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Supplementary Figure 1: Violin plots showing the effect of g, the main parameter determining
the scaling between the body mass and equilibrium abundance, on: i) σx, the standard deviation
of the negative effects (effect of consumer on resource); ii) µy, the mean of the positive effects
(resource on consumer); iii) σy, the standard deviation of the positive effects; iv) ρxy, the correlation
between positive and negative effects. The coefficients are rescaled to obtain µx = −1 (for ease of
comparison).
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obtained as specified in the text when g = −0.55. The two marginal distributions have similar
shapes, with high skeweness and few large values.
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Supplementary Figure 5: Spectrum of A, a matrix constructed such that the diagonal is 0, all
lower-triangular coefficients are equal to x and all upper-triangular coefficients are −1. (a) The
case when S = 11 and x = 0.01. (b) S = 11 and x = 25. The dots represent the solution obtained
by numerical diagonalization; the red circles the prediction following Eq. 27, and the solid line the
predicted curve where the eigenvalues fall.
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Supplementary Figure 6: (a) Spectrum of M, a matrix of size 250 constructed such that the
diagonal is 0, while the off-diagonal pairs (Mi j,M ji) j>i are set to (0, 0) with probability (1 − C)
and to (−1, 0.05) with probability C = 0.5. (b) Spectrum of M, a matrix of size 250 constructed
such that the diagonal is 0, the upper-triangular coefficients are independently sampled from a
Normal distribution with mean µU = −1 and variance σU

2 = 16, while the lower-triangular are
sampled independently from a Normal distribution with mean µL = 7 and variance σL

2 = 16. The
red circles represent the predictions for the eigenvalues of a deterministic matrix A with µU above
the diagonal and µL below the diagonal, obtained using Eq. 27. While the eigenvalues with large
modulus are accurately predicted by the formula, those close to zero are not.

6



Normal Four − Corner

−80

−40

0

40

80

−20

−10

0

10

20

−50

0

50

σ
U

=
1  σ

L =
5  ρ

U
L =

−
0.25

σ
U

=
0.5  σ

L =
2.5  ρ

U
L =

0.5
σ

U
=

3  σ
L =

3  ρ
U

L =
−

0.25

−60 −30 0 30 60−60 −30 0 30 60
Real

Im
ag

in
ar

y

30 60 90 120
count

Supplementary Figure 7: Illustration of assumption a). For any choice of parameters σU, σL,
ρUL, the eigenvalues of B are approximately uniformly distributed in an ellipse. We plot the
number of the eigenvalues in each hexagon obtained by pooling the eigenvalues of 25 matrices of
size 500 × 500, built using the parameters specified for each panel and two different distributions.
Irrespective of the choice of parameters, we observe approximately uniform density in an ellipse, as
we would expect for the case of equal variances (bottom panels).
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approximately constant. Because the actual value of the semi-axes is unknown, we plot the sum
of the maximum real and maximum imaginary parts of the eigenvalues of a single matrix B, for
each choice of ρUL. The coefficients of B (of size S = 2500) are sampled from a bivariate Normal
distribution with σU = 1, σL = 5, and correlation ρUL (x-axis). The blue line is the best-fitting
line, and the dashed black line marks the mean of the observed values.
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Supplementary Figure 9: Illustration of assumption c). For any choice of parameters σU and σL,
r2

B,h (red) and r2
B,v (blue) are well described by a second-degree polynomial (lines) in ρUL (x-axis).

Moreover, rB,h when the correlation is ρUL is equal to rB,v when the correlation −ρUL, producing a
symmetry about 0. The matrices are the same as in Figure 8.
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Supplementary Figure 10: Spectrum of a single 1500 × 1500 matrix B, where the coefficients
(Bi j,B ji) are sampled in pairs from a bivariate Normal distribution with σU = 1, σL = 1/4 and
correlation ρUL = −1/2. The distribution of the coefficients is drawn in the top-right panel. The
semi-axes of the light blue ellipse are calculated using Eq. 44.
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Supplementary Figure 11: As Figure 10, but with σL = 1/2 and correlation ρUL = 1/2.
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Supplementary Figure 12: As in Figure 10, but with non-Normal marginals. We sampled each
Bi j, with i < j from a Uniform distributionU[0, 5], while the corresponding B ji was obtained mul-
tiplying Bi j for a randomly sampled number from the negative standard Half-Normal distribution.
The means of the pairs were made zero by subtracting the corresponding means from the upper-
and lower-triangular parts of the matrix.
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Supplementary Figure 13: As in Figure 12, but with a more complicated distribution for the
coefficients.
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σx = σy ≈ 0.01 σx = σy ≈ 0.03 σx = σy ≈ 0.05
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Supplementary Figure 14: Eigenvalues of the matrices M (black), A (red), and B (blue, shifted
to the right by Re

(
λA,1

)
) built with S = 1000, C = 1, and coefficients sampled from a bivariate

Normal with µx = −1, µy = 1/2, and ρxy = −2/3. (a) When σx = σy ≈ 0.01, the eigenvalues
of M are not well described using our approximation strategy, as the value Re

(
λA,1

)
+ Re

(
λB,1

)
grossly overestimates Re

(
λM,1

)
. (b) Increasing the variances such that σx = σy ≈ 0.025 makes the

approximation more accurate. (c) For σx = σy ≈ 0.05 the discrepancy is further reduced. In all the
panels, only the bulk of the eigenvalues are plotted, as the approximation is always accurate for the
eigenvalues with large modulus.
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σx = σy ≈ 0.01 σx = σy ≈ 0.03 σx = σy ≈ 0.05
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Supplementary Figure 15: As Figure 14, but with connectance C = 0.9. In this case, a
smaller connectance results in larger variances (compared to the C = 1 case) of the upper- and
lower-triangular part of the matrix M, leading to very accurate predictions.
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Supplementary Figure 16: As in Figure 2 of the main text, but using Z55. For this parameteri-
zation, the results obtained using the approximation of Tang et al.1 and the new approximation are
very similar, as both −µU ≈ µL, and σU ≈ σL.
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Supplementary Figure 17: As in Figure 2 of the main text, but using Z95.
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Supplementary Figure 18: As in Figure 16, but parameterizing the matrices using a bivariate
Normal distribution with the same mean and covariance matrix of Z55.
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Supplementary Figure 19: As in Figure 2 of the main text, but parameterizing the matrices
using a bivariate Normal distribution with the same mean and covariance matrix of Z75.
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Supplementary Figure 20: As in Figure 17, but parameterizing the matrices using a bivariate
Normal distribution with the same mean and covariance matrix of Z95.
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Supplementary Figure 21: As in Figure 16, but parameterizing the matrices using the Four-
corner distribution with the same mean and covariance matrix of Z55.

