6   | 5      | 5      | 4       | 5      | 5      | 4       | 5.3     | 1.2                |
| ISBj6              |                | ISBj6                 | 1       | 1   | 1      | 1      | 1        | 0      | 1       | 1      | 0       | 0      | 0   | 0      | 0      | 0       | 0      | 0      | 0       | 0.4     | 0.5                |
| ISBj7              | ISBj7          | ISBj7                 | 13      | 13  | 12     | 16     | 14       | 15     | 15      | 18     | 12      | 14     | 13  | 13     | 14     | 12      | 13     | 10     | 14      | 13.6    | 1.8                |
| ISBj8              | ISBdi2         | ISBj8                 | 4       | 5   | 4      | 7      | 6        | 4      | 5       | 5      | 15      | 5      | 9   | 7      | 6      | 5       | 5      | 6      | 5       | 6.1     | 2.6                |
| ISBj9              | ISBj9          | ISBj9                 | 2       | 2   | 2      | 4      | 3        | 2      | 3       | 3      | 0       | 0      | 0   | 0      | 0      | 0       | 0      | 0      | 0       | 1.2     | 1.4                |
| ISBj10             |                | ISBj10                | 1       | 1   | 1      | 1      | 1        | 1      | 1       | 1      | 1       | 1      | 1   | 1      | 1      | 1       | 1      | 1      | 1       | 1       | 0                  |
| ISBj11             | ISBj11         | ISBj11                | 7       | 6   | 5      | 0      | 0        | 11     | 0       | 0      | 2       | 2      | 2   | 2      | 2      | 2       | 2      | 2      | 2       | 2.8     | 2.9                |
| ISBj12             | ISBj12         | ISBj12                | 1       | 1   | 1      | 2      | 1        | 0      | 1       | 4      | 3       | 4      | 3   | 3      | 3      | 3       | 3      | 3      | 3       | 2.3     | 1.2                |
| ISBj7_B            | ISBj7_B        | ISBj13                | 3       | 3   | 3      | 0      | 0        | 4      | 0       | 0      | 0       | 0      | 0   | 0      | 0      | 0       | 0      | 0      | 0       | 0.8     | 1.4                |
| ISBj5_B            | ISBj5_B        | ISBj14                | 8       | 5   | 7      | 2      | 4        | 4      | 5       | 4      | 2       | 2      | 2   | 3      | 2      | 2       | 2      | 4      | 3       | 3.6     | 1.8                |
| ISBj2_B            | ISBj2_B        | ISBj15                | 3       | 3   | 3      | 3      | 3        | 3      | 3       | 10     | 2       | 3      | 3   | 3      | 3      | 3       | 3      | 3      | 3       | 3.4     | 1.7                |
| IS <i>1631</i>     | IS1631         |                       | 0       | 0   | 0      | 0      | 0        | 0      | 0       | 0      | 0       | 0      | 0   | 0      | 0      | 0       | 0      | 0      | 0       | 0       | 0                  |
| Total              |                |                       | 126     | 115 | 111    | 120    | 119      | 135    | 109     | 140    | 102     | 99     | 98  | 100    | 100    | 92      | 93     | 94     | 102     | 109.1   | 14.7               |

Table S4. Copy numbers of insertion sequences (ISs) in non-HRS strains by genome mapping

<sup>*a*</sup> Copy numbers of ISs were estimated by BWA mapping to USDA110 (see text). ISFinder indicates approved IS name in the ISFinder database (<u>https://www-is.biotoul.fr</u>). <sup>*b*</sup> Synonyms used in genome paper of *B. diazoefficiens* USDA110 (5).

