

Supplementary Figure 1 | Recognition of positive controls

The length of each bar indicates how often the respective control was used in the screen, and the color code indicates how often it was fully (dark green) or partially identified (light green), and how often it was missed (blue colors).

Asterisks indicate controls with a very subtle phenotype. Black diamonds indicate positive controls with complex phenotypes, which were rated as "partially recognized" when three quarter or more of phenotypic aspects were correctly identified.

Supplementary Figure 2 | Lethality of injected animals after dsRNA and buffer injections in the

pupal and the larval injection screens

A) Shown is the distribution of lethality rates of the injected animals in RNAi experiments. Lethality was documented at 11 and 22 days post injection (dpi) in the larval injection screen (dark and light blue) and at 11 dpi in the pupal injection screen (green). Most experiments showed a lethality of up to 30%. The distribution dropped up to 80% but increased again from 90% onwards. B) The same distributions shown for buffer injections. Here, the 90 and 100% values were not increased. Taken together, lethality rates below 80% were most likely "technical lethality" while higher lethality rates were probably the consequence of RNAi targeting an essential gene. Hence, we considered "lethality" as a phenotype only when at least 90% of the injected animals had died.

Supplementary Figure 3 | Reproducibility depends on the phenotype class

158 genes matching our criteria for significant phenotypes (see Supplementary Table 3) were tested for reproducibility. Where possible, a non-overlapping fragment was injected into a strain with different genetic background (SB in most cases). If the phenotype was not reproduced, the non-overlapping fragment was injected into the strain used in the screen. This allowed distinguishing whether the non-reproduced phenotypes were due to fragment- or strain-specific differences (i.e. putative off target effects or genetic background effects). a) Phenotypes of different processes with a penetrance > 50% were tested. Some phenotype classes like lethality and wing blistering were reproduced with very high frequency while embryonic phenotypes were more frequently not reproduced (see main text for discussion on likely reason). b) Phenotypes that were annotated with a penetrance <50% were frequently not reproducible.

а

Supplementary Figure 4 | Differential expression of 32 iBeetle-identified gland phenotype-

causing genes

We determined for the 32 genes with a confirmed odoriferous gland phenotype, whether the transcripts were enriched in the glands (data taken from Li et al. 2013)¹. Each bar represents the level of expression of a gene in male abdominal glands relative to its expression in the midabdomen body control. Only five genes (marked with an asterisk) showed >4-fold enrichment in the odoriferous glands and would have been chosen as candidates based on a transcriptomics approach, thereby missing genes such as *Tc-ATP7* (bold) that is neither up nor down regulated but revealed a reduced gland content and melanosis phenotype upon knockdown. The iBeetle screen even identified genes causing a gland phenotype upon knock-down whose expression is strongly reduced in the odoriferous glands (underlined TC numbers). Thus, most genes detected in the iBeetle screen would not have been selected in an approach based on differential gene expression. Differences in the expression intensities are given as logarithm 2 fold change, calculated as log2 of the quotient [depth (gland) / depth (control)], where depth is calculated as number of reads multiplied with length of reads (38bp) divided by specific length of gene transcript.

Supplementary Figure 5 | Differential expression of *Tc-ATP7* in different gland tissues

Expression of the copper-transporting ATPase *Tc-ATP7* in male and female thoracic (thx) and abdominal (abd) odoriferous glands is not significantly de- or increased relative to the expression in the mid-abdomen body control.

Supplementary Figure 6 | Gas chromatograms of stink gland contents.

The four main volatile substances detected via GC-MS in abdominal glands of wild type beetles (black line) are 1: 2-Methyl-1,4-benzoquinone; 2: 2-Ethyl-1,4-benzoquinone; 3: 1-Pentadecene; 4: 1-Heptadecene. After knockdown of Tc-ATP7 (blue line, for better comparison plotted as negative values) gland secretions lack the benzoquinones (peaks 1 and 2).

Supplementary Figure 7 | Enhancer trap lines used in the screen

a) Females carrying the *pig19* enhancer trap were used for pupal injections. In this enhancer trap line EGFP is expressed in somatic muscles including leg muscles. Upon maturation, injected female pupae were mated with male beetles of the *black* strain (dark cuticle)² in order to allow quick assessment of adult survival of injected females without the need for repeated adult sexing.

b) For larval injections we used daughters of a cross between pearl females ³ and males of the D17Xred strain. This line is carrying a Minos transposon ⁴ insertion (D17) containing the 3xP3-EGFP marker which has captured an adult flight muscle enhancer. In addition, a piggyBac transposon carrying DsRed coding sequence driven by a 6xP3-promoter was inserted on the X-chromosome. Hence, female larvae were identified as larvae expressing the DsRed fluorescent protein in the eyes and the brain. Injected females were crossed to black males.

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
		d0 Injection (10h)		d0 Injection (10h)	d3 Transfer (1,5h)		d3 Transfer (1,5h)
ek 1					Cuticle anal. (2h)		
we							-
	d0 Injection (10h)	Cuticle	d0 Injection (10h)	d3 Transfer (1,5h)	d0 Injection (10b)	d3 Transfer (1,5h)	
k 2		analysis (8h)	do injection (10h)	d9 Sieving (0,75h)		d9 Sieving (0,75h) d11 Sieving (0,75h)]
weel							
							5
	d13 Sieving Ovaries (4h)	d14 Fresh Prep Muscle analysis	d9 Sieving (0,75h) d13 Sieving	d14 Fresh Prep	d9 Sieving (0,75h) d11 Sieving (0.75h)		d13 Sieving Ovaries (4h)
ek 3	d13 Cuticle	(8h)	Ovaries (4h)	(8h)	Cuticle analysis (6h)		d13 Cuticle
we	Prep (3h)		d13 Cuticle Prep (3h)				Prep (3h)
	d3 Transfer (1,5h) d11 Sieving (0,75h)	d11 Sigving (0.75b)					d11 Sieving (0,75h)
4	d14 Fresh Prep Muscle analysis (8b)	d13 Sieving Ovaries (4b)	d14 Fresh Prep Muscle analysis (8b)	Ovaries (4h)	d14 Fresh Prep Muscle analysis		2
veek	(61)	d13 Cuticle	(61)	d13 Cuticle Prep (3h)	(01)		
		Prep (3h)			\square		
	Cuticle		Cuticle		Cuticle		
k 5	anaiysis (8n)		anaiysis (on)		anaiysis (8n)		
wee							
9		d0 Injection (10h)		d0 Injection (10h)	Cuticle anal. (2h)		d3 Transfer (1,5h)
veek					d3 Transfer (1,5h)		7
>							
	d0 Injection (10h)	Cuticle	d0 Injection (10b)	d3 Transfer (1,5h)	d0 Injection (10b)	d3 Transfer (1,5h)	
2	25 injection (2011)	analysis (8h)	do injection (10h)	d9 Sieving (0,75h)	as injection (101)	d9 Sieving (0,75h) d11 Sieving (0,75h)	
week							

Supplementary Figure 8 | Schedule of the pupal injection screen

The five repetitions performed in parallel are shown in different colours. Each step of each repetition is shown at the day of processing and the approximate time required for this step is given. After five weeks, the same schedule was repeated (open boxes in week 6 and 7). The cuticle analysis can be performed at any time, because the cuticle preparations are stable over time.

