
Supplementary computational methods  
PREPARATION AND PRE-PROCESSING FOR SEQUENCING DATA 
Genomic reference 
We used the hg18 reference genome throughout this project. Chromosome files were downloaded from the UCSC 
genome browser website [1]. 

Preparation of the transcriptome 
We prepared a modified transcriptome from RefSeq [2]. The RefSeq exon annotations were acquired from the UCSC 
genome browser website, as were lookup tables linking each RefSeq identifier to an official gene symbol. After 
associating each transcript to a gene symbol, we removed any transcript that had exons on multiple chromosomes, or on 
both positive and negative strands. We then constructed our reference by collapsing all isoforms for a given gene into one 
super-transcript. We defined the super-transcript boundaries as the 5’ end of the 5’-most exon and the 3’ end of the 3’-
most. 

Preparation of regions 
We defined the regions of 3’ UTR, 5’ UTR, coding sequence and introns by collapsing all such labelled regions associated 
with RefSeq identifiers obtained from the UCSC genome browser. In cases where there is ambiguity, we use the following 
order of preference: 3’ UTR, 5’ UTR, coding, and intron. We consider any region of the genome not falling on of these four 
categories as intergenic.  

STATISTICAL ANALYSES 
Corrections for multiple hypothesis testing  
Unless otherwise stated, all p-values reported in this manuscript have been corrected for multiple hypothesis testing using 
the method of Benjamini and Hochberg [3].  

READ MAPPING AND PRELIMINARY PROCESSING FOR SEQUENCING DATA 
Mapping of data 
We constructed two masked versions of the hg18 chromosomes. In the first, we masked all regions that are non-exonic 
(i.e. not 5’UTR, 3’UTR or coding) with Ns; we call this the exonic-masked genome. In the second, we do the same, but 
allow intronic regions; we call this the transcript-masked genome. We also construct a junction database from all of the 
exon-exon junctions for each super-transcript. We used RMAP [4] to map the iCLIP data to the transcript-masked genome 
and the junction database, while we mapped the RNA-Seq data to the exon-masked genome.  

Assignment of reads to regions, exons and genes 
In the case of the RNA-Seq data, we count the number of reads mapping with their first mapped position within each exon 
of our super-transcript reference. The count of reads within a gene is then simply the sum of all read counts for the exons 
in its super-transcript. 

IDENTIFICATION AND ANALYSIS OF MSI1 ICLIP SITES AND TARGETS 
Peak calling in iCLIP data 
We call peaks in iCLIP data using Piranha [5], using a bin size of 1nt. We consider significant peaks to be those that have 
a corrected p-value less than 0.05.  

Target identification from iCLIP data 
Target genes are defined to be those with at least a single site in 3’ UTR or 5’ UTR in at least two of the three iCLIP 
replicates.  

Analysis of motif enrichment in iCLIP data 
There is a bias in iCLIP data towards cross-linking at triple-uracil sequences [6]. We observed a strong enrichment for 
these tri-nucleotides around our identified iCLIP sites. To ameliorate this when trying to determine enriched sequences 
around Msi1 binding sites, we computed an expected number of occurrences for each tri-nucleotide. To do this, we 
identified the top 1000 most enriched locations from a set of public iCLIP datasets using Piranha [5] – dataset details 
below – and counted the number of times each possible tri-nucleotide occurs within +/- 2nt of the cross-link location as 
follows: 
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€ 

ot =

I(S j,k,l ,t)
l=−2

2

∑
k=1

m j

∑
j=1

3

∑

5 ×1000 × n
,  

where 

€ 

m j  is the number of significant iCLIP sites reported for replicate j. We use the following public iCLIP datasets to 
compute the expected values:  

RBP Citation 
HuR [7] 
TIAL [8] 
TIA1 [8] 
hnRNPC [9] 
TDP43 [10] 

 

Calculating paired and unpaired UAGs around Msi1 iCLIP sites 
We extracted the 500bp region centred on each iCLIP site, and the 500bp region flanking upstream and downstream. We 
split each of these into 20bp bins and within each bin we count the number of times GUAG occurs, and the number of 
times [C/T/A]UAG occurs. We define the number of pairs as two times the minimum of these two counts, and the number 
of orphans as the difference between these two counts. By overlaying the flanking bins with those centred on the iCLIP 
sites, we construct the following table for each pair of bins: 

 iCLIP Flanking 
Paired  T11 T12 

Orphaned  T21 T22 
Where  

• T11 is the number of pairs in the ‘iCLIP bin’ 
• T12 is the number of pairs in the ‘flanking bin’ 
• T21 is the number of orphans in the iCLIP bin 
• T22 is the number of orphans in the flanking bin 

We then perform a Fisher’s exact test on each bin to determine an odds ratio and p-value. 

Calculation of base-pair probability 
To calculate the base-pair probability, we selected a subset of the significant iCLIP sites such that each was at least 200 
nucleotides from the closest other site. We then computed the base-pair probabilities for a window of 100 nucleotides 
around each selected iCLIP site using a modified version of the RNA Vienna package [11]. Then we took the average 
base pair probability for each location in the window over all sequences. Since the folding algorithm favours the ends of 
the sequences to be single stranded to obtain more stable structures, the base pairing probabilities of the ends of 
sequences are biased towards zero. In order to fix this problem, although we folded a window of 100 nucleotides around 
the peaks, we only took the base pairing probability of the middle 80 nucleotides into account, and dropped 10 nucleotides 
from each end of all sequences. 