21



Cascade Niche Empirical

 5.0

10.0

15.0

20.0

 5.0

10.0

15.0

20.0

 2.5

 5.0

 7.5

10.0

3.0 4.0 5.0 6.0 2.0 3.0 4.0 5.0 1.0 2.0
Re(λM, 1)

P
re

di
ct

ed
 R

e(
λ M

, 1
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●● ●●●

µL = 0.06
µU = − 0.15
σL = 0.21
σU = 0.55

ρUL = − 0.76−20

−10

0

10

20

−10 −5 0 5 10
Re(λM, i)

Im
(λ

M
, i
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●● ●●
●

●
●●

●

●

●
●

●
●

●

●
●●●

●

●

●
●
●

●
●●●●●

●●
●
●●●●●●

µL = 0.12
µU = − 0.28
σL = 0.27
σU = 0.74

ρUL = − 0.74
−30

−20

−10

0

10

20

30

−20 −10 0 10 20
Re(λM, i)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●● ●

●

●
●●●●

●●
●
●

●
●
●
●

●
●

●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

µL = 0.06
µU = − 0.15

σL = 0.2
σU = 0.55

ρUL = − 0.76

−10

0

10

−10 −5 0 5 10
Re(λM, i)

(a) (b) (c)

(d) (e) (f)

Supplementary Figure 22: As in Figure 2 of the main text, but parameterizing the matrices
using the Four-corner distribution with the same mean and covariance matrix of Z75.
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Supplementary Figure 23: As in Figure 17, but parameterizing the matrices using the Four-
corner distribution with the same mean and covariance matrix of Z95.
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Predicted  Re(λM, 1) ≅ 1.2 + 0.91Re(λM, 1) Predicted  Re(λM, 1) ≅ 0.79 + 0.91Re(λM, 1)

Predicted  Re(λM, 1) ≅ 1.08 + 0.89Re(λM, 1) Predicted  Re(λM, 1) ≅ 1.26 + 0.85Re(λM, 1)

Cascade (Niche Deg Dist) Cascade (Interval)

Cascade (Niche Deg Dist, Interval) Niche

4

6

8

10

4

6

8

10

4 6 8 10 4 6 8 10
Re(λM, 1)

P
re

di
ct

ed
 R

e(
λ M

, 1
)

Supplementary Figure 24: As in Figure 3 of the main text, but parameterizing the matrices
using Z55.
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Predicted  Re(λM, 1) ≅ 0.48 + 0.99Re(λM, 1) Predicted  Re(λM, 1) ≅ 1.33 + 0.94Re(λM, 1)

Predicted  Re(λM, 1) ≅ 1.5 + 0.88Re(λM, 1) Predicted  Re(λM, 1) ≅ 0.85 + 1.07Re(λM, 1)
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Supplementary Figure 25: As in Figure 3 of the main text, but parameterizing the matrices
using Z95.
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Supplementary Figure 26: Observed (x-axis) and predicted (y-axis) Re
(
λM,1

)
for 150 parame-

terizations of an empirical food web (red crosses, (a) Kongs Fjorden, (b) Flensburg Fjord), and 150
parameterizations of a variant of the cascade model preserving the empirical degree distribution
(blue crosses). In both cases, conserving the degree distribution produces matrices with very sim-
ilar leading eigenvalues. All parameterizations produced using Z75. Different choices of webs or
parameterizations do not alter qualitatively the results.
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Supplementary Figure 27: As Figure 4 in the main text, but with parameters taken from Z95

(reported on the panels). (a) Connectance C = 0.1. (b) C = 0.8. For higher connectance, the effect
of changing µx and µy on stability is more muted.
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Supplementary Note 1: Preliminaries

Here we briefly review local asymptotic stability (henceforth, stability), and two of the
main results of Random Matrix Theory. For a more in-depth review of this material, see
Allesina & Tang2.

Stability. We consider a system of autonomous, non-linear ordinary differential equations

dNi(t)
dt

= fi (N(t)) (1)

where Ni(t) expresses, for example, the biomass of population i at time t, and fi is the
function expressing the growth rate of population i, which depends on the density of all
populations (N(t)). The point N∗ > 0 is a feasible equilibrium point if fi (N∗) = 0 for all i.

Around the equilibrium, the trajectories can be described by considering a linearized
system. Suppose that the system is resting at the equilibrium N∗, and that a sufficiently
small perturbation is applied at time zero, N(0) = N∗ + n(0). Then, by Taylor expansion:

dn(t)
dt
≈ J(N∗)n(t) (2)

where J is the Jacobian matrix of the system, Ji j = ∂ fi/∂N j. The “community matrix” M is
the Jacobian evaluated at N∗, and therefore

dn(t)
dt
≈M n(t) (3)

which is a system of homogeneous linear differential equations with constant coefficients.
This system has solution

n(t) = eM tn(0) (4)

Moreover, if M is diagonalizable, it can be decomposed as Q−1ΛQ, where Λ is a diagonal
matrix whose diagonal coefficients are the eigenvalues of M, and Q is a matrix whose
columns are the corresponding right eigenvectors. In this case, the solution becomes:

n(t) = Q−1eΛtQn(0) (5)

meaning that the small perturbation n(t) will eventually decay to zero if and only if all the
eigenvalues of M have negative real part. Thus, if we order the eigenvalues according to
their real part, Re

(
λM,1

)
≥ Re

(
λM,2

)
≥ . . . ≥ Re

(
λM,S

)
, stability is exclusively determined

by Re
(
λM,1

)
. If Re

(
λM,1

)
< 0, the equilibrium is stable, and if Re

(
λM,1

)
> 0, the equilibrium

is unstable.

Circular law. Take a S × S matrix M whose coefficients are sampled independently from
the distribution X with mean zero and variance one. Then, as S → ∞, the empirical
spectral distribution of M /

√
S converges to the uniform distribution on the unit disk in
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the complex plane3. The empirical spectral distribution (ESD) is the distribution obtained
assigning a probability of 1/S to each of the eigenvalues of M. The circular law therefore
implies that, for S large, the “bulk” of the eigenvalues of M are uniformly spread over
the unit disk. Given that the contribution of each eigenvalue to the density becomes
negligible as S → ∞, the circular law does not guarantee that all the eigenvalues are
eventually contained in the circle. However, with the additional assumption of X having
finite fourth moment, one can prove4 this stronger result: for S → ∞, all eigenvalues of
M /
√

S are contained in the disk.

The circular law is universal3: as long as E[X] = 0 and Var[X] = 1, the ESD of M /
√

S
converges to the uniform distribution on the unit disk as S → ∞. Moreover, the circular
law holds for partially filled (i.e., with few non-zero coefficients) matrices as long as some
mild conditions are met5.

Elliptic law. Take an S×S matrix M whose coefficients are sampled as independent pairs
(Mi j,M ji) from the bivariate distribution Z, with mean [0, 0]t and covariance matrix

Σ =

[
1 ρ
ρ 1

]
(6)

The diagonal elements are sampled from a distribution with mean zero and finite variance.
Then, as S→∞, the ESD of M /

√
S converges to the uniform distribution on the ellipse in

the complex plane centered at (0, 0), with horizontal semi-axis 1 +ρ and vertical semi-axis
1 − ρ. Also the elliptic law is universal6, 7.