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
3	d25 Ovary analysis		d38-41 Stink gland analysis	d0 Injection (8h)	d0 Injection (8h)		
ek 1	(2h)		(3h)		-		
we	d18 Adult analysis	d18 Adult analysis					
	Ovary analysis	(411)	d38-41 Stink gland	d0 Injection (8h)	(d20 Sieving (0,3h) (d20 Sieving (0,3h) (d0 Injection (8h)		
k 2	(2h) Ovary analysis (2h)		analysis (3h)	do injection (on)	-		
wee				-	-		
	d11 Pupal analysis (7h)	d11 Pupal analysis (7h)	d38-41 Stink gland analysis	d0 Injection (8h)	d0 Injection (8h)	d16 Adult analysis (4h)	d16 Adult analysis (4h)
eek 3	-		(3h)	-	-		
×							
	d11 Pupal analysis	d11 Pupal analysis	d20.Sieving (0,3h)	d0 Injection (8h)	d0 Injection (8h)	d16 Adult analysis	d16 Adult analysis
k 4	(7h)	(7h)	analysis (3h)		-	(4h)	(4h)
wee					-	d23 Ovary analysis (2h)	(2h)
4				(d20 Sieving (0,3h)			
	d11 Pupal analysis (7h)	d11 Pupal analysis (7h)		d21 Ovary analysis (2h)	Ovary analysis (2h)		
eek 5							
W	d20 Sieving (0,3h)	1 d20 Sieving (0,3h)					
	d11 Pupal analysis	d11 Pupal analysis)		(d20 Sieving (0,3h)	1	
ek 6	(7h)	(7h)			(d20 Sieving (0,3h)		
wee							
	(4h)	(4h)					
	d25 Ovary analysis (2h) d24 Ovary analysis		d38-41 Stink gland analysis	d0 Injection (8h)	(d20 Sieving (0.3h) (d20 Sieving (0,3h) (d0 Injection (8h)		
reek 7	(2h) d18 Adult analysis	d18 Adult analysis					
3	(4h)	(4h)					
	Ovary analysis		d38-41 Stink gland	d0 Injection (8h)	d0 Injection (8h)		
∞	Ovary analysis (2h)		(3h)				
week							
- 60% - 6							
2	d11 Pupal analysis (7h)	d11 Pupal analysis (7h)	d38-41 Stink gland analysis (3b)	d0 Injection (8h)	d0 Injection (8h)	d16 Adult analysis (4h)	d16 Adult analysis (4h)
reek9			(30)				
\$							
	d11 Pupal analysis	d11 Pupal analysis	[d20 Sieving (0,3h]	d0 Injection (8h)	d0 Injection (8h)	d16 Adult analysis	d16 Adult analysis
k10	(7h)	(7h)	analysis (3h)			(4h)	(4h)
wee						(2h)	(2h)
				d20 Sieving (0,3h)			

Supplementary Figure 9| Schedule of the larval injection screen

In the larval injection screen, eight repetitions were performed in parallel and the schedule repeated after 6 weeks.

	Official gene set		iBeetle gene set		Genes with Phenotype in iBeetle		
	N	%	N'	%	N''	%	% of iBeetle genes with phenotype (N''/N')
Genes	16561	100	3400	100	1915	100	56
Conserved	9838	59	2784	82	1659	87	60
Beetle specific	6723	41	616	18	256	13	42
Conserved in Drosphila	8334	50	2496	73	1546	81	62
Lost in Drosophila	1505	9	288	8	113	6	39

Supplementary Table 1 | Comparison of iBeetle analysis set with official gene set

"beetle specific": NCBI blast did reveal orthologs only in beetles;

"lost in Drosophila": NCBI blast revealed orthologs in other insects but not Drosophila

Note: the percentage in the rightmost column relates the values in column N'' to respective values in column N', e.g. 39%=113/288.

Supplementary Table 2| iBeetle results for genes with published or known phenotypes

Pupal injection screen

gene	iB-#	TC-#	screening result	reference
	ID 01100	TC000 400	loss of larval bristles and	Wheeler et al. 2003,
achaete-scute	iB_04489	TC008433	setae	this study
avia	ID 0/109	TC006214	as expected	Eulotal 2012
	IB_04108	10000314	as expected	
broad-complex	iB 03960	TC005474	no phenotype, potentially due	this study
				Eonseca et al. 2008:
cactus	iB_00322	TC002003	as expected	Roth unpublished
			muscle defects, differs from	
			earlier experiments where	
			and abdominal development	Schoppmeier,
CG16778	iB_04153	TC006481	were found	unpublished
				Aranda et al. 2007,
Delta	iB 03691	TC004114	as expected	unpublished
	_		lethality of injected animals,	
			differs from earlier	Van dar Zaa at al
			embryonic defects, but no	2006; Ober &
decapentaplegic	iB_04497	TC008466	lethality were found	Jockusch, 2006
			as expected, dorsal closure	Panfilio unpublished,
dorsocross	iB 05219	TC012346	abdominal defects	this study
			as expected, oogenesis	Großmann,
EGF-Receptor	iB_00647	TC003986	defects	unpublished
folded gastrulation	iB_04203	TC006722	dorso-ventral patterning	Roth, unpublished
			early embryonic lethality,	
Frizzlad 1	IR 02240	TC014055	stronger defect than	Beermann et al.
FIIZZIEU-I	IB_02240	10014055	published	Namigai & Suzuki
			as expected, lipid	2012, Trauner
glass-bottom-boat	iB_05543	TC014017	homeostasis and sterility	unpublished
hairy	iB_05339	TC012851	as expected	Aranda et al. 2008
hunchback	iB 05451	TC013553	as expected	2008
	_		early embryonic lethality,	
knirns	ID 02552	TC002412	stronger defect than	Corpy of al 2008
knirps Jame-duck	IB_03553	TC0307/19	as expected muscle defects	Erasch unnublished
	10_00001	10030743	early embryonic lethality,	Trasen, unpublished
			stronger defect than	
lim1	iB_05727	TC014939	published	Posnien et al. 2011
methoprene-tolerant	iB 03648	TC003908	defects	this study
	_		as expected, oogenesis	Schoppmeier.
mirror/irx	iB_03595	TC003634	defects	unpublished
odd-skipped	iB_04013	TC005785	as expected	Choe et al. 2006
org-1	iB_05796	TC015327	as expected, muscle defects	Frasch, unpublished
patched	iB_03831	TC004745	as expected	Farzana et al. 2008

			as expected, strong	
pelle	iB_02469	TC015365	embryonic defects	Roth, unpublished
porcupine	iB_03822	TC004714	as expected	Bolognesi et al. 2009
				Schmitt-Engel et al.
pumilio	iB_03898	TC005073	as expected	2012
			as expected, reduced	
saxophone	iB 02534	TC015948	fecundity	Roth, unpublished
	_			Curtis et al. 2001;
			as expected, slightly stronger	positive control in
sex-combs-reduced	iB_00186	TC000917	than published	this study
				Choe et al. 2006,
sloppy-paired	iB_04421	TC008062	as expected	Choe et al. 2007
				Lynch et al. 2010;
TGF-alpha	iB_03555	TC003429	as expected	Roth unpublished
tolloid	iB_01822	TC011197	as expected	Fonseca et al. 2010
				Schoppmeier et al.
Torso	iB_04720	TC009906	as expected	2005
				Schonnmeier et al
torso-like	iB 04423	TC008090	as expected	2005
twisted gestrulation	ib_00503	TC002620		Economic at al. 2010
twisteu-gastrulation	IB_00592	10005020	as expected	
wingless	IB_05552	TC014084	as expected	Bolognesi et al. 2008
wnt-less	iB_00832	TC005345	as expected	Bolognesi et al. 2008
				positive control in
				this study, Klingler
yb	iB_02707	TC000053	as expected	unpublished
			lethality of injected animals,	
			differs from earlier	
			experiments where defects of	Durin Cali
-(1-2	ID 02646	TC002004	leg development, but no	Prpic-Schaper,
21112	IB_03646	1003891	lethality were found	unpublished

Larval injection screen

gene	iB-#	TC-#	screening result	reference
achaete-scute	iB_04489	TC008433	as expected, lethality	positive control in this study
			just lethality, published subtle appendage phenotype was	
bric-a-brac	iB_03591	TC003621	missed	Angelini et al. 2009, 2012
				Konopova et al. 2008; Konopova, personal
broad-complex	iB_03960	TC005474	as expected, slightly stronger	communication
cactus	iB_00322	TC002003	as expected	Fonseca et al. 2008; Roth unpublished
Delta	iB_03691	TC004114	larval lethality, stronger than published	Angelini et al. 2012a+b
decapentaplegic	iB_04497	TC008466	larval lethality, stronger than published	Knorr et al. 2009
ebony	iB_05139	TC011976	as expected	Park et al. 2005

