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Reinforcement Learning (RL) Model 

 

The reinforcement-learning (RL) model used in this study is based on a hybrid of model-

free (�(�)) and model-based (explicit computation of top level state-action values), as 

utilized in previous studies (Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Otto, 

Raio, Chiang, Phelps, & Daw