Applications to the stability of ecological systems. One can use the circular and elliptic
laws to estimate the rightmost eigenvalue of sufficiently large community matrices.

May8 was the first to consider a random community matrix M with i.i.d. entries.
The value of each entry Mi j in the matrix is determined in the following way: with
probability (1 − C), the entry is set to zero, and with probability C its value is sampled
from X, with E[X] = 0 and Var[X] = σ2. Then, given that for biological systems the
fourth moment is surely bounded, for S large Re

(
λM,1

)
/
√

S Var[Mi j] ≈ 1, and therefore
Re

(
λM,1

)
≈

√
S Var[Mi j] = σ

√
SC. Because the matrix M′ = M−d I has eigenvalues

as those of M, but shifted by d to the left, then the equilibrium associated with the
community matrix M′ is stable whenever d is sufficiently strong to offset the rightmost
eigenvalue of M: Re

(
λM′,S

)
= Re

(
λM,1

)
−d < 0, which becomes σ

√
SC < d. This result can

be further extended to the case of X having non-zero mean, as long as the row sums are
approximately constant1, 2. Ecologically, this is the case when the community matrix is
associated with a food web whose structure is random (in the sense of Erdős-Rényi).

The first application of the elliptic law to ecological systems9 considered that a
consumer-resource interaction would appear in the community matrix as a positive coef-
ficient (Mi j, effect of resource j on consumer i) paired with a negative coefficient (M ji). This
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sign-pairing automatically produces a negative correlation (ρ < 0), which is stabilizing,
compared to the case ρ = 0 studied by May. Similar to the circular law, the elliptic law
can be extended to account for non-zero mean, partially connected matrices, and matrices
where we subtract d from the diagonal entries1, 2. Also for these matrices, a key ingredient
of the derivation is the assumption of constant row sums, which, in ecological terms, is
akin to having food webs with random structure.

Our main goal here is to study the stability of matrices built starting not from Erdős-
Rényi random graphs, but rather a more realistic model for food web structure, the cascade
model10.

Role of diagonal coefficients. In most studies of the stability of large ecological systems,
the diagonal elements of the matrix M are assumed to be constant, −d, so that the distribu-
tion of eigenvalues is the same of that of the corresponding matrix with 0 on the diagonal,
shifted of d to the left. Introducing variation among the diagonal elements—which is
sensible from an ecological standpoint—could however alter the results. In particular, the
diagonal elements impact both the mean and the variance of the eigenvalues:

E[λi] =
1
S

S∑
i=1

Mii = E[Mii] (7)

Var[λi] = Var[Mii] + (S − 1) E[Mi jM ji] (8)

From these equations it is clear that, if the variance does not grow with S, the variance
of the eigenvalues is dominated by (S − 1) E[Mi jM ji], so that a small amount of variation
does not alter qualitatively the predictions for large networks1.

It should however be noted that the variance of the diagonal elements impacts solely
the spread along the real axis, with potential consequences for stability. In fact,

Var[λi] = Var[Mii] + (S − 1) E[Mi jM ji] = Var[Re(λi)] − Var[Im(λi)] (9)

such that if Var[Mii] is large compared to Var[Re(λi)], this could have important conse-
quences for stability.

Deriving robust results for random matrices with variable diagonal elements, albeit
still an open problem, would make these methods more relevant for biological systems.
Studies measuring the variance of the diagonal elements empirically would be especially
valuable. For example, a recent article by James et al.11 attempts an estimation of all the
coefficients of the community matrix for several small food webs using empirical data.
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Supplementary Note 2: Constructing M

In this section we show how matrix M is built. M is the community matrix of a food
web resting at a feasible equilibrium point. The matrix is constructed in two steps. First,
we either generate the adjacency matrix K (where Ki j = 1 means that j consumes i) using
a model for food web structure, or we take an empirical adjacency matrix. Second, we
assign the coefficients of M in pairs: we sample from a bivariate distribution Z = (X,Y) a
pair of coefficients (Mi j,M ji) whenever Ki j = 1. The diagonal of the matrix M is set to zero.
In what follows, we first explain how the adjacency matrices are built, and then we show
how the distribution Z is parameterized.

Empirical food webs. We took 15 large published food webs, removed any self-loop
(cannibalism) and, in the rare cases of double-arrows (i.e., a eats b, and b eats a), we
removed one of the two links at random. For each food web, we report the size S, the
number of trophic interactions L, and the connectance C = L/

(S
2

)
(for a justification of this

choice of connectance, see the next section). We also report a measure of how close to
being acyclic a food web is. If a food web were acyclic, then it would be possible to order
all the species from left to right, such that all links point from left to right. If there were any
cycles, at least one link would point backwards. For each web, we report the minimum
number of unavoidable “feedback links” we observed when trying to find the ordering of
the species that minimize it. The procedure is explained in details in below.

1. Ythan Estuary, the food web of the estuary of the Ythan river on the East coast
of Scotland12. Once removed three cannibalistic loops, the processed food web is
acyclic and it comprises S = 92 nodes, L = 414 feeding interactions, yielding a
connectance C ≈ 0.10.

2. St. Marks, describing the seagrass community of the Goose Creek Bay in the St.
Marks National Wildlife Refuge, Florida13. After processing, we have S = 143,
L = 1763, C ≈ 0.17. The food web, once removed three cannibalistic loops, contains
no cycles.

3. Grande Cariçaie, the food web of the marsh at Lake Neuchâtel, Switzerland14. Once
removed two links due to double arrows, we find S = 163, L = 2084, C ≈ 0.16. The
nodes can be sorted in a hierarchy such that only ≤ 9 links point backwards. We
obtained this hierarchy repeatedly applying an algorithm that tries to minimize the
number of “feedback links” (see below). Because the problem is not solvable in
polynomial time, we write ≤ 9, to stress that better solutions might exist.

4. Serengeti, the plant-mammal food web of the Serengeti grassland ecosystem of
Tanzania15. Once removed a cannibalistic loop, we have S = 170, L = 585, and
C ≈ 0.04. The food web contains no cycles.

5. Flensburg Fjord, the food web of a brackish shallow water inlet on the Baltic Sea,
located between Germany and Demark16. Once removed two cannibalistic loops
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and eight links due to double arrows, we find S = 180, L = 1567, and C ≈ 0.1. We
find ≤ 2 feedback links.

6. Otago Harbour, the food web of an intertidal mudflat ecosystem in New Zealand17.
We removed six cannibalistic loops and 62 links due to double arrows, obtaining
S = 180, L = 1856, and C ≈ 0.12. We find ≤ 31 feedback links.

7. Little Rock Lake, the food web of lake in Wisconsin18. Removing 17 loops and 42
links, we obtain S = 181, L = 2316, and C ≈ 0.14. We find ≤ 11 feedback links.

8. Sylt the food web of the Sylt tidal basin on the North Sea between Germany and
Denmark19. In this web, once removed the six loops and 34 links participating in
double arrows, S = 230, L = 3298, and C ≈ 0.12. We find ≤ 16 feedback links.