|            |         |           |           |             |        | BLASTP     | results   |         |                                            |                                                  |              |
|------------|---------|-----------|-----------|-------------|--------|------------|-----------|---------|--------------------------------------------|--------------------------------------------------|--------------|
| Replicon   | Start   | End       | Direction | Length      | Gene   | Similarity | E-Value   | Subject | Gene                                       | Bacteria                                         | Accesson no. |
| chromosome | 703210  | 703881    | _1        | (aa)<br>220 | narA   | 100        | 4 55E-139 | 220     | chromosome partitioning protein ParA       | Bradurhisphium diaspat ficiarHSDA 110            | WP 011088682 |
| chromosome | 2218858 | 2 2219526 | -1        | 220         | parA   | 100        | 4.69E-156 | 220     | chromosome partitioning protein ParA       | Bradyrhisobium i aponicum                        | WP_028182039 |
| chromosome | 3560214 | 5 3561627 | 1         | 470         | dna A  | 100        | 0         | 470     | chromosomal replication initiation protein | Bradyrhisobium diasoaf ficiens                   | WP_011083652 |
| chromosome | 3637588 | 3638331   | 1         | 247         | narA   | 00         | 246E-150  | 247     | chromosome partitioning protein ParA       | Bradyrhisobium diasoef ficientSDA 110            | WP_011083586 |
| chromosome | 3773140 | 3773994   | 1         | 284         | parA   | 100        | 0         | 284     | chromosome partitioning protein ParA       | Bradyrhisobium diasoef f icientisDA 110          | WP_011083458 |
| chromosome | 3774130 | 3775019   | 1         | 295         | parR   | 90         | Ő         | 302     | chromosome partitioning protein ParB       | Bradyrhisobium diasoef f icientISDA 110          | WP_011083457 |
| chromosome | 5279373 | 5280461   | 1         | 362         | ren A  | 96         | Ő         | 365     | replication protein A                      | Bradyrhizobium alkanii<br>Bradyrhizobium elkanii | WP 028343842 |
| chromosome | 5618807 | 5619931   | 1         | 374         | rep 11 | 89         | ů         | 425     | replication protein A                      | Bradyrhisobium diasoef ficienHSDA 110            | WP_011082883 |
| pNK6a      | 72066   | 5 73331   | -1        | 421         | renC   | 95         | 0         | 439     | replication initiation protein RepC        | Bradyrhizobium i aponicum                        | WP_028153003 |
| pNK6a      | 73555   | 5 74574   | -1        | 339         | rep B  | 76         | 1.47E-133 | 330     | chromosome partitioning protein ParB       | Methylosinus sp. LW3                             | WP 024881649 |
| pNK6a      | 74647   | 75834     | -1        | 395         | rev A  | 91         | 0         | 393     | chromosome partitioning protein ParA       | Methylocystaceae                                 | WP 024881650 |
| pNK6a      | 178827  | 179813    | -1        | 328         | parB   | 92         | 0         | 333     | chromosome partitioning protein ParB       | Brady rhizobium i aponicum                       | WP 028133144 |
| pNK6a      | 179803  | 3 180567  | -1        | 254         | parA   | 97         | 1.48E-178 | 254     | chromosome partitioning protein ParA       | Bradyrhizobium į aponicum                        | WP 028133143 |
| pNK6b      | 45368   | 3 46498   | -1        | 376         | rep C  | 99         | 0         | 410     | replication initiation protein RepC        | Brady rhizobium j aponicum                       | WP 028153806 |
| pNK6b      | 46815   | 5 47834   | -1        | 339         | rep B  | 100        | 0         | 339     | plasmid partitioning protein               | Brady rhizobium j aponicum                       | WP 028153807 |
| pNK6b      | 47837   | 49057     | -1        | 406         | rep A  | 100        | 0         | 394     | chromosome partitioning protein ParA       | Brady rhizobium j aponicum                       | WP_028153808 |
| pNK6b      | 181819  | 182709    | -1        | 296         | rep C  | 82         | 5.42E-138 | 410     | replication initiation protein RepC        | Bradyrhizobium sp. OHSU III                      | WP_024584971 |
| pNK6b      | 182935  | 5 183948  | -1        | 337         | rep B  | 65         | 3.87E-60  | 332     | replication protein B                      | Bradyrhizobium sp. OHSU III                      | WP 029880243 |
| pNK6b      | 183945  | 5 185138  | -1        | 397         | rep A  | 100        | 0         | 397     | chromosome partitioning protein ParA       | Brady rhizobium j aponicum                       | WP 028152592 |
| pNK6c      | 115359  | 116573    | 1         | 404         | rep A  | 100        | 0         | 404     | chromosome partitioning protein ParA       | Brady rhizobium j aponicum                       | WP_028152782 |
| pNK6c      | 116570  | ) 117589  | 1         | 339         | rep B  | 100        | 0         | 339     | chromosome partitioning protein ParB       | Brady rhizobium j aponicum                       | WP_028152783 |
| pNK6c      | 117786  | 5 119018  | 1         | 410         | rep C  | 99         | 0         | 410     | replication initiation protein RepC        | Brady rhizobium j aponicum                       | WP_028152784 |
| pNK6c      | 130199  | 130960    | 1         | 253         | parA   | 100        | 0         | 253     | chromosome partitioning protein ParA       | Brady rhizobium j aponicum                       | WP_028152789 |
| pNK6c      | 130950  | ) 131930  | 1         | 326         | parB   | 100        | 0         | 326     | chromosome partitioning protein ParB       | Brady rhizobium j aponicum                       | WP_028152790 |
| pNK6d      | 13470   | ) 14345   | -1        | 291         | rep C  | 91         | 1.33E-133 | 441     | replication initiation protein RepC        | Brady rhizobium j aponicum                       | WP_028181486 |
| pNK6d      | 14678   | 3 15706   | -1        | 342         | rep B  | 99         | 0         | 342     | replication protein B                      | Brady rhizobium j aponicum                       | WP_028153002 |
| pNK6d      | 15703   | 3 16773   | -1        | 356         | repA   | 100        | 0         | 404     | chromosome partitioning protein ParA       | Brady rhizobium j aponicum                       | WP_028153001 |
| pNK6d      | 43476   | 5 45155   | -1        | 559         | parB   | 100        | 0         | 559     | plasmid partitioning protein               | Brady rhizobium j aponicum                       | WP_028152389 |

