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Supplementary Material and Methods

Here the details of the algorithm are described.

The spacer graph

Given a list of arrays a1, ..., an with S being the set of different spacers, aji is the j-th spacer from
the i-th array, spacer index 1 is proximal to the leader.

The spacer graph has nodes S and an edge connecting sk and sl if aji = sk ∧ aj+1
i = sl for any

i, j. Nodes s and edges e have binarily encoded strain labels, l(v) and l(e). The i-th bit is set in
l(s) if s ∈ ai and the i-th bit is set in l(e) if e = (sk, sl) and aji = sk ∧ aj+1

i = sl for any j. We say
an array ai contains an edge e = (sk, sl) if aji = sk ∧ aj+1

i = sl for any j.
p is a function returning whether two spacers are connected. p(si, sj) = 1, iff there is a directed

path from si to sj . pb(si, sj) = 1 iff there is a directed path from si to sj where only edges e

with b&l(e)!=0 are traversed (i.e., only edges originating from particular strains are allowed to be
used). P̂ (si, sj) = 1 iff there is a directed path from si to sj that is only traversing edges from one
array.

The set of preceding spacers is P (s) = {t : p(t, s) = 1}, P b(s) = {t : pb(t, s) = 1},
P̂ (s) = {t : P̂ (t, s) = 1}. The set of successive spacers is N(s) = {t : p(s, t) = 1}, N b(s) = {t :
pb(s, t) = 1}, N̂(s) = {t : P̂ (s, t) = 1}.

Replicated spacers

If s = aji ∧ s = aki for any i and j 6= k, then s is a replicated spacer.
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Inversions

Inverted spacer orderings (short: inversions) preclude a common order of all spacers and introduce
loops in the spacer graph. Decisions have to be made which spacers are eliminated to resolve a
particular loop, these are assigned to be involved in inversions. Here the parsimonious decision of
always taking the shortest segment as an inversion is taken. If two segments of equal length would
resolve the loop, both are assigned as inversions. The following algorithm detects a set of spacers
L, that are involved in inversions. If these are eliminated from the arrays, the resulting spacer graph
has no loops.

1. Spacers L = {}.

2. P̂ (s) = P ∗(s), N̂(s) = N∗(s) for all s.

3. For every spacer, calculate the intersection spacers: Î(s) = P̂ (s) ∩ N̂(s).

4. Îm = max |Î(s)| (the highest number of intersection spacers for a spacer)

5. If Îm = 0:
If spacers can be ordered such that ∀e e = (si, sj)→ i < j : return L.
Else: go to 9.

6. L = L ∪ {s : |Î(s)| = Îm}.

7. For each s: Î(s) = Î(s) \ L

8. Continue with step 4.

9. Expand P and N to include more paths: P̂ (s) = P̂ (s) ∪
⋃

t∈P̂ (s)

P̂ (t) and analogously for

N̂(s).
(In words, before we were looking at preceeding and successive spacers in one array, thus
inversions that are caused by the information of two arrays togeter. Now, preceeding and
successive spacers are formed by two arrays each resulting in inversions that are caused by
the information in at most four arrays.)
Continue with step 3.

Order divergence events

A spacer graph is built from a data set without inversions.

1. F = {}
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2. For each s ∈ S:

(a) Find the set of non-redundant successive spacers Nnr(s) = N l(s)(s) \ Nr(s), with
Nr(s) = {t ∈ N l(s)(s) : ∃f∈N l(s)(s)p

l(s)(f, t) = 1} (i.e., a spacer t is redundant, if
there is a path from another f to t).

(b) If |Nnr(s)| ≤ 1: continue with 2. Else generate a new divergence event (H,D) with
shared spacers H and different spacers D, these sets will be filled as follows.

(c) Find the set of spacers that can be reached by all f ∈Nnr(s): R(s) = {t ∈ N l(s)(s) :

∀f∈Nnr(s)p
l(s)(f, t)}

(d) Find the closest spacers that can be reached by all. For each r ∈ R(s): score(r) =∑
n∈Nnr(s)

dist(n, r) where dist(n, r) is the minimum number of edges along a path from

n to r only traversing edges from l(s)&l(n). scoremin = min
r∈R(s)

score(r). Rmin = {r :

score(r) = scoremin}.