EGF-receptor	iB_00647	TC003986	as expected, lethality wing and labrum defects, pupal lethality, differs from experiments in this study,	Großmann, unpublished
empty-spiracles	iB_05098	TC011763	where some lethality, but no morphological defect was found	positive control in this study
homothorax	iB_04526	TC008629	prepupal lethality, stronger than published	Angelini et al. 2012a+b
knickkopf	iB_04889	TC010653	as expected	Chaudhari et al. 2011
			from experiments in this study, where no phenotype was found, but earlier	positive control in this
knirps	iB_03553	TC003413	experiments showed similar defects	study, Schmitt-Engel, unpublished
	·D 04704	T0040400	larval lethality, stronger than	A
laccase 2	IB_01/01	10010489	published	Arakane et al. 2005
lim1	iB_05727	TC014939	as expected, slightly stronger	Angelini et al. 2012b
matrix metalloproteinase	ip 02266	TC014266	as expected	Knorr at al. 2000
ref2	IB_02200	TC014200	as expected lethality	Frasch uppublished
	18_04520	10010850	as expected, lethality	Konopova et al. 2007;
methoprene- tolerant	iB_03648	TC003908	larval lethality, technical artifact	positive control in this study
odd-skipped	iB 04013	TC005785	just labial misorientation, weaker defect than published	Angelini et al. 2012
pumilio	iB 03898	TC005073	larval lethality, technical artifact	Schmitt-Engel, unpublished
serrate	iB 04764	TC010113	as expected, slightly stronger	Angelini et al. 2009
sex-combs-	_			
reduced	iB_00186	TC000917	as expected	Tomoyasu et al. 2005
bowl	iB_04014	TC005788	as expected, slightly stronger	2012a,b
Sp8	iB_05083	TC011697	as expected	Beermann et al. 2004
TCC alpha		TC002420	as expected, morphological	positive control in this
r GF-aipna	IB_03555	10003429	defects in pupae	positive control in this
vestigal	iB_04931	TC010897	as expected	study
wingless	iB_05552	TC014084	as expected, morphological defects in pupae and adults	positive control in this study
wnt-less	iB 00832	TC005345	as expected, morphological defects in pupae	positive control in this study
	_		as expected ovariogenesis	positive control in this
yb	iB_02707	TC000053	defects	study, Klingler unpublished

Phenotype Criteria no phenotype not in one of the other categories lethal after larval injection > 80 % of the injected animals died within 22 dpi parental lethal after pupal > 80 % of the injected animals died within 11 dpi injection embryonic lethal > 50 animals in cuticle preparation of clutch 9 dpi, or > 20 animals in cuticle preparation of clutch 9 dpi without any hatched animals, or > 20 animals in fresh preparation of clutch 11 dpi with > 50% embryos died before cuticle secretion/did not develop

Supplementary Table 3 | Definition of phenotypic categories used in large scale comparison

morphological defects of larval cuticle	 > 50 animals in cuticle preparation of clutch 9 dpi, while > 70 % hatched, preparation with > 50% larvae showing morphological defects but clearly visible polarity and at least 2 distinguishable tagmata; or > 50 animals in cuticle preparation of clutch 9 dpi, while 10 - 70 % hatched, preparation with > 30 % larvae showing morphological defects but clearly visible polarity and at least 2 distinguishable tagmata; or > 20 animals in cuticle preparation of clutch 9 dpi while no animals hatched, preparation with > 30 % larvae showing morphological defects but clearly visible polarity and at least 2 distinguishable tagmata; or > 20 animals in cuticle preparation of clutch 9 dpi while no animals hatched, preparation with > 30 % larvae showing morphological defects but clearly visible polarity and at least 2 distinguishable tagmata
strong defects of larval cuticle	> 50 animals in cuticle preparation of clutch 9 dpi, while > 70 % hatched, preparation with > 50 % larvae without clear tagmatic division or polarity; or > 50 animals in cuticle preparation of clutch 9 dpi, while 10 - 70 % hatched, preparation with > 30 % larvae without clear tagmatic division or polarity; or > 20 animals in cuticle preparation of clutch 9 dpi while no animals hatched, preparation with > 30 % larvae without clear tagmatic division or polarity
embryonic lethal before cuticle secretion	> 50 animals in cuticle preparation of clutch 9 dpi, preparation with > 50 % egg shells without larval cuticle or >30 % egg shells without larval cuticle in combination with morphological defects (see above); or > 20 animals in cuticle preparation of clutch 9 dpi while no animals hatched, preparation with> 50 % egg shells without larval cuticle or >30 % egg shells without larval cuticle in combination with morphological defects (see above); or > 20 animals in the state of the second state of the se
defects in metamorphosis control	> 3 injected animals died during development from prepupal to adult stage
defects of adult structures	> 2 injected animals with morphological defects of pupal or adult structures (except ovary defects)
ovary defects	> 50 % of dissected animals with reduced egg production show morphological defects of ovaries and no reduced fat body 22 dpi or 13 dpi
morphological defects of pupae or adults	> 2 injected animals with morphological defects of external pupal or adult structures

morphological defects of pupal or adult legs	> 2 injected animals with morphological defects of pupal or adult legs
morphological defects of larval legs	> 50 animals in cuticle preparation of clutch 9 dpi, while > 70 % hatched, preparation with > 50% larvae showing leg defects; or > 50 animals in cuticle preparation of clutch 9 dpi, while 10 - 70 % hatched, preparation with > 30 % larvae showing leg defects; or > 20 animals in cuticle preparation of clutch 9 dpi while no animals hatched, preparation with > 30 % larvae showing leg defects
defects of adult thoracic musculature	> 2 injected animals with defects of the developing dorsal thoracic musculature (marked at pupal stage by d17 enhancer trap)
defects of larval musculature	> 20 animals in fresh preparation of clutch 11 dpi with > 30% embryos/larvae showing defects of musculature (marked by pig19 enhancer trap)
odoriferous glands defects	> 1 injected animal showed aberrations of abdominal or thoracic odoriferous glands
blistered wings phenotype	> 4 injected animals show a total or partial separation of dorsal and ventral wing surfaces

Note: We developed criteria for selecting datasets with high likelihood of reproducibility for our dataset wide analysis (shown in Figs. 2 and 3). For each phenotype class, we defined specific cut-off values, which were based on our experience gained during the reproduction experiments (e.g. reproducibility, see Figure 1d and Supplementary Figure 1). The main criterion was the penetrance of a phenotype (>50% for most embryonic phenotypes; >2 animals for most phenotypes observed in the injected animals; >80% penetrance for lethality). This main criterion was complemented with other criteria wherever our experience indicated that we would miss a significant number of phenotypes when only applying penetrance.