Table S5. Replication initiator and partitioning genes

|                    |                |                       | I      |        | non-HRS strain <sup>d</sup> |      |       |       |       |         |       |                  |         |         |       |
|--------------------|----------------|-----------------------|--------|--------|-----------------------------|------|-------|-------|-------|---------|-------|------------------|---------|---------|-------|
| 15                 |                |                       |        |        | Chromosome <sup>b</sup>     |      |       |       |       | Plasmic | 1     |                  | NK6     |         |       |
| Name in this study | ISFinder       | Synonyms <sup>a</sup> | Family | Group  | V1+V2<br>region             | Core | Total | pNK6a | pNK6b | pNK6c   | pNK6d | Plasmid<br>total | mapping | USDA110 | USDA6 |
| ISRj1              | ISRj1          | RSα                   | IS630  | -      | 38                          | 76   | 114   | 8     | 1     | 1       | 1     | 11               | 203     | 15      | 9     |
| ISRj2              | ISRj2          | RSβ                   | IS3    | IS150  | 8                           | 8    | 16    | 1     | 1     | 0       | 0     | 2                | 54      | 12      | 7     |
| ISFK1              | ISFK1          | FK1                   | IS21   | -      | 7                           | 0    | 7     | 3     | 4     | 0       | 2     | 9                | 7       | 6       | 5     |
| IS <i>1632</i>     | IS <i>1632</i> | IS <i>1632</i>        | IS256  | -      | 6                           | 0    | 6     | 1     | 1     | 0       | 1     | 3                | 13      | 2       | 2     |
| ISBj6_B            | ISBj6_B        | ISB20                 | IS701  | -      | 3                           | 0    | 3     | 2     | 0     | 0       | 0     | 2                | 4       | 3       | 2     |
| ISB27              |                | ISB27                 | IS66   |        | 27                          | 22   | 49    | 8     | 17    | 5       | 3     | 33               | 64      | 3       | 3     |
| ISBj2              | ISBj2          | ISBj2                 | IS5    | IS427  | 14                          | 8    | 22    | 2     | 0     | 0       | 2     | 4                | 27      | 10      | 10    |
| ISBj3              | ISBj3          | ISBj3                 | IS3    | IS150  | 0                           | 0    | 0     | 0     | 0     | 0       | 0     | 0                | 1       | 4       | 1     |
| ISBj4              | ISBj4          | ISBj4                 | IS110  | IS1111 | 1                           | 2    | 3     | 0     | 0     | 0       | 0     | 0                | 6       | 6       | 1     |
| ISBj5              | ISBj5          | ISBj5                 | IS630  | -      | 0                           | 0    | 0     | 0     | 0     | 0       | 0     | 0                | 9       | 5       | 5     |
| ISBj6              |                | ISBj6                 | IS110  | IS1111 | 0                           | 0    | 0     | 0     | 0     | 0       | 0     | 0                | 0       | 1       | 0     |
| ISBj7              | ISBj7          | ISBj7                 | IS6    | -      | 4                           | 0    | 4     | 1     | 0     | 0       | 1     | 2                | 17      | 11      | 10    |
| ISBj8              | ISBdi2         | ISBj8                 | IS1380 |        | 27                          | 25   | 52    | 5     | 3     | 2       | 2     | 12               | 90      | 4       | 5     |
| ISBj9              | ISBj9          | ISBj9                 | IS701  | -      | 0                           | 0    | 0     | 0     | 0     | 0       | 0     | 0                | 0       | 2       | 0     |
| ISBj10             |                | ISBj10                | IS21   |        | 0                           | 0    | 0     | 0     | 0     | 0       | 0     | 0                | 0       | 1       | 2     |
| ISBj11             | ISBj11         | ISBj11                | IS21   | -      | 0                           | 0    | 0     | 0     | 0     | 0       | 0     | 0                | 0       | 5       | 1     |
| ISBj12             | ISBj12         | ISBj12                | ISNCY  | ISLbi1 | 0                           | 0    | 0     | 2     | 0     | 0       | 2     | 4                | 0       | 1       | 2     |
| ISBj7_B            | ISBj7_B        | ISBj13                | IS66   | -      | 0                           | 0    | 0     | 2     | 0     | 0       | 2     | 4                | 0       | 3       | 1     |
| ISBj5_B            | ISBj5_B        | ISBj14                | IS5    | IS5    | 0                           | 0    | 0     | 2     | 0     | 0       | 2     | 4                | 1       | 7       | 1     |
| ISBj2_B            | ISBj2_B        | ISBj15                | IS5    | IS5    | 2                           | 1    | 3     | 2     | 0     | 0       | 2     | 4                | 5       | 3       | 2     |
| IS1631             | IS <i>1631</i> |                       | IS21   | -      | 11                          | 16   | 27    | 2     | 0     | 0       | 2     | 4                | 34      | 0       | 0     |
| Total              |                |                       |        |        | 148                         | 158  | 306   | 41    | 27    | 8       | 22    | 98               | 535     | 104     | 69    |

