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1. Asymmetries in threshold sampling distributions

In the main manuscript, it was shown that thresholds estimated far from the mid-
point of the psychometric function become progressively inaccurate and imprecise (see
Figure 4). For experimenters looking to average data across multiple observers, an
important further consideration is that the mid-point of the psychometric function may
vary between individuals.

Such a situation is shown for a simulated cohort of hypothetical observers
in Figure S1 (main panel). For example, consider a staircase targeting a threshold
of 50% performance (e.g., a 1-up, 1-down staircase; bottom subpanel of Figure S1).
For a simulated infant with a lapse/guess rate equal to the group-mean, 50% perfor-
mance corresponded to a stimulus of ∼7 cycles-per-degree. However, because of the
differences in lapse/guess rate parameters, some simulated infants exhibited higher
(better) thresholds, while some infants exhibited lower (poorer) thresholds. Notably,
this distribution of thresholds is not Gaussian (although lapse and guess rates were),
and exhibits a slight leftward (negative) skew [Skew50% = −0.86]. Consequently, the
group-mean threshold is pulled downwards (mean < median). This meant in prac-
tice that the mean threshold (green vertical line) was an underestimate of the group’s
average sensitivity.

Given the particular psychometric functions simulated in Figure S1, the skew
at 50% was relatively slight. However, consider now a staircase targeting a threshold
of 75% correct performance (e.g., a weighted up-2 down-1 staircase; top subpanel
of Figure S1). For an observer with a lapse/guess rate equal to the group-mean, this
corresponded to a stimulus of ∼4 cycles-per-degree. However, again there was inter-
individual variability, and again this led to a negatively skewed distribution of thresh-
old estimates [Skew75% = −0.46]. Moreover, in simulated observers with lapse rates
of 0.25 or greater, no stimulus magnitude was sufficient to attain 75% correct perfor-
mance. In these cases the adaptive staircase tended downwards towards floor (zero).
This resulted in a multimodal distribution of thresholds, with one negatively skewed
main component, and a substantial near-zero component. Together, both of these com-
ponents serve to pull the group-mean threshold downwards (mean << median), mean-
ing that the mean threshold (green vertical line) was a profound underestimate of the
group’s average sensitivity.

In short, if one is averaging over results obtained from a number of individ-
uals, and if these individuals differ in their underlying psychometric function, then
more extreme thresholds will produce increasingly asymmetric sampling-distributions
of threshold. A practical consequence of this is that the arithmetic mean of the thresh-
old data will no longer capture the central tendency of the observers. Failure to take
account of this could lead, for example, for an author to erroneously report a difference
in mean sensitivity between two groups of participants, when they in fact differ only
in terms of inter-individual variability in lapse rates.

These deviations from normality also mean, as discussed previously by other
authors, that “confidence limits cannot readily be calculated from commonly used
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Fig S1. Threshold sampling distribution for individuals with varying guess-/lapse-
rate parameters. An adaptive staircase algorithm was used to estimate the thresh-
olds of 10,000 simulated observers. As shown in the main plot, each simulated
observer had an expected lapse rate, λ, of 0.25, and an expected guess rate, γ,
of 0.07. However, these values were randomly jittered between individuals, us-
ing values drawn from a zero-mean Gaussian distribution with a standard devia-
tion 0.075 and 0.02, respectively (blue curves). Six threshold estimates were made
within each observer, one at each of six target threshold levels (Percent correct:
50%, 55%, . . . , 75%). Each threshold was estimated by geometrically averaging the
last 64 reversals of a 256-reversal, weighted staircase. The resultant sampling dis-
tributions of threshold estimates are shown in the individual subpanels. Threshold
estimates exhibited an increasingly negative skew as the threshold target lay fur-
ther from the mid-points of the underlying psychometric functions. Because of this
asymmetry in threshold estimates, the arithmetic mean of the data (green vertical
lines) was often a poor summary statistic of the typical threshold of the group.

(symmetrical) formulas such as ±1.96 Standard Error” (McKee et al., 1985), and that
comparisons of confidence intervals computed in this way are liable to be highly mis-
leading. Thus, one recommended practice is to always use numerical bootstrapping
methods to compute confidence intervals are threshold estimates (DiCiccio and Efron,
1996).

1.1. Averaging threshold data generated from a single psychometric function
It might be expected that when averaging data across one or more individuals whose
psychometric functions are identical, then a skewed threshold sampling distribution
would be less of a concern (Figure S2). However, if targeting thresholds at the very
extremities of the psychometric function (Figure S2, T = 0.75), then a proportion
of staircases may nonetheless fail to converge on threshold, again causing the ex-
pected mean of multiple threshold estimates to become misleading. In such instances,
when combining thresholds across multiple estimates, it may be best to transform the
data first, or to simply take the highest threshold estimates, as discussed in the main
manuscript.
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Fig S2. Threshold sampling distribution for individuals with invariant guess-/lapse-
rate parameters. Same format as Figure S1.

1.2. Averaging threshold data derived from smaller numbers of trials
It is important to note that, in the foregoing, a very large number of trials were used to
estimate thresholds, with each adaptive staircase lasting many hundreds or thousands
of trials. As shown in Figure S3, when fewer trials are used (as per most real exper-
iments), threshold estimates become more volatile, and asymmetries in the sampling
distribution are accentuated. With finite trials it is therefore even more important to
avoid targeting extreme levels of percent correct performance to derive unbiased esti-
mates of group-mean sensitivity.
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Fig S3. Threshold sampling distribution for individuals with invariant guess-/lapse-
rate parameters, using short adaptive trial sequences. Data were generated as per
Figure S2, except that thresholds were computed by averaging over the second
four of an eight reversal adaptive staircase (i.e., rather than the last 64 reversals of
a 256-reversal staircase).
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