iB#	D.m. ortholog	Driver:	Bbg-GAL4	Bx-GAL4
			Description of wing phenotyp	be
Annotation	s associated with wing	blister in Drosophi	la	
iB_00385	Ilk (integrin linked kind	ise)	blister	crumpled
iB_05522	Asx (additional sex con	nbs)	WT	blister, curly
iB_05688	wb (wing blister)		blister	blister
iB_00014	parvin		blister	blister
Annotation	s associated with cytosl	keleton in Drosoph	ila	
iB_05272	Mob4		WT	unable to eclose
iB_00101	ТВСВ		WT	blister
iB_02017	CG32138		WT	vein defect
Annotation	s associated with cell a	dhesion in Drosoph	nila	
iB_01705	LanB2 (Laminin B2)		WT	blister
iB_01221	Cka (Connector of kina	se to AP-1)	crumpled	wings reduced, blisters unsure
iB_01762	Pak (PAK-kinase)	line 1	crumpled	crumpled
		line 2	WT	WT
		line 3	WT	curly, crumpled
iB_00557	Lar (Leukocyte-antiger	a-related-like)	crumpled	curly, shape, low hatchrate
iB_00666	Sra-1 (specifically Rac1 protein 1)	-associated	WT	crumpled
Annotation	s without cell adhesion	or cytoskeleton in	Drosophila	
iB_01726	CG11526		crumpled, mis-shapen, low hatchrate	wings reduced, blisters unsure
iB_02548	CG5734		WT	WT
iB_00300	plexA (plexin A)		WT	potential blisters
iB_00499	SRPK	line 1	vein defects	vein defects
		line 2	WT	blister
iB_00907	Eip71CD (Ecdysone-ind 28/29 kD)	luced protein	WT	curly
iB_00845	Lrt (Leucine-rich tendo	n-specific protein)	WT	WT
iB_04887	CG8078		WT	blister, low hatchrate
PS integrins	as positive controls (no	ot included in iBeet	tle screen)	
-	mew (multiple edemat	ous wings)	WT	blister
-	mys (myospheroid)		unable to hatch	blister, low hatchrate
-	if (inflated)		WT	WT

Supplementary Table 4 | Tribolium wing-blister genes tested in Drosophila

iB-number	name of <i>Drosophila</i> ortholog	iBeetle phenotype (Injection of L5/6)	Rescreen phenotype (Injection of L7)
iB_01796	papillote	larval lethal	larval lethal
iB_01467	kopupu/shortstop/kakapo	larval lethal	larval lethal
iB_03871	blistered	larval lethal	blistered wings
iB_05141	dumpy	larval lethal	larval lethal
iB_04642	piopio	larval lethal	larval lethal
iB_05522	xenicid/additional sex combs	blistered wings, deformed genital lobe	-
iB_01537	rhea/talin	larval lethal	blistered wings
iB_03691	delta	larval lethal	pupal lethality without blistering

Supplementary Table 5 | Drosophila wing blister phenotypes in Tribolium

Note: The database was screened for genes known to elicit a wing blister phenotype in Drosophila (based on Prout et al. 1997 and Walsh and Brown 1998^{5,6}). In seven out of eight cases, death prior to wing formation had prevented detection of the blister phenotype ("iBeetle phenotype"). We reasoned that injection at the last larval stage (L7) would reduce lethality and, hence, allow the detection of potential wing blister phenotypes. Indeed, two more genes showed the wing blister phenotype after later injection ("Rescreen phenotype"). In total, three out of eight genes (38%) would have been detected in a screen using systemic RNAi in the last larval stage.

Days after injection	Processing step	Phenotypic aspect screened
Workflow pupal i	njection screen	
d0	Injection (10 female pupae)	
d3	Inspection of adults	Metamorphosis control
d3-9	1 st egg collection	
d9	Inspection of adults	Lethality of injected animals
d9-11	2 nd egg collection	
d11	Assessment number of eggs in 2 nd collection	Egg productivity
d13	L1 cuticle preparation	
	(based on 1 st egg collection)	Ovary morphology*
	Dissection of ovaries*	
d14	Muscle preparation	L1 somatic muscles
	(based on 2 nd egg collection)	
d27-32		L1 cuticle morphology#

Supplementary Table 6 |Workflow of the pupal and larval injection screens

Workflow larval injection screen				
d0	Injection (10 female larvae)			
d11	Inspection of pupae	Lethality of injected animals		
		Metamorphosis control		
		Pupal morphology		
		Pupal muscles		
d16/18	Inspection of adults	Metamorphosis control		
		Adult morphology		
		Melanization		
d20-23	Egg collection			
d21-25	Assessment number of eggs	Egg productivity		
	Dissection ovaries*	Ovary morphology*		
d38-41	Analysis stink glands#	Altered or missing stink glands		

*If number of eggs was reduced in second egg collection #Exact timing not critical

Supplementary Table 7 | Sequences of the dsRNA fragments used for the analysis of selected genes