(e) Find the different segments, these are the sets of spacers between between s and Rmin :
For each t with an edge e = (s, t): D(t) =

⋃
r∈Rmin(s)

N l(s)(t) ∩ P l(s)(r); D(t) = D(t) \

Rmin(s). Merge D(t) such that the sets are non-overlapping. These non-overlapping
sets are D.

(f) Find the beginning of the shared segment

i. Mask s from the data set and consider only the edges in l(s) now.

ii. Evaluate all b with an e = (b, s): build Nnr(b);

iii. If at least two sets from {N l(s)(c) : c ∈ Nnr(b)} are intersecting with at least two
different elements from D, then:
add b to H , mask b and continue with (ii) by evaluating all e = (c, b)

(g) F = F ∪ {(H,D)}

(h) If |Nnr(s)| > 2: Check each subset of Nnr(s), if the set of spacers that can be reached
by them contains no element of R(s). In this case, generate a new event (H,D) of the
subset of taxa and calculate D and H analogous to (c)-(g).
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Supplementary Tables

Length Strains Hit Description Range E-value
E. coli CRISPR1.1
1293 3 pfam00665 Integrase core domain 173-523 1.02e-31

503 341 WP_001342819 membrane protein 196-273 2e-5
1763 1 PHA02517 putative transposase OrfB 487-1287 1.10e-67
1382 2 pfam01609 Transposase DDE domain 280-1005 2.70e-15
1280 1 pfam03400 IS1 transposase 128-520 3.81e-84

564 1 WP_001430068 membrane protein 257-334 5e-6
E. coli CRISPR1.2
1381 3 pfam01609 Transposase DDE domain 394-1119 4.23e-20

P. aeruginosa
1272 2 pfam13683 Integrase core domain 938-1138 5.43e-34
1271 1 PHA02517 putative transposase OrfB 442-1215 1.12e-97
1271 1 PHA02517 putative transposase OrfB 39-812 1.01e-95

394 1 WP_023115125 hypothetical protein 67-207,201-359 2e-27
1271 1 PHA02517 putative transposase OrfB 431-1204 1.03e-95

S. thermophilus
847 1 COG3316 Transposase and inactivated derivatives 70-720 9.76e-105
538 1 EWM59576 transposase 176-367 6e-35

Table S4: Protein hits of spacers longer than 100 nucleotides. If a conserved domain is detected
(Marchler-Bauer et al. 2011), it is given as hit, otherwise the best hit with blastx (Altschul et al.
1997) is listed. Number of strains are given for the unique strains with loops.
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Supplemental Figures

Recombinant

Segment from outside

Recipient

A  A new segment is replacing a segment:

B  A segment from the data set is inserted into an array:

Recombinant

Recipient

Donor

C  A segment from the data set is replacing a segment:

Recombinant

Recipient

Donor

Figure S1: Recombination scenarios for power analysis. Breakpoints are marked by ||.
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Deletion events ODEs Multiple-spacer ODEs
E. coli CRISPR1.1
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E. coli CRISPR1.2

●

●

●
●

●●●●

●

10 30 50 70 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Percentage of strains

F
ra

ct
io

n 
of

 e
ve

nt
s

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●
●

●

●

●

●

10 30 50 70 90

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Percentage of strains

F
ra

ct
io

n 
of

 e
ve

nt
s

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

10 30 50 70 90
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2
Percentage of strains

F
ra

ct
io

n 
of

 e
ve

nt
s

●

●

●

●

●

●

●

●

●

●

E. coli CRISPR2.1
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E. coli CRISPR2.2
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Figure S2: Robustness analysis. See also legend in Figure 4.
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Figure S2 continued
Deletion events ODEs Multiple-spacer ODEs

P. aeruginosa
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E. coli CRISPR1.1
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Figure S3: Estimation of deletion effects from 1000 perturbed replicates for the E. coli datasets.
See also legend in Figure 6.
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Figure S5: Estimation of deletion effects from 1000 perturbed replicates for S. thermophilus. See
also legend in Figure 6.
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