Table S6. Copy numbers of insertion sequences (ISs) in the genomes of NK6, USDA6, and USDA110 strains.

<sup>a</sup> Synonyms used in genome paper of *B. diazoefficiens* USDA110 (5).
<sup>b</sup> IS copy numbers were counted separately within and outside the variable regions V1 and V2 of NK6 chromosome.
<sup>c</sup> IS copy number was estimated by mapping MiSeq sequences of NK6 (Table 3).
<sup>d</sup> IS copy numbers are shown according to refs (5) for USDA110 and (8) for USDA6.



Fig. S1. Gene disruption by ISRj1 insertion in the chromosome of the HRS strain NK6. The disrupted genes, *blr6664* (A), *blr7791* (B), and *bll5854* (C), are important for survival or environmental responses.



Fig. S2. Density of 21 insertion sequences (ISs) in the genomes of NK6, USDA110, and USDA6. The IS density is expressed as the copy number–based length (Mb). Note that plasmids pNK6a and pNK6d had higher density of ISs, including IS*1631*.

## References

- Isawa T, Sameshima R, Mitsui H, Minamisawa K. 1999. IS1631 occurrence in Bradyrhizobium japonicum highly reiterated sequence-possessing strains with high copy numbers of repeated sequences RSαand RSβ. Appl. Environ. Microbiol. 65: 3493-3501.
- 2. **van Berkum P, Fuhrmann JJ.** 2000. Evolutionary relationships among the soybean bradyrhizobia reconstructed from 16S rRNA gene and internally transcribed spacer region sequence divergence. Int J Syst Evol Microbiol. **50**: 2165-72.
- Sameshima R, Isawa T, Sadowsky MJ, Hamada T, Kasai H, Shutsrirung A, Mitsui H, Minamisawa K. 2003. Phylogeny and distribution of extra-slow-growing *Bradyrhizobium japonicum* harboring high copy numbers of RSα, RSβ and IS1631. FEMS Microbiol. Ecol. 44: 191-202.
- 4. Xu LM, Ge C, Cui Z, Li J, Fan H. 1995. *Bradyrhizobium liaoningense* sp. nov., isolated from the root nodules of soybeans. Int. J. Syst. Bacteriol. **45**: 706-711.
- Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S. 2002. Complete genomic sequence of nitrogen-fixing symbiotic bacterium *Bradyrhizobium japonicum* USDA110. DNA Res. 9: 189-197.
- Shiina Y, Itakura M, Choi H, Saeki Y, Hayatsu M, Minamisawa K. 2014. Correlation between soil type and N<sub>2</sub>O reductase genotype (*nosZ*) of indigenous soybean bradyrhizobia: *nosZ*-minus populations are dominant in Andosols. Microbes Environ. 29: 420-426.
- 7. Okubo T, Tsukui T, Maita H, Okamoto S, Oshima K, Fujisawa T, Saito A, Futamata H, Hattori R, Shimomura Y, Haruta S, Morimoto S, Wang Y, Sakai Y, Hattori M, Aizawa S, Nagashima KV, Masuda S, Hattori T, Yamashita A, Bao Z, Hayatsu M, Kajiya-Kanegae H, Yoshinaga I, Sakamoto K, Toyota K, Nakao M, Kohara M, Anda M, Niwa R, Jung-Hwan P, Sameshima-Saito R, Tokuda S, Yamamoto S, Yamamoto S, Yokoyama T, Akutsu T, Nakamura Y, Nakahira-Yanaka Y, Takada Hoshino Y, Hirakawa H, Mitsui H, Terasawa K, Itakura M, Sato S, Ikeda-Ohtsubo W, Sakakura N, Kaminuma E, Minamisawa K. 2012. Complete genome sequence of *Bradyrhizobium* sp. S23321: insights into symbiosis evolution in soil oligotrophs. Microbes Environ. 27: 306-315.
- Kaneko T, Maita H, Hirakawa H, Uchiike N, Minamisawa K, Watanabe A, Sato S. 2011. Complete genome sequence of the soybean symbiont *Bradyrhizobium japonicum* strain USDA6<sup>T</sup>. Genes 2:763-787.