iB-number	iB-fragment	Non-overlapping fragment
iB_05549	AGCACCAGACCCAGAACAACAACAACAACAATACCAAATCGCAAAAC ATGGAGCGGGTCAAACGGCCCATGAACGCCTTCATGGTGTGGTCGCG GGGCCAGCGGCGGAAAATGGCCCAGGAAAACCCCAAAATGCACAATT CGGAAATCTCGAAGCGGCTGGGGGGCCGAGTGGAAGCTGTTGAGTGA GGCCGAGAAGCGGCCCTTCATCGACGAGGCCAAGCGGCTGAGGGCC GTGCACATGAAGGAACACCCGGATTACAAGTACCGGCCTAGGAGGAA GACCAAGACGCTCCTGAAGAAGGATAAATATCCCTTGGGAGCGTCCA GCTTGATCCCGACTAGTGACCGGCGCGGCG	ACCAAGACGCTCCTGAAGAAGGATAAATATCCCTTGGGAGCGTCCA GCTTGATCCCGACTAGTGACCCGACGCGGACGGCGCCTTCGGCGGT CCAACAGGTGTCCAGCCGGGACATGTACCAGATGCCCAATGGGTAC ATGCCCAACGGGTACATGATGCACGACCCCGGGGCCTACCAGCAGC AGTACACCGGGTCCAACTACGGCCGCTACGACATGTCGCAAATGCA GTACATGAACGGTTACGGTTACGGGGCCACCGTGCCCCAGAGTGCA GGCTCCCCCTACGGAATGCAACAGACGTCGTCGCATAGCCCCTCTG GGTCCAGTATAAAATCGGAGCCGGTTTCTCCGAGTTCGGGGCTGCA CACACCGACGCCGGGCGTCAAGCGGGAGTACGGCCAACAGCAGCA GCCCCAGGGGGACCTGCGACAGATGATCTCCATGTACCTGCCCAC
iB_05264	AAGGGCTACTGGGGTTTCACCCGGCGATTACAAAGATTTCAAACCAAA CAATCCCGATATTAAAGTCGAAGACGGCACTCTTACTATTAACAATATC CAGAAAACAAACGAGGGTTATTATTATGTGAGGCTGTCAATGGGATT GGATCAGGATTATCTGCAGTTATTCAAATCAGTGTTCAAGCTCCCCCAC AGTTTGATATTAAACTCAGGAACCAAACCTCCCGCCGTGGAAGACCCAG CCGTCCTCCAATGTGAGGCCAAAGGCGAAAAACCGATTGGTATTTTAT GGAATATCAACAATAAGCGTTTGGAACCAAAAGGCGACAATAGATAC ACGATCCGGGAGGAGATCCTCGCCAATGGTGTTCTTTCCGGCCTCAGT ATCAAACGCACAGAAGCGCTCGGACTCGCCTCTTTACTTGTGAGCTA CCAACGCCTTCGGCAGTGACGATACCAGCATTAACATGATTGTGACAA AAGTACCAGAGGTACCATACGGGCTGAA	AAGGGCTACTGGGGTTTCACCCGGCGATTACAAAGATTTCAAACCA AACAATCCCGATATTAAAGTCGAAGACGGCACTCTTACTATTAACAA TATCCAGAAAACAAACGAGGGTTATTATTTATGTGAGGCTGTCAAT GGGATTGGATCAGGATTATCTGCAGTTATTCAAATCAGTGTTCAAG CTCCCCCACAGTTTGATATTAAACTCAGGAACCAAACCTCCCGCCGT GGAGACCCTGCCGTCCTCCAATGTGAGGCCAAAGGCGAAAAACCG ATTGGTATTTTATGGAATATCAACAATAAGCGTTTGGAACCAAAAG GCGACAATAGATACACGATCCGGGAGGAGAATCCTCGCCAATGGTG TTCTTTCCGGCCTCAGTATCAAACGCACAGAACGCTCCGACTCGCT CTCTTTACTTGTGTAGCTACCAACGCCTTCGGCAGTGACGATACCAG CATTAACATGATTGTGCAAGAAGTACCAGAGGTACCATACGGGCTG AA
iB_04564	CGTCTACAGCATCGACCAGATTTTGGGAGTTAACAGCTCGTCCACCTCT GCGAAGAGCATCGAAGGCGAGTCGGATTCCAAAGTCGATTCGGTCAG TGATAGCGAAATGGTTGAGGAAAGCATCGAAGATTTGAACGACACCA GACCGAGAAAAATCCGCAGATCCCGAACGACTTTCACCACCTATCAGC TGCACCAACTGGAGCGAGCTTTCGAAAAAAACCCAATACCCCGACGTTT TCACAAGAGAGGAATTGGCTATGCGGCTTGATTTGAGCGAAGCGCGA GTCCAGGTATGGTTCCAAAAACCGTCGCGCCAAGTGGAGAAAGCGTGA AAAGG	CGCTTTCCTGTCGCAATACGTGCTCGCAGGCGGCGTCCCCCAACTGA ATCTCCTAAATAGTGGGATTCCGGACGAACGGTCCCCGAGTACGAG TCCGGAAACTCCCAGTCGTCGCAGTTGTCGCCCTCAGCGCTGGAA GCTTTGAGGTTACGGACACAAGAAATTTTAGTGCCCGAGTTCTCGCC GCAGAAACTGCACGCGAAGTCGTAAATAGATAATATCTAGTGGGACA TGTAGTTGTATTGTTAGGGATGTAAGAGAGATTATTGGCGCTTGATAT GTGGGGGAAATAGACTGAATAGCTGTACCAAGTTTTCGATTTAGTT GTTATTTTTTTCATTCTATGATAGGGAGAATTATTTTGTATTAA ATTTATTTACAACACTAGTTGCACTAGTTAGGTTAG
iB_00289	TCAGAGTGCGAAAATGCTGATGCCCAGTGGACTTCCGGCCAACGAGG CCGATGGTCTTGGACTCGGAGGCCTGGGCACGAACACAAACACCAAC AACGGAGTGCAGCATAAGGACACCACATGGACCAAACTGTTCGTGGG TGGACTGCCGTATCACACCACGGATCAGTCGCTAAGAGAACATTTTTC GGTTTATGGGGAAATCGAAGAAGCGGTGGTCATCACTGATAGACAAA CGGGGAAAAGTCGAGGATATGGATTCGTAATTATGGGAGATAAGTCT TCATCAGATAGAGCATGTAAAGACGCTAACCCCATTATTGACGGGCGA AAAGCGAATGTGAATTTAGCGATTCTGGGAGCGAAACCGAGAGGAAA TGCGCAAACGGGTTTCCCGTTTCAAGGAATCCGGGCTGGTTATCCTGC ACTTCTTCCGGGCCAGTACGGAATGCCTCCTGGTTATGTGTACCAATCT CCATACCTAACTGCTGCTGCTCCTGGAAGTCT	CGCTAACCCCATTATTGACGGGCGAAAAGCGAATGTGAATTTAGCG ATTCTGGGAGCGAAACCGAGAGGAAATGCGCAAACGGGTTTCCCG TTTCAAGGAATCCGGGCTGGTTATCCTGCACTTCTTCCGGGCCAGTA CGGAATGCCTCCTGGTTATGTGTACCAATCTCCATACCTAACTGCTG CTGCTCCTGGAAGTCTT
iB_00555	GCTGATTGC ATTCTCCAA CAAGCGGTA GTCGGTGCC GGGGCCAAT CAGTTGGTT TTGAGTTAC TTGAGACAC TCCTTGAGC GCCCAGTTA GTCTCACAT GCGGCTGTG CTTCAACGC CTCAGCAAA TACAACCAA CTCAGTAAA GTCCACTGC GTGTTTAGC CTACTTGAG TTCCTCGAA GGCATGCTT CCGGGTGTC ACTTGTTGT GGCAAACCG GAAGAAACC GTCCTGGCC ACTGCAATT TTATCAATT GCTTGTTGG CTCCTGACT ATTTTATTG CAATGCAAA GGCACCGCT CATTTGACT CAGAAAGCC TCGTTCTTG CTCACCACG CTCATGAAT GACGATTTT TACGTCTCC ATGATGTGT CTAGCGAGG TACAGCGAT CCTGAATTG TTTACTGAG ACCAACCGC AAATGTATT GAGTTGAGG GCGTCGTTG TCCGATTCT GACGAGTTA TCTAAATGC GTTAAAAAA CTGGAAAAC ATCGATGTT AACATTTTG AGCCTCCCG ATCAATAG	TGCAGAGAGGTGTGGATCTGGCTTTGGCGGCGTTCCATGTCGATAT CAGGGCCTGCACTTTGGAGCTGCTCTCGCATGTTTTGCCCCAAATGT TGTATAACGATCTCCAAGCGGACTCGCTCATGGAGCCGCATTTGATC GCATTGGCTTACTTGACCAGTTATTGCGTGTACACGGCGTTTGATGC GTTTTCGGAAGAACCGGAAGAACCGATGGCTAAAGTTGCGCGGGCT AATGAGGGTGAGGATGGCACGCTGATTGAGCAACTAATTTCGACTC TCAGACAACTGATGACGACTGCTTTGAGGATGGGATACAAGAGGGTTA CATCACTCAACAGACTTATTTCGCGTTTTATTTGATTAAAAGTCTGGT TGAGGTGAAAGTGAGCACGGCGAGTGCTCTCTTGGCTGCGATTCCG CCGGCTCTTGTGACAGACTTGCTTCGGACTCTGCCTGAACTTTTTAC TTACCCGATTTTGGCATCGCACGATGGTTTAATACTCACGGTC GGAATAACATGGCAAAGGACTTGTTGATATTGCGAAATTACCACTT GAGGAACGTTTCG
iB_04537	TCATGCAGAAACGGGGTACTCCGATCAATCGACTGCCCATCATGGCCA AATCCGTTCTCGATTTATACGAATTGTACAATTTAGTCATCGCGAGGG GTGGACTTGTTGATGTCATCAATAAGAAACTCTGGCAGGAAATTATCA AAGGGCTGCATCTACCGTCGTCGATAACGTCGGCAGCTTTCACACTCA GGACGCAATACATGAAATACCTGTACCCTTACGAATGCGAGAAACGCC GCCTCAGCACACCGGCCGAGCTCCAGGCGGCCATCGACGGCAACCGT	CGCATGATGGAATACGTCAAGCTCCTCAACAAGGAAATCCGCAGCT CGGCGGCTACTCCGCCACGACAAGGGGACGTGTCGCCCCCTAACGC CACCTCGCCACTCAACCAGCTGGAGCTGTCGCGGGATAACGCTCTGG AATATGTACAATAATAATCAACCCCCCGTCGAGCCGCAAAAGGAAG CGTTGAATCTCTCCGACCCGAC