Calculation of secondary structure context 
We folded a window of 100 nucleotides around each identified iCLIP site using Mfold [12] to obtain the minimum free 
energy structure for these sequences. Then we parsed the resulting secondary structure using covariance models 
introduced in (Eddy and Durbin, 1994) to assign a context to each nucleotide in the 100nt region: bulge-loop, internal loop, 
hairpin loop, multi-branch loop or dangling ends. We then counted the number of times each specific type of loop is 
observed. For each loop type then we have four counts: the number of times that loop type is seen at the iCLIP site 
(including +/- 1nt of the iCLIP site), the number of times it is seen in flanking regions, the number of times a different loop 
type is seen at iCLIP sites and the number of times a different loop type is seen in flanking regions. We then construct a 
contingency table; for example, the following for hairpin loops: 



 Within binding site (+/- 1nt) Outside binding site 
Hairpin  T11 T12 

Not hairpin  T21 T22 
 
where: 

• T11 is the number of times that peaks appear in a Hairpin loop region, 
• T12 is the total number of observed hairpin loop regions minus T11, 
• T21 is the total number of peaks minus T11 and 
• T22 is the total number of single stranded regions that occur in any type of loop other than hairpin loop minus 

T21. 

The p-value and odds-ratio resulting from performing a Fisher’s exact test illustrates the significance of preference for 
Musashi to bind to a specific type of single stranded loop. 

Discussion on different energy models and parameters for RNA structure prediction 
To ensure our prediction of RNA secondary structure was not heavily dependent upon the energy model or parameters 
used, we explored a number of alternatives. Firstly, we examined larger window sizes and found that the peak in ssRNA 
probability is observed in all of those examined, regardless of window size or energy models used: 

 

We did the same for the proportion of MSI1 sites that are contained within particular secondary structures, and found 
these also to be relatively invariant in the face of energy model or window size used: 

 

-80 0 80-70 0 70-60 0 60

Index
-50 0 50

Window length =

0.40

0.45

0.50

0.55

0.40

0.45

0.50

0.55

0.60

si
ng

le
 s

tra
nd

ed
 p

ro
ba

bi
lit

y

0.40

0.45

0.50

0.55

0.60

160140120100

Andronescu 2007

Mathews 2004

Turner 2004

Andronescu Mathews Turner

Window size

p
ro

p
. 
o
f 
M

S
I1

 i
C

L
IP

 s
it
e
s

1.00

0.00

Structure Type

100 120 140 160 100 120 140 160 100 120 140 160

Bulge

Dangling ends

Hairpin

Interior loop

Multi-loop



Notably, the tendency for MSI1 binding sites to be enriched in hairpin loops remains significant under all of these models 
and window sizes: 

 

Other recent work by Fukunaka et al. has also found that considering long-range interactions increases computational 
cost, but does not largely impact the assignment of locations within the RNA to secondary structure types, such as we 
have done here [13].  

Although the choice of model and window size can impact the predictions for individual targets, our analysis involves 
many targets, and our aim is to describe the general properties of MSI1 binding, rather than the structure of any individual 
target. Given the above observations, the conclusions drawn (namely that MSI1 binding sites exist mainly in single-
stranded RNA that folds into hairpin loops), are robust to changes in parameters for structure predictions.  

ANALYSIS OF CHANGES IN MRNA LEVELS AND EXON-INCLUSION RATES 
Identification of exons with changed inclusion ratio from RNA-Seq data 
To identify those exons with changes in inclusion ratios between the control and the knockdown condition, we paired each 
control replicate with its corresponding KD replicate and for each gene we constructed a two-by-two contingency table as 
follows: 

 Total RNA Msi1 KD 
Within target exon  T11 T12 

Within other exons (same gene)  T21 T22 
 
where: 

• T11 is the number of reads mapping into the exon of interest in the total RNA sample 
• T12 is the number of reads mapping into the exon of interest in the Msi1 KD sample 
• T21 is the number of reads mapping into the gene, but outside the exon of interest in the total RNA sample 
• T22 is the number of reads mapping into the gene, but outside the exon of interest in the Msi1 KD sample 

We then performed Fisher’s exact test on this table to compute an odds-ratio and a two-tailed p-value for the significance 
of the change from an odds-ratio of 1. We perform this comparison for the 3 pairs of control/KD samples. We considered 
significant changes to be those with a corrected p-value less than 0.01 and an odds ratio greater than 1.5 (increase) or 
less than 0.66 (decrease) in three replicates.  

Identification of differentially expressed genes from RNA-Seq data 
We used EdgeR to identify differentially expressed genes (ref). Three replicates of control total RNA and three replicates 
of Msi1 knockdown RNA-Seq were used to construct a 6xN matrix of gene-read counts (where N is the number of genes 
in our reference) that was provided to EdgeR. We considered those genes reported as having a corrected p-value less 
than 0.05 as showing significant changes in expression. We divided this set into two lists: those genes that were up-
regulated on Msi1 KD (i.e. had a greater normalized read-count in the Msi1 KD condition) and those genes that were 
down-regulated on Msi1 KD (i.e. had a lesser normalised read-count in the Msi1 KD condition) 

GENE ONTOLOGY AND PATHWAY ANALYSIS  
Enrichment of biological processes and KEGG pathways was performed with DAVID [14]. For all analyses we used a 
background gene set constructed by finding those genes that had at least a single read in all replicates of our total-RNA 
RNA-Seq samples. Protein-protein interactions were extracted from iRefIndex [15].  
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