9. Caribbean Reef, describing the shelf of the American Virgin Islands20. Removing 11
loops and nine links, we find S = 249, L = 3293, C ≈ 0.11. We find ≤ 3 feedback
links.

10. Kongs Fjorden, the food web of the northwest corner of the Svalbard archipelago21.
We find S = 270, L = 1632, C ≈ 0.04. Once removed the 10 loops and the 5 links
participating in double arrows, the food web contains no cycles.

11. Carpinteria Salt Marsh, the salt marsh in Carpinteria, California22. We find S = 273,
L = 3878, C ≈ 0.1. We find ≤ 13 feedback links.

12. San Quintin, the food web of Bahia Falsa, in San Quintin, Baja California22. We find
S = 290, L = 3934, C ≈ 0.09. We find ≤ 12 feedback links.

13. Lough Hyne, describing a marine sea lough in south-west Ireland23. We remove 13
loops and 13 links, finding S = 349, L = 5088, C ≈ 0.08. We find ≤ 6 feedback links.

14. Punta Banda, the food web of the Estero de Punta Banda, in Baja California22. We
find S = 356, L = 5291, C ≈ 0.09. We find ≤ 14 feedback links.

15. Weddell Sea, a marine food web for the high Antarctic eastern Weddell Sea24. We
remove 51 loops and 394 double arrows, finding S = 488, L = 15435, C ≈ 0.13. We
find ≤ 229 feedback links.

Cascade model. To build a food web using the cascade10 model, we order the S species,
1, . . . ,S. For each species j, we draw a link from any of the preceding species (Ki j = 1, i < j)
with probability C. Note that when C = 1, the upper-triangular part of K is completely
filled with ones. This is a definition of connectance that is ideally suited for dealing with
pairs of coefficients, as the maximum number of pairs is

(S
2

)
. As such, the best choice of C

when building a food web of size S in which the desired number of links is L is Ĉ = L/
(S

2

)
.
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The cascade model produces directed acyclic graphs, so that all the non-zero coeffi-
cients of K are contained in its upper-triangular part.

The number of connections for a food web produced by the cascade model follows
the Binomial distribution with parameters C and

(S
2

)
. The expected number of connections

is E[L] = C
(S

2

)
, and variance is Var[L] =

(S
2

)
C(1 − C). To avoid the rare cases of matrices

with many more (fewer) connections than desired, we rejected any network for which the
number of connections produced differed from the expectation by more than two standard
deviations. We also rejected any disconnected network. For the cascade model, we ended
up rejecting few networks (compared to the niche model below), because the Binomial
distribution has a very strong central tendency.

Niche model. Building an adjacency matrix using the niche25 model requires four steps:

1. Each species j is assigned a “niche value”, η j, sampled from a uniform distribution
U[0, 1], and the species are sorted in increasing order.

2. A “niche radius” is obtained for each species: r j = η jB, where B is a value sampled
from the beta distribution B(1, β).

3. A “niche center”, c j, is sampled fromU[r j/2,min(η j, 1 − r j/2)].

4. Species j consumes all species k whose niche value is included in an interval: (c j −

r j/2) ≤ ηk ≤ (c j + r j/2).

To ensure that we obtain a connectance that is about right26, we set β = 1/C − 1.
We removed any cannibalistic loop (K j j = 1) and, when we found double arrows (where
Ki j = K ji = 1) we removed one of the two links at random. As for the cascade model, we
rejected disconnected networks and those with a number of links that differed from the
expectation for the cascade model by more than two standard deviations. This criterion
is more selective for the niche model than for the cascade model, as the niche model
produces networks with a broader range of number of links.

Variants of the cascade model. The number of resources of species j in the cascade
model (i.e., its consumer-degree), L j, depends on the position of j in the hierarchy and
on the connectance: E[L j] = C( j − 1). If we want to change the degree distribution of the
consumers to match that of the niche model, it is sufficient to sample L j from a Binomial
distribution with parameters ( j − 1) and r j, where r j = η jB, B is sampled from the Beta
distribution B(1, 1/C − 1), and η j is the jth niche value obtained by sampling uniformly a
value for each species, and then sorting them in increasing order.

In the cascade model, the L j connections of species j are randomly assigned to the
preceding species. We could instead choose an interval of species to be consumed by
species j, by sampling a random starting point from the uniform discrete distribution
s j ∼ U{1, . . . , j − L j}, and making j consume all the species from s j to s j + L j − 1. In this
way, we can build a variant of the cascade model that produces interval networks.
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Combining the degree distribution and the intervality properties, we can parameterize
the three variants of the cascade model described in the main text.

Empirical distributions. For our results, we need to be able to derive a reasonable dis-
tribution Z = (X,Y), from which we will then sample independently the pairs (Mi j,M ji)
whenever Ki j = 1. The marginal distribution X is that describing the effects of consumers
on resources (and thus we expect µx < 0), while the marginal Y describes the effects of
resources on consumers (µy > 0).

To build Z, we rely on a large database of consumer-resource interactions published
by Brose et al.27 (we used the amended version of the database published in 2008). The
database comprises more than 16,000 documented interactions between consumers and
resources in natural food webs, and contains estimates of the average body mass (in
grams) for both consumers and resources.

The database is mostly resolved at the level of species, with exceptions including
non-living resources (Detritus), higher taxonomic levels (e.g., Crustacea, Insecta), and un-
resolved organisms (e.g., “Large terrestrial inverts”). To retain only the high-quality data,
we matched the taxonomic information for each species with the ITIS database (itis.org),
and kept only the records for which: a) the average body mass was present for both re-
source and consumer (≈13,000 records); b) both resource and consumers were matched to
a species, genus, or family in the ITIS database (≈8000 records).

For each interaction between consumer i and resource j, we attempted a parameter-
ization of the corresponding coefficients of a community matrix, Mi j and M ji. We use
body-mass scaling allometries and a Type I functional response, following closely the
work of Tang et al.1:

Mi j ≈ −ai jN∗i
M ji ≈ ei jai jN∗j

(10)

We thus need to parameterize the equilibrium biomasses, N∗i , the attack rates ai j, and
the efficiencies, ei j. The equation above shows clearly that all the coefficients in the same
row of the community matrix are all dependent on the corresponding equilibrium N∗i , a
feature that will be lost when we will sample the coefficients independently. Tang et al.1

studied matrices in which these relationships are retained.

We parameterized the equilibrium values N∗i ≈ 10n0+g+εimg+1
i , where n0 = −1.16, εi is

a Normal random variable with mean 0 and standard deviation 0.2, while g, the main
parameter controlling the scaling between the body mass and the equilibrium abundance,
was varied between −0.45 and −1.05.

The attack rates ai j were modeled as in Tang et al.1:
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ai j = 10a0m j

(
mi
m j

)0.46

1 +
(

mi
m j

)2 (11)

where m j is the mass of the consumer, mi that of the resource, and a0 was set to −3.5
(as the mass is measured in grams). The efficiencies ei j were sampled from the uniform
distributionU[0.1, 0.25].