	CGCGAAGGCCGCCGCAGCAGCTACGGCCAGTACGACTCCATGCAGCG CTCCCCCAACCCTTCGCAGATGTCTCCTTTGTCCCTCGTC	GATGATGAACAGAAGATCTCGCCC
iB_02517	TCACTCAAAGCCACAGATGCGGTTTTAGTAAAATTGGGGCCCAAGGG CGAAATTTCAAATGAGACACTTGTTCACGTCGATTTGGTGCAACGTGG GGATGTTTTAAAAGTGGTACCGGGGGCCAAAGTACCAGTCGACGGCA AAGTTTTACAGGGCCAATCAATGTGCGACGAGAGCCTCATAACTGGG GAAAGCATGCCGGTACCGAAGAAAATCACAAGTAGTGGTGGATTGGTGG ATCAATCAATCAGCACGGCCTACTTATAATCGAAGCCACACATACAGG AGAGGCAACAACCCTATCACAAATTGTCAAATTGGTCGAAGAAGCACA AACGTCAAAAGCACCCCATCCAACAATTGGCCGATAAAATCGCTGGTTA TTTCGTCCCAACTGTCGTCTCCTGTCACTTTTGACACTTATTGTCGGT CTATTATCGGCTCAATCGATATAAACGCACTTCCGGTGAC	CCCCACAGGCGACTACACCTCCGACCAACCAACAATAATCACAGTG TCAGAAGATGACACGATTAAAATCACCGTCTTGGGCATGACGTGCC AAAGCTGTGTCAAAAACATCGAAGAGACCCTGAGTCGTAAACCCGG CATTTACAACATCAAAGTCAGCCTTCAGGAAAAAGCCGCTCTAGTCC ATTATGACACACGCCAACTGACA
iB_04887	GGTGGCAAAGACTCCACAGTTCTGGCGTACGTCATGAAGCTACTTAAC GAAAAGTACGATTATAAGCTGGACTTAGTGCTTTTGTCCATTGATGAG GGTATTACAGGGTACAGGGACGATAGTTTAGATACTGTGAAACAAAA TCGGGACGATTACGGAATGCCTTTGAAAATAATGTCTTATAAGGATTT GTACGGTTGGACAATGGACGAAATTGTGGCTGAGATTGGGAGGAAA AATAACTGTACTTTTGTGGCGTTTTCAGACGCCAGGCTTTAGACAGA GGGGCGGCTCTTCTAAATGTTGATTATTTAGCAACTGGACATAACGCT GATGATATTGCAGAGACTGTCTTGATGAATATTTTAAGGGGCGATTTG GCACGTCTCAGCCGTTGTACGTCCATTATCACGGACAAGGGGGGCGATTTG GCACGTCTCAGCCGTTGTACGTCCATTATCACGGACAAGGAGAAAGCGCC ATTCCACGCGTAAAACCCCTCAAATACACCTACGAGAAAGAA	TCTCCACTGAGTGTGTCTTCGCCCCCAATGCGTACAGAGGCCATGCC CGGGTGTTGCTCAAAGATTTGGAAAAAATAGACCCTGCTGTTATAA TGAATATTATCCAGTCGGGGGAATCCCTCAAAATCAACGAAAATGC CAATATGCCAACTTTGCAGAAATGCACAAAGGTGCGGATATGTGTCG TCGCAGGACGTGTGCAAAGCTTGCGTCCTCTTGGAGGGACTCAATA AAGGATTACCGAAACTAGGAATAGGAAGTCGAGTAAAGTGAAAC GACATTTACAAGAAAACAGTCCGTGTTGTAAAACGC
iB_05264	AAGGGCTACTGGGGTTTCACCCGGCGATTACAAAGATTTCAAACCAAA CAATCCCGATATTAAAGTCGAAGACGGCACTCTTACTATTAACAATATC CAGAAAACAAACGAGGGTTATTATTTATGTGAGGCTGTCAATGGGATT GGATCAGGATTATCTGCAGTTATTCAAATCAGTGTTCAAGCTCCCCCAC AGTTTGATATTAAACTCAGGAACCAAACCTCCCGCCGTGGAGACCCTG CCGTCCTCCAATGTGAGGCCAAAGGCGAAAAACCGATTGGTATTTTAT GGAATATCAACAATAAGCGTTTGGAACCAAAAGGCGACAATAGATAC ACGATCCGGGAGGAGATCCTCGCCAATGGTGTTCTTTCCGGCCTCAGT ATCAAACGCACAGAACGCTCCGACTCCGCCTCTTTACTTGTGTAGCTA CCAACGCCTTCGGCAGTGACGATACCAGCATTAACATGATTGTGCAAG AAGTACCAGAGGTACCATACGGGCTGAA	GTTTTGGGTTACCGCAGCTACCACTATTGGAGAAGGGCAACCGTCG AAGAAAGTTACAGTGTCTCCAAGCGCGAGCGTTCCAGCCAAAATCG CCTCGTTTGACGATACCTTCACCACGACGTACAAGGAAGACGTGAC TCTCCCTTGCCTCGCCGTTGGGTTGCCACCACGGTCATCACATGGA AAATCAAGGGGGTTCAGTTCA
iB_04564	CGTCTACAGCATCGACCAGATTTTGGGAGTTAACAGCTCGTCCACCTCT GCGAAGAGCATCGAAGGCGAGTCGGATTCCAAAGTCGATTCGGTCAG TGATAGCGAAATGGTTGAGGAAAGCATCGAAGATTTGAACGACACCA GACCGAGAAAAATCCGCAGATCCCGAACGACTTTCACCACCTATCAGC TGCACCAACTGGAGCGAGCTTTCGAAAAAACCCAATACCCCGACGTTT TCACAAGAGAGGAATTGGCTATGCGGCTTGATTTGAGCGAAGCGCGA GTCCAGGTATGGTTCCAAAACCGTCGCGCCAAGTGGAGAAAGCGTGA AAAGG	CGCTTTCCTGTCGCAATACGTGCTCGCAGGCGGCGTCCCCCAACTGA ATCTCCTAAATAGTGGGATTCCGGACGAACGGTCCCGGAGTACGAG TCCGGAAACTCCCAGTCGTCGCAGTTGTCGCCCTCAGCGCTGGAA GCTTTGAGGTTACGGACACAAGAAATTTTAGTGCCGAGTTCTTCGCC GCAGAAACTGCACGCGAAGTCGTAAATAGATAATATCTAGTGGACA TGTAGTTGTATTGTTAGGGATGTAGGAGAATTATTGGCGCTTGATAT GTGGGGGAAATAGACTGAATAGCTGTACCAAGTTTTCGATTTAGT GTTATTTTTTCATTCTTATGATAGGGAGAATTATTTGTGTATAA ATTTATTTACAACACTGATAGCTGTACGAGAATTATTTGTATTAA ATTTATTTACAACACTAGTTGCCTAGTTAGCGCCAATTTTGT AAATAATTTTGTACATAAGTGCGTATTTATTTATTGTAGAAAAAA ATCAAGAGGTTTGTTAAAAGTGCGTATTTATTATTGTAGAAAAAA ATCAAGAGGTTTGTTTAAAACATAATAGCATTACAGATAACTTATTTT GTGGGGGAAATTAACAATAAGTTGTACCTAATTACGATCAGATC GATATTAAACGAAACAATAATTAAAACGGCAGGTGTTTTACTTGTCT TGGT
iB_00289	TCAGAGTGCGAAAATGCTGATGCCCAGTGGACTTCCGGCCAACGAGG CCGATGGTCTTGGACTCGGAGGCCTGGGCACGAACACAAACACCAAC AACGGAGTGCAGCATAAGGACACCACATGGACCAAACTGTTCGTGGG TGGACTGCCGTATCACACCACGGATCAGTCGCTAAGAGAACATTTTTC GGTTTATGGGGAAATCGAAGAAGCGGTGGTCATCACTGATAGACAAA CGGGGAAAAGTCGAGGATATGGATTCGTAATTATGGGAGATAAGTCT TCATCAGATAGAGCATGTAAAGACGCTAACCCCATTATTGACGGGCGA AAAGCGAATGTGAATTTAGCGATTCTGGGAGCGAAACCGAGGGAAA TGCGCAAACGGGTTTCCGTTCAAGGAATCCGGGCTGGTTATCCTGC ACTTCTTCCGGGCCAGTACGGAATGCCTCCTGGTTATGTGTACCAATCT CCATACCTAACTGCTGCTGCTCCTGGAAGTCT	GGAGCACCTTCACCAAAGAGTACATAAACAACGTGGTTAACCCCCT CGGAAACCGGCCCACCAGACCAACGGAAAACCACACTACCACCTCC TCGGAGCGTTCCGCAGCTTCTGATCCTTCTGAAGATCAGAGTGCGA AAATGCTGATGCCAAGTGGACTTCCGGCCAACGAGGCCGATGGTCT TGGACTCGGAGGCCTGGGCACGAACACAAACACCAACAACGGAGT GCAGCATAAGGACACCACATGGACCAAACTGTTCGTGGGTGG
iB_04887	GGTGGCAAAGACTCCACAGTTCTGGCGTACGTCATGAAGCTACTTAAC GAAAAGTACGATTATAAGCTGGACTTAGTGCTTTTGTCCATTGATGAG GGTATTACAGGGTACAGGGACGATAGTTTAGATACTGTGAAACAAAA TCGGGACGATTACGGAAATGCCTTTGAAAATAATGTCTTATAAGGATTT GTACGGTTGGACAATGGACGAAATTGTGGCTGAGATTGGGAGGAAA AATAACTGTACTTTTTGTGGCGTTTTCAGACGCCAGGCTTTAGACAGA GGGGCGGCTCTTCTAAATGTTGATTATTTAGCAACTGGACATAACGCT GATGATATTGCAGAGACTGTCTTGATGAATATTTTAAGGGGCGATTTG GCACGTCTCAGCCGTTGTACGTCCATTATCACGGACAGTGGTGACGGC ATTCCACGCGTAAAACCCTCAAATACACCTACGAGAAAGAA	TCTCCACTGAGTGTGTCTTCGCCCCCAATGCGTACAGAGGCCATGCC CGGGTGTTGCTCAAAGATTTGGAAAAAATAGACCCTGCTGTTATAA TGAATATTATCCAGTCGGGGGGAATCCCTCAAAATCAACGAAAATGC CAATATGCCAACTTTGCAGAAATGCACAAAGGTGCGGATATGTGTCG TCGCAGGACGTGTGCAAAGCTTGCGTCCTCTTGGAGGGACTCAATA AAGGATTACCGAAACTAGGAATAGGGAAGTCGAGTAAAGTGAAAC GACATTTACAAGAAAACAGTCCGTGTTGTAAAACGC

Supplementary Table 8 | Comparison of number of lethal genes

Drosophila			
	Absolute		
	numbers	% related to	Reference
			FlyBase; Release
Protein coding genes	13,918	all genes:	6.02
			Nüsslein-Volhard
Lethal loci	5,000	35.9%	1994
			Nüsslein-Volhard
Sterile loci	1,000	7.2%	1994
Essential genes			Nüsslein-Volhard
(sum lethal plus sterile)	6,000	43.1%	1994
		lethal genes:	
			Mullins et al.
Embryonic lethal genes	1,000	20.0%	1994
		embryonic lethal	
		genes:	
Embryonic lethal			
without cuticle			Mullins et al.
phenotype		85.0%	1994
with phenotype		15.0%	

Tribolium				
	Numbers found in the screen	Numbers corrected for false positive rate of 26%	% of corrected numbers related to	Reference
All analyzed genes	3,400		all analyzed genes	
Lethal genes	1,686	1,248	36.7%	Fig. 2b, heading
Non-lethal genes with phenotype	229	169	5%	Fig. 2a
			all lethal genes	
Embryonic lethal genes	969	717	57.5%	
			embryonic lethal genes	
No cuticle defect	186	138	19.2%	
With cuticle defect & empty egg	783	579	80.8%	

Supplementary Note 1

Detailed information on positive controls

In order to assess reliability and sensitivity of our screen, and to test the alertness of the screeners, we included 41 different positive controls. The screeners did not know which gene was used as positive control in a given repetition, whether this control had a phenotype in the pupal or the larval screen, and due to the high number of different controls, a screener would encounter most controls only once during the screen. However, for technical reasons in the production pipeline, it was not possible to hide the position of positive controls within a repetition. Hence, with some effort, a screener could identify the position of the positive control and scrutinize it more carefully (see details below). As an additional way assessing reliability and sensitivity of the screen, we searched for datasets that by chance had targeted genes with known phenotypes. The identities of these genes were neither known to the screeners nor the PIs such that these datasets represent double blind positive controls (see High Below). We observed similar recognition rates as in the added positive controls (see Fig. 1a and b).

It turned out that in our procedure, the phenotypes of some positive controls were reproducibly different from the published phenotypes and novel phenotypic aspects were detected (e.g. due to different dsRNA concentration or different injection stage and timing). Therefore, the entire iBeetle procedure was performed with all positive controls in order to define the phenotypic aspects that had to be recognized in our screen.

In 370 cases (93.2%, n=397) the phenotype was entirely (83.3%) or partially (9.8%) recognized (dark and light green; Supplementary Figure 1). Controls were regarded as "partially recognized" when the majority (but not all) of the aspects of a phenotype were correctly annotated.

Most of the 39 cases that were only partially recognized were derived from five positive control genes. These genes had originally been chosen for controlling the pupal injection screen but turned out to have phenotypes in the larval screen as well (*Tc-vestigial, Tc-hedgehog, Tc-wnt-less/evi* and *Tc-TGF-alpha*; see controls marked with a diamond in Supplementary Figure 1). We scored them as "partially recognized" when at least three out of four aspects were recognized. Four additional cases of partially recognized controls stem from *Tc-metoprene tolerant (Tc-met)*, where the lethality of the injected animals was properly annotated but the necrotic head was missed.

With respect to "technical lethality", in 11 cases (2.8%) the premature death of the injected animals prevented detection of the phenotype (Supplementary Figure 1, light blue). 16 cases were true false negatives (4%; Supplementary Figure 1, dark blue). 62.5% of those cases derived from the analysis of only three positive control genes that elicited subtle morphological defects in the adults, like slightly deformed cuticular structures at the ventral midline of adult beetles after larval *Tc-orthodenticle* RNAi (missed five times), or minor head or leg defects after pupal injections of *Tc-methoprene-tolerant* or *Tc-aristaless* (together five cases).

We analyzed 65 datasets that by chance had targeted genes with previously described phenotypes (

Supplementary Table 2). Hence, this set represents completely blind positive controls. 51 of those (78.5%) were recognized with the previously published phenotype.

In eleven cases (16.9%), we found a phenotype which was reproducibly different from the published one (i.e. reproduced in an independent repetition of the experiment following our screening procedure). Hence, the phenotype differed due to our specific experimental conditions, not due to experimental variation. The relevant parameters responsible for such differing phenotypes could be the different stage and timing of injection, the genetic background of the injected animals and the different dsRNA fragment used for the experiments.

We observed several cases where the RNAi phenotypes were reproducibly different from published data. One case is likely due to strain specific differences: The larval injection of two different fragments against *Tc-empty spiracles* (iB 05098 and a positive control fragment) reproducibly elicited different phenotypes in two different strains. In case of *Tc-odd-skipped* (iB 04013) the difference could be either strain specific or due to different dsRNA concentrations. Larval injection of the iB-fragment in L6 or L7 larvae did not lead to any phenotype in the screen, although defects of mouthparts, antennae and legs had been described previously ^{7–9}. However, in our hands, neither the iB-fragment nor a non-overlapping fragment, either in the screening strain or in another genetic background, reproduced the published phenotype. In three cases, different dsRNA concentrations are likely to be responsible. For both, iB_03691 (Tc-delta) and iB_04526 (Tchomothorax), lethality was observed in the screen. This was reproduced by injection into later stages and by using a non-overlapping fragment in another genetic background. In the publications, the authors mention using diluted dsRNA solutions in order to see the phenotype. Hence, it is likely that the higher concentrations of dsRNA used in the iBeetle screen caused the stronger phenotype. Pupal dsRNA injections targeting Tc-decapentaplegic (Tc-dpp) always led to lethality or cachexia (starved animals) in our screen and in follow-up experiments with two different fragments in two different strains. This is in contrast to the published results ^{10,11} but is in line with the recent finding that *Tc-dpp* is also involved in lipid homeostasis 12 .