For each value of g, we produced 100 parameterizations (all slightly different, as the
values of ε j and the ei j are randomly drawn), and rescaled the Mi j so to obtain a mean
negative effect of µx = −1 (allowing for a better comparison between the distributions—
and without loss of generality, as multiplying a matrix for a positive constant does not
alter its stability properties). The values obtained from these simulations are plotted in
Figure 1. For g ≈ −0.5 we have positive means closer in magnitude to the negative mean
(−1), and larger variances. The correlation between Mi j and M ji is moderately negative
for all values of g.

To take a closer look at the distribution of the (Mi j,M ji) pairs, in Figures 2, 3, and 4, we
plot their empirical distribution along with summary statistics for three parameterizations
using g = −0.55, g = −0.75, and g = −0.95, respectively. In all cases, we find that the
marginal distributions are very skewed, and contain a few very large values.

We stored the distributions in Figures 2, 3 and 4 and we used them to parameterize
our food webs, i.e., when building a matrix M, we sampled independently each pair of
interactions from the discrete distribution Z. As a shorthand, we refer to them as Z55, Z75

and Z95, respectively. All the figures in the main text have been generated sampling from
Z75, while in Section we show the same Figures, but using Z55 and Z95.

Bivariate Normal distributions. Given that the circular3, 5 and elliptic6, 7 laws are univer-
sal (i.e., they do not depend on the exact details of the distributions used to parameterize
the matrices, but rather only on their means and covariance matrices), we are interested
in testing whether our results could also be universal. Hence, we repeated the parameter-
ization of the matrices but sampling the entries from bivariate Normal distributions with
the same means and covariance matrices found for Z55, Z75 and Z95.

One interesting feature of the Normal case is that it is possible to sample (with low
probability, given the values of the empirical means and variances) pairs of coefficients
with the same sign. We show that this does not alter our results: our conclusions hold for
networks where the interactions are not exclusively of consumer-resource type.

Four-corner distributions. To further probe the generality of our results, we parameterize
another class of bivariate distributions besides the empirical ones obtained via body-size
scaling and the Normal distribution above. However, there are few bivariate distributions
that are flexible enough to accommodate any choice of parameters µx, µy, σx, σy and ρxy.
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For example, take a bivariate distribution whose marginals are Log-normal (or Uniform).
Then, once µx, µy, σx, and σy are chosen, not every value of ρxy ∈ [−1, 1] can be achieved.

For this reason, we propose here a very simple bivariate distribution that has good
sampling qualities, dubbed the “Four-corner distribution”. This distribution takes as
parameters a vector of means [µx, µy]T and the corresponding covariance matrix, defined
by σx, σy and ρxy. The pairs can take one of only four possible values:

Z = (X,Y) =


(µx + σx, µy + σy) w.p. 1+ρxy

4

(µx − σx, µy + σy) w.p. 1−ρxy

4

(µx + σx, µy − σy) w.p. 1−ρxy

4

(µx − σx, µy − σy) w.p. 1+ρxy

4

(12)

The distribution is therefore straightforward to parameterize and has a shape (and sup-
port) that is very different from the Normal and the empirical distributions above. We
show that our results hold when the matrices are built using this distribution and the
parameters found for Z55, Z75 and Z95.

Parameterization of food webs with cycles. If a food web is acyclic, there is at least one
way to order the species so that all the non-zero values in the adjacency matrix K are
contained in the upper-triangular part. Thus, there is at least one way to sort the species
in M such that all the upper-triangular coefficients are either 0, or have been sampled
from X (the first marginal distribution of Z = (X,Y)), while the lower-triangular are either
0, or have been sampled from Y.

Having sorted the species in matrix M in this way, we can easily define the parameters
that will be used in the rest of the derivation. For a large nework with connectance
C, the mean of the upper-triangular coefficients of M is µU = Cµx, their variance is
σU

2 = C(σx
2 +(1 − C)µx

2). Similarly, for the lower-triangular coefficients of M we have
µL = Cµy, and σL

2 = C(σy
2 +(1−C)µy

2). Finally, the covariance Cov(Mi j,M ji) = σU σL ρUL =
E[Mi jM ji] − E[Mi j] E[M ji] = C(ρxy σx σy +µx µy) − C2 µx µy.

However, a problem arises when cycles are present, as there is no ordering of the
species such that all the upper-triangular coefficients of M are either 0 or sampled from
X. In this case, there is no “natural” ordering of the species, and therefore no natural way
of defining µU, µL, σU, σL, and ρUL. Each possible ordering of M yields different estimate
for the parameters of the distribution, so that we need to choose a “rule” for ordering the
species in the food web.

Clearly, the eigenvalues of M do not depend on the ordering of the species, such that
any reordering leaves them completely unaltered. Our approximation, however, is based
on the assumption that the upper-triangular elements of M are sampled from a different
distribution than that of the lower-triangular ones, and thus any of the S! possible ways
of ordering M would yield a different parameterization—and consequently a different
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approximation.

Ideally, given that we sample a coefficient Mi j from X whenever Ki j = 1, the best pos-
sible ordering of the species would be that yielding an adjacency matrix K with the fewest
possible non-zero coefficients in the lower-triangular part of the matrix. Unfortunately,
this problem—known in the literature as the “minimum feedback-arc set”—is NP-hard28,
and as such an exhaustive search for the best solution is unfeasible.

Fortunately, a few empirical food webs are completely acyclic, and the others (and
those constructed using the niche model) have relatively few “feedback links”. To choose
a reasonable configuration for K, we ran 10 times with different random seeds the program
fas.c written by David R. MacIver∗. For each food web, we took the best solution out of
the 10 runs. We did the same for the webs generated by the niche model.

Once found the “best” ordering, and having sorted K and M accordingly, we esti-
mated µU, µL, σU, σL, and ρUL using the sample means, variances and covariances for the
corresponding upper-triangular (lower-triangular) coefficients in M.

∗The program is available at github.com/DRMacIver/Feedback-Arc-Set
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Supplementary Note 3: The eigenvalues of M

To describe the eigenvalues of M (see Section ), we follow the strategy illustrated in the
main text: we decompose the matrix M into the sum of two matrices M = A + B, and we
study the eigenvalues of A and B separately. We then combine them to approximate the
distribution of the eigenvalues of M.

The eigenvalues of A. We start by finding all the eigenvalues of the simplest case of A in
which Aii = 0, Ai j = µL = 1 if j < i, and Ai j = µU = −1 if j > i. Because A is skew-symmetric
and the diagonal elements are set to zero, all eigenvalues have real part zero. For this
matrix, the eigenvalues are known, and we follow closely the proof of Bai & Silverstein4,
which we will then extend to our case of interest. The S × S matrix A is

A =


0 −1 −1 · · · −1
1 0 −1 · · · −1
1 1 0 · · · −1
...

...
...

. . .
...

1 1 1 · · · 0

 (13)

The characteristic polynomial of A is

|λ I−A | = DS =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 1 1 · · · 1
−1 λ 1 · · · 1
−1 −1 λ · · · 1
...

...
...

. . .
...

−1 −1 −1 · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(14)

where | · | stands for the determinant of a square matrix. Adding or subtracting a column
(row) from another does not change the determinant, and we exploit this fact to rewrite
the determinant in a more convenient form. We subtract from each column the subsequent
column (this leaves the last column unchanged):

DS =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ − 1 0 0 · · · 1
−1 − λ λ − 1 0 · · · 1

0 −1 − λ λ − 1 · · · 1
...

...
...

. . .
...

0 0 0 · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(15)

We now take the Laplace expansion along the first column. In fact, |λ I−A | = (λ −
1)|(λ I−A){1,1}| + (1 + λ)|(λ I−A){2,1}|, where |(λ I−A){i, j}| is the determinant of the matrix
obtained removing the ith row and the jth column from (λ I−A), i.e., the corresponding
minor. Notice that |(λ I−A){1,1}| is simply the determinant of a matrix like (λ I−A) but
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with size S − 1, and as such |(λ I−A){1,1}| = DS−1. The determinant |(λ I−A){2,1}| can be
evaluated directly, and is equal to (1 + λ)S−1. Combining these facts, we obtain

DS = (λ − 1)DS−1 + (1 + λ)S−1 (16)

which means that we have a recursive formula for the characteristic polynomial DS.
Solving the recursion, we find

|λ I−A | =
(λ + 1)S + (λ − 1)S

2
(17)

Setting the polynomial to zero, we can write

(λ + 1)S

(λ − 1)S = −1 (18)

This is a complex equation of degree S. The S roots can be written as:

λ + 1
λ − 1

= ei π(2k−1)
S (19)

where k = 1, 2, . . . ,S. Set π(2k−1)
S = θk. Then,

λ =
1 + eiθk

−1 + eiθk
=

1 + cosθk + i sinθk

−1 + cosθk + i sinθk
(20)

we multiply the numerator and the denominator by −1 + cosθk − i sinθk (the complex
conjugate of the denominator)

λ = −i
sinθk

1 − cosθk
= −i cot

θk

2
(21)

which leads to the solution

λ = −i cot
π(2k − 1)

2S
(22)

We now extend the results above to study the spectrum of a matrix A having 0 on
the diagonal, µU = −1 above the diagonal, and µL = x > 0 below the diagonal. Having
µU = −1 is not restrictive, given that any other matrix A analyzed here (in which µU < 0
can take any value) can be reduced to this case by dividing each element of A by −µU.
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A =


0 −1 −1 · · · −1
x 0 −1 · · · −1
x x 0 · · · −1
...

...
...

. . .
...

x x x · · · 0

 (23)

Applying the same procedure we used in the case of x = 1, we obtain the characteristic
polynomial:

|λ I−A | =
(λ + x)S + x(λ − 1)S

1 + x
(24)

Setting the polynomial to zero, we can write

(λ + x)S

(λ − 1)S = −x (25)

and thus

λ + x
λ − 1

= x
1
S ei π(2k−1)

S (26)

where k = 1, 2, . . . ,S. Set π(2k−1)
S = θk. Then,

λ = 1 +
1 + x

x 1
S eiθk − 1

=

1 +
(x + 1)

(
x

1
S cosθk − 1

)
1 + x 2

S − 2x 1
S cosθk

 + i
(

(x + 1)x
1
S sinθk

2x 1
S cosθk − 1 − x 2

S

)
(27)

where the first term is the real, and the second the imaginary part of each of the S
eigenvalues.

We now show that all eigenvalues of A lie on curve describing a circle in the complex
plane with center

c =

(
x + x

2
S

x 2
S − 1

, 0
)

(28)

and radius

r =
(x + 1)x

1
S

1 − x 2
S

(29)
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To do so, we can shift and rescale the eigenvalues such that according to our conjecture
the transformed eigenvalues lie on the curve describing the unit circle

λ′ =
λ − Re(c)

r
=

eiθk − x
1
S

eiθkx 1
S − 1

=
x

1
S cosθk + i sinθk

−1 + x 1
S cosθk + ix 1

S sinθk

(30)

As above, we multiply both numerator and denominator by (−1 + x
1
S cosθk − ix

1
S sinθk):

λ′ =

(
2x1/S

− (1 + x2/S) cosθk

1 + x2/S − 2x1/S cosθk

)
+ i

(
(x2/S

− 1) sinθk

1 + x2/S − 2x1/S cosθk

)
(31)

Where the first term denotes the real part of λ′, while the second term its imaginary part.
Computing Re(λ′)2 + Im(λ′)2, we obtain:

(
2x1/S

− (1 + x2/S) cosθk

1 + x2/S − 2x1/S cosθk

)2

+

(
(x2/S

− 1) sinθk

1 + x2/S − 2x1/S cosθk

)2

= 1 (32)

which proves that all λ′ lie on the curve defining the unit circle, and thus the eigenvalues
of A lie on the curve describing the circle with center c and radius r.

The value of x determines the “orientation” of the eigenvalue distribution: if x < 1
(Figure 5, left), then we have few eigenvalues with large modulus (|λ| =

√
Re(λ)2 + Im(λ)2)

and negative real part, and many eigenvalues with positive real part. When x > 1 (Figure
5, right), we have the reverse.

Thus, for matrices A in which the negative coefficients are stronger than the positive
ones, we expect the stability to be driven by the eigenvalue(s) closest to Re(c) + r =
1− (1+x)/(x1/S +1). Taking the limit for S→∞, we find Re

(
λA,1

)
= (1−x)/2, which cannot

exceed 1/2. In this case, Re
(
λA,1

)
is largest when x is small, which can be interpreted

ecologically as extremely low transformation efficiency.

When on the other hand, the positive effects are stronger than the negatives, we find
that two roots with large imaginary part are key for stability. From Eq. 27, we find two
complex conjugate eigenvalues with the same real part:

λA,1−2 =
(
1 +

1 + x
x1/S cos

π
S

)
± i

(1 + x
x1/S sin

π
S

)
(33)

We conclude this section by summarizing the results for matrix A in which the upper-
triangular elements are all µU < 0, the lower-triangular are all µL > 0 and µU , −µL. All
the eigenvalues lie on the curve describing a circle in the complex plane centered at
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cA =

µL −µU

(
−
µL

µU

)2/S

(
−
µL

µU

)2/S
− 1

, 0

 (34)

and with radius

rA =
(µU −µL)

(
−
µL

µU

)1/S

(
−
µL

µU

)2/S
− 1

(35)

(to obtain these values, substitute x = µL / − µU in Eq. 28 and Eq. 29, and multiply by
−µU). There are two cases: when −µU > µL, the circle has center in the left half-plane,
most eigenvalues have small modulus and positive real part, while few eigenvalues are
large in modulus and have negative real part. When −µU < µL, we have the reverse. The
case of −µU = µL is equivalent to that studied by Bai & Silverstein4 and can be seen as a
degenerate case in which the circle has infinite radius.

When −µU > µL, we can write an inequality for the rightmost eigenvalue:

Re
(
λA,1

)
≤ Re(cA) + rA =

µU −µL(
−
µL

µU

)1/S
+ 1
− µU ≤ −µU (36)

with equality when S is odd. In the limit of large S, we have Re
(
λA,1

)
= (−µL −µU)/2, and

therefore the value is bounded by −µU /2 from above.

Adding randomness: the “eyeball” matrix. We now want to add randomness to the
matrix we constructed above. We can do this in three ways: i) we can make the matrix
above partially connected; ii) we can sample the coefficients from distributions, rather
than having them all equal to µU or µL; iii) we can combine the two types of randomness.

First, we build a random matrix in which the (Mi j,M ji) pairs are set to (−1, x) with
probability C and are (0, 0) otherwise. In Figure 6 left, we show the eigenvalues of a matrix
with S = 250, x = 0.05 and C = 0.5. We can see that the large eigenvalues with negative
real part are close to what we would expect from a matrix having −C above the diagonal
and xC below the diagonal. The small eigenvalues closer to the real axis, on the other
hand, deviate considerably from the prediction, and seem to fall in an ellipse.

We can also add randomness by sampling all the coefficients from distributions. For
example, sample those in the upper-triangular part from a Normal distribution with mean
µU and variance σU

2, and those in the lower-triangular part from a distribution with mean
µL and variance σL

2. Also in this case (Figure 6, right), we find that the large eigenvalues
are well approximated by Eq. 27, while the smaller eigenvalues are well described by an
ellipse.
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We call these random matrices “eyeball matrices”, as their spectrum resembles the
structure of the human eye, with the circle describing the sclera and the smaller ellipse
corresponding to the iris. When the mean of the upper-triangular elements has larger
magnitude than that of the lower-triangular ones (−µU > µL), the eyeball is looking
towards the right, while when −µU < µL it is looking towards the left.

In these numerical simulations, we observe that, even when randomness is intro-
duced, the eigenvalues with large modulus are still close to the predicted curve for the
corresponding A, while the smaller ones fall approximately in an ellipse. This is the foun-
dation of our strategy: study the eigenvalues of A and B separately, and then combine the
two distributions to approximate the eigenvalues of M.

The eigenvalues of B. The coefficients of the matrix B are as those of M, but all the
upper-triangular ones are obtained by subtracting µU, and all the lower-triangular ones
by subtracting µL. Clearly, this does not change the covariance matrix describing the pairs
(Bi j,B ji). In fact, we can think of B as a matrix built by sampling the pairs of coefficients
from a bivariate distribution with means [0, 0]t and covariance matrix

Σ =

[
σU

2 σU σL ρUL

σU σL ρUL σL
2

]
(37)

If σU = σL = σ, then the solution is quite simple, as, for large S, the eigenvalues
of B would follow approximately the elliptic law, and thus would be about uniformly
distributed in an ellipse in the complex plane, with horizontal semi-axis rB,h ≈

√
Sσ(1 + ρ)

and vertical semi-axis rB,v ≈
√

Sσ(1−ρ). However, typically we have σU , σL, and therefore
we need a new conjecture.

We start by making three assumptions:

a) The eigenvalues of B, for S large, are approximately uniformly distributed over an
ellipse centered at (0, 0), and with semi-axes rB,h and rB,v.

b) The sum of the two semi-axes, rB,h + rB,v, does not depend on ρUL, but only on the
variances and the size of the matrix.

c) The square of each semi-axis is a second-order polynomial in ρUL of the form:
r2

B,h = α + β ρUL +γρUL
2, r2

B,v = α − β ρUL +γρUL
2.

All three assumptions are met in the case of σU = σL = σ (elliptic law). For this case, we
would find that the three assumptions are satisfied, yielding the values α = γ = (S − 1)σ2,
and β = 2(S − 1)σ2. In Figures 7, 8 and 9 we show that these are reasonable assumptions
even when the condition of equal variances is violated.

Using the three assumptions above, we can solve the values for β and γ for unequal
variances σU

2 , σL
2. First, if the eigenvalues are approximately uniform in an ellipse

(assumption a), we can compute the variance of the eigenvalues,
∑

(λ2
i )/S, as:
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rB,h∫
−rB,h

rB,v

√
1− x2

r2
B,h∫

−rB,v

√
1− x2

r2
B,h

1
π rB,h rB,v

(
x2
− y2

)
dy dx =

r2
B,h

4
−

r2
B,v

4
(38)

where the limits of integration ensure we are integrating over an ellipse, (π rB,h rB,v)−1 is the
density of the uniform distribution over the ellipse, and (x2

− y2) descends from the fact
that for each λ1 = x+ iy we have λ2 = x− iy as well, so that λ2

1 +λ2
2 = 2x2 +2(iy)2 = 2x2

−2y2.
The variance of the eigenvalues is also equal to

Var(Re(λ)) − Var(Im(λ)) =
1
S

Tr(B2) = (S − 1) σL σU ρUL (39)

which means

r2
B,h − r2

B,v = 4(S − 1) σU σL ρUL (40)

Then, because of assumption c),

r2
B,h − r2

B,v = 2β ρUL = 4(S − 1) σU σL ρUL (41)

and thus β = 2(S − 1) σL σU. If assumption b) is met, then the value of rB,h + rB,v should
not depend of ρUL. We can then equate the value found for ρUL = 0 with that found for
ρUL = 1. Substituting the value for β, we can write

√
α +
√
α =

√
α + 2(S − 1) σU σL +γ +

√
α − 2(S − 1) σU σL +γ (42)

which we can solve for γ:

γ =
σU

2 σL
2(S − 1)2

α
(43)

Substituting γ, we find

rB,h =
α+(S−1) σL σU ρUL

√
α

rB,v =
α−(S−1) σL σU ρUL

√
α

(44)

To conclude our derivation, we need to find the value of α, which—as we showed
above—does not depend on the correlation. As such, we can investigate the case of zero
correlation, simplifying the analysis. To derive the value of α, we exploit a recent result
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in random matrix theory29, which allows for the estimation of the largest eigenvalue of
a random matrix which is divided into rectangular blocks, and the coefficients are i.i.d.
within each block. Using an extension of this approach that takes the limit of infinitely
many blocks30, one can prove that α ≈ λG,1, where λG,1 is the largest eigenvalue of the
deterministic matrix

G =


0 σU

2 σU
2
· · · σU

2

σL
2 0 σU

2
· · · σU

2

σL
2 σL

2 0 · · · σU
2

...
...

...
. . .

...
σL

2 σL
2 σL

2
· · · 0

 (45)

Without loss of generality, we can divide by σU
2 and define x = σL

2 / σU
2, obtaining

the matrix

G̃ =


0 1 1 · · · 1
x 0 1 · · · 1
x x 0 · · · 1
...
...
...
. . .

...
x x x · · · 0

 (46)

whose spectrum can be studied in exactly the same way we approached the spectrum of
A. We can write the characteristic polynomial as a recurrence equation:

DS = (λ + 1)DS−1 − (λ + x)S−1 (47)

Solving the recurrence, we find:

DS =
x(λ + 1)S

− (λ + x)S

x − 1
(48)

Setting the polynomial to zero, we can solve for the largest real root λG̃,1, which is the

Perron eigenvalue of the nonnegative matrix G̃:

λG̃,1 +x

λG̃,1 +1
= x1/S (49)

obtaining

λG̃,1 =
x − x1/S

x1/S − 1
(50)
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Taking the limit of λG̃,1 /S for S→∞, we find

lim
S→∞

λG̃,1

S
= lim

S→∞

x − x1/S

S(x1/S − 1)
=

x − 1
log(x)

(51)

so that

α ≈ S
2
σU

(x − 1)
log(x)

= S
(σU

2
− σL

2)

log
(
σU

2

σL
2

) = S
(σL

2
− σU

2)

log
(
σL

2

σU
2

) (52)

Note that taking the limit for σL → σU we recover α/S = 1, consistently with the
circular and elliptic law.

To show the quality of the approximation, we plot the predicted ellipse for several
cases of bivariate distributions with different marginals in Figures 10 and 11 (Normal
distribution), and 12 and 13 (non-Normal marginals).

Combining the distributions. Finally, we need to combine the two eigenvalue distri-
butions. We are inspired by Weyl’s inequality: if M = A + B, and all matrices were
symmetric, then Re

(
λM,1

)
≤ Re

(
λA,1

)
+ Re

(
λB,1

)
. However, this type of inequality has

never been applied to the case of non-symmetric matrices of the type studied here.

When we build M using the cascade model as a starting point, the joint distribution
of the pairs (Mi j,M ji)i< j is given by the bivariate distribution with mean [µU, µL]t and
covariance matrix

Σ =

[
σU

2 σU σL ρUL

σU σL ρUL σL
2

]
(53)

where, for S large, µU = Cµx, µL = Cµy, σU
2 = C(σx

2 +(1 − C)µx
2), and σL

2 = C(σy
2 +(1 −

C)µy
2). C is the connectance, and X and Y are the marginals of Z, the distribution we use

to sample the non-zero pairs.

When C = 1 (completely filled matrix), the mean and covariance matrix of the pairs
of M are the same as those of Z, simplifying the problem. Take C = 1, and σU = σx = σL =
σy = 0. Then, M = A, for which we know all the eigenvalues. What happens when we
slightly increase the variances? In Figure 14 we show that, when the variances are very
small, the eigenvalues of M are a distorted version of those of A. However, the small
eigenvalues do not fall in an ellipse. Hence, in this regime our approximation scheme
does not work, and we end up overestimating Re

(
λM,1

)
. When we increase the variances,

our approximation becomes more and more accurate (Figure 14).

Fortunately, ecological networks are only scarcely connected (C� 1), and this usually
translates in higher values of σU and σL. Take the case of small variances (e.g., σx

2
� µx

2):
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then, for any 1 > C > σx
2 / µx

2, the variance of the upper-triangular coefficients σU
2 is

larger for the partially connected food web (C < 1) than for a completely connected web
with the same distribution for X. To illustrate this point, in Figure 15 we parameterize
matrices with the same distributions used for Figure 14, but with connectance C = 0.9.
This is sufficient to create the “eyeball” pattern, and as such we can approximate Re

(
λM,1

)
as the sum Re

(
λA,1

)
+ Re

(
λB,1

)
, yielding very accurate predictions.

In summary, our approximation is accurate when the variances in the upper-triangular
and lower-triangular parts of the matrix M are sufficiently large, and this can be due to
sufficiently large variances in Z, partially connected networks, or a combination of the two.
For all the matrices we parameterized using our empirical distributions or distributions
with similar parameters, we found that the approximation is extremely accurate.
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Supplementary Note 4: Different parameterizations

In this Section, we repeat the simulations shown in the main text, but we change the
distribution Z = (X,Y). First, instead of using Z75, we explore the use of Z55 and Z95, i.e.,
the distributions obtained by changing the scaling relation between the average body-
size of a species and its equilibrium density. Then, we parameterize a bivariate Normal
distribution and a Four-corner distribution such that they have the same means and
covariances found for Z55, Z75, and Z95. In this way, we probe whether the results are
likely to be “universal” (i.e., once set the means and covariance matrix, the results are
independent of the fine details of the distribution—possibly with extra requirements of
bounded moments).

Predicting Re
(
λM,1

)
In Figures 16 and 17 we show the approximations for Z55 and Z95.

In Figures 18, 19 and 20 when bivariate Normal distributions with the same means and
covariance matrix of Z55, Z75 and Z95 are used. Finally, in Figures 21, 22 and 23 when
we parameterize the equivalent Four-corner distributions. In all cases we find the same
qualitative result: the new approximation predicts Re

(
λM,1

)
of the matrices generated by

the cascade model with great accuracy. In all cases, the matrices built using the niche or
empirical adjacency matrices are slightly more likely to be stable (on average) than what
predicted.

Cascade model variants. To test the validity of the results illustrated in Figure 3 of
the main text, we repeated the simulations, but parameterizing the matrices using Z55

(Figure 24) and Z95 (Figure 25). Also in these cases, we find that adding intervality (and
to a lesser extent, a niche-like degree distribution for the consumers) to the cascade model
recapitulates the results observed for the niche model. Using a Normal or Four-corner
distribution produces the same result.

Empirical food webs and degree distribution. In a similar spirit, we can ask whether
altering the degree distribution of the cascade model so that it matches that of an empirical
food web can explain the small discrepancy between our prediction and what observed
for the matrices parameterized using an empirical adjacency matrix.

To test this hypothesis, we build matrices using a variant of the cascade model in
which we provided an empirical degree distribution for the consumers, matching that
found for one of the empirical matrices. In Figure 26 we show that these matrices have
stability properties very similar to the corresponding empirical ones.

Sensitivity of Re
(
λM,1

)
to change in parameters. In Figure 4 in the main text, we showed

that changing the means of interaction strengths had little effect on our approximation of
Re

(
λM,1

)
, compared to the effect of changing the variances and the correlation. This pattern

is consistent for all parameterizations. One interesting result is that, in partially connected
matrices, changing the mean µx influences non only the mean of the corresponding part
of the matrix, µU, but also its variance: σU

2
≈ C(σx

2 +(1−C)µx
2). Hence, we would expect

the effect of changing means on Re
(
λM,1

)
to be more muted when the connectance is close
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to 1. This point is exemplified in Figure 27, where we show the effect of changing means
when the connectance is low (left) or high (right).
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Supplementary Note 5: Software

An R package (eyeball), which can be used to build the matrices M introduced in Section ,
and to compute all the approximations developed here is available at
https://github.com/StefanoAllesina/eyeball.
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