The timing of injection was critical for iB_01701, which targets *Tc-laccase-2*. The expected phenotype was annotated neither in the pupal nor the larval injection screen. Injection into L6 larvae reproducibly led to early lethality instead of the published tanning defect (i.e. pupae with soft and non-pigmented cuticle) while in the pupal screen, no effect was seen. An independent injection of the same fragment into older (L7) larvae did reproduce the published phenotype.

In four cases, either isoform-specific knock down, or off target effects likely led to different phenotypes. Tc-knirps, Tc-frizzled-1 and Tc-lim-1 were annotated with the "empty egg phenotype" instead of the published morphological defects ^{13–15}. These results were reproduced using the iBeetle fragment but non-overlapping fragments produced the published phenotype (Tc-knirps and Tc-frizzled-1) or wildtype larvae (Tc-lim-1). Pupal injection of an iB-fragment against Tc-broadcomplex (Tc-BRC, iB 03960) did not reveal any defect, while injection of another fragment of Tc-BRC (used as a positive control) consistently led to various strong defects during embryogenesis. Our follow-up analysis indicates that off target effects are the most likely explanation: In the case of Tc-BRC, several splice variants with distinct functions are known for Drosophila and Tribolium and indeed, the two dsRNA fragments target different isoforms: The positive control fragment (335 bp) lies in the common fourth exon of the Tc-BRC isoforms as published by Konopova and Jindra (2008)¹⁶ and leads to a range of embryonic developmental defects. iB 03960 (495 bp) does not overlap with the positive control fragment, but spans the 3' end of common exon 4, common exon 5 (adding up to 321 bp) and part of the alternatively spliced exon 6 of splice isoform Z4 (174 bp). iB 03960 does not lead to any embryonic defects. Due to the fact that both fragments are predicted to target all isoforms, an off target effect of the positive control fragment appears likely. Previous studies using an insertion mutant have shown no or no severe degree of embryonic

lethality. Due to the location of the insertion in the region of alternatively spliced exons it remains unclear what isoforms are actually affected in this mutant ¹⁶.

For *Tc-fz1* and *Tc-kni* we checked the most recent annotations of the *Tribolium* and *Drosophila* genomes and the *Tribolium* literature for indication of alternative transcripts. There are no published splice isoforms for *Tc-fz1* and off target analysis did not reveal any putative off target hit using the e-RNAi resource ¹⁷. For *Tc-kni* there are two small 5' introns present in the automatically annotated gene model (TC003413), but not in the published mRNA sequences, which are based on RACE and cDNA sequences¹⁴ (NM_001128495). Anyway, the iBeetle fragment targeting *Tc-knirps* is downstream of this questionable region. Off-target analysis revealed several hits in other genes two of which showed a phenotype in the screen.

One out of 65 phenotypes was overlooked (1.5%) and two were missed for technical reasons (3%). It is a bit surprising that the portion of missed phenotypes of this completely blind set of controls is even lower than the one with the set of not completely blind positive controls. The reason could be that we deliberately included subtle (partly unpublished) aspects of phenotypes as positive controls while the set of published phenotypes may be biased towards strong phenotypes.

Several RNAi phenotypes were missed. Subtle tarsal and antennal defects after *Tc-bric-a-brac* (iB_03591) larval RNAi were not detected in the screen but we were able to elicit this phenotype by repeating the experiment (with the iBeetle fragment). In two cases, technical lethality (e.g. due to injection problems) led to precocious death of the injected animals, which prohibited detection of the later phenotype (*Tc-pumilio* (iB_03898) and *Tc-methoprene-tolerant* (iB_03648)).

Negative controls

The last injection of each injection day was either a positive control or a buffer injection (blind to the screener). We used these buffer injections to assess the rate of false negative annotations: Four out of 155 buffer controls (2.6%) had false negative annotations while in another three cases technical issues led to a false positive annotation of lethality (1.9%) (see Supplementary Figure 2 for distribution of technical lethality in buffer and dsRNA injections).

Supplementary References

- 1. Li, J. *et al.* Odoriferous Defensive stink gland transcriptome to identify novel genes necessary for quinone synthesis in the red flour beetle, Tribolium castaneum. *PLoS Genet.* **9**, e1003596 (2013).
- 2. Sokoloff, A., Slatis, H. M. & Stanley, J. The black Mutation in Tribolium castaneum. *J. Hered.* **52**, 131–135 (1960).
- 3. Sokoloff, A. The biology of Tribolium: with special emphasis on genetic aspects. (Clarendon Press, 1974).
- 4. Pavlopoulos, A., Berghammer, A. J., Averof, M. & Klingler, M. Efficient transformation of the beetle Tribolium castaneum using the Minos transposable element: quantitative and qualitative analysis of genomic integration events. *Genetics* **167**, 737–46 (2004).
- 5. Prout, M., Damania, Z., Soong, J., Fristrom, D. & Fristrom, J. W. Autosomal mutations affecting adhesion between wing surfaces in Drosophila melanogaster. *Genetics* **146**, 275–285 (1997).
- 6. Walsh, E. P. & Brown, N. H. A screen to identify Drosophila genes required for integrin-mediated adhesion. *Genetics* **150**, 791–805 (1998).
- 7. Angelini, D. R., Smith, F. W. & Jockusch, E. L. Extent With Modification: Leg Patterning in the Beetle Tribolium castaneum and the Evolution of Serial Homologs. *G3 Bethesda* **2**, 235–48 (2012).
- 8. Angelini, D. R., Smith, F. W., Aspiras, A. C., Kikuchi, M. & Jockusch, E. L. Patterning of the adult mandibulate mouthparts in the red flour beetle, Tribolium castaneum. *Genetics* **190**, 639–654 (2012).
- 9. Angelini, D. R., Kikuchi, M. & Jockusch, E. L. Genetic patterning in the adult capitate antenna of the beetle Tribolium castaneum. *Dev. Biol.* **327**, 240–251 (2009).
- 10. Ober, K. A. & Jockusch, E. L. The roles of wingless and decapentaplegic in axis and appendage development in the red flour beetle, Tribolium castaneum. *Dev Biol* **294**, 391–405 (2006).
- 11. Van der Zee, M., Stockhammer, O., von Levetzow, C., Nunes da Fonseca, R. & Roth, S. Sog/Chordin is required for ventral-to-dorsal Dpp/BMP transport and head formation in a short germ insect. *Proc Natl Acad Sci U A* **103**, 16307–12 (2006).
- 12. Namigai, E. K. & Suzuki, Y. Functional conservation and divergence of BMP ligands in limb development and lipid homeostasis of holometabolous insects. *Evol Dev* **14**, 296–310 (2012).
- 13. Beermann, A., Pruhs, R., Lutz, R. & Schroder, R. A context-dependent combination of Wnt receptors controls axis elongation and leg development in a short germ insect. *Development* **138**, 2793–805 (2011).
- 14. Cerny, A. C., Grossmann, D., Bucher, G. & Klingler, M. The Tribolium ortholog of knirps and knirps-related is crucial for head segmentation but plays a minor role during abdominal patterning. *Dev Biol* **321**, 284–94 (2008).
- 15. Posnien, N., Koniszewski, N. D. B., Hein, H. J. & Bucher, G. Candidate Gene Screen in the Red Flour Beetle Tribolium Reveals Six3 as Ancient Regulator of Anterior Median Head and Central Complex Development. *PLoS Genet.* **7**, e1002418 (2011).
- 16. Konopova, B. & Jindra, M. Broad-Complex acts downstream of Met in juvenile hormone signaling to coordinate primitive holometabolan metamorphosis. *Development* **135**, 559–68 (2008).
- 17. Horn, T. & Boutros, M. E-RNAi: a web application for the multi-species design of RNAi reagents--2010 update. *Nucleic Acids Res* **38**, W332–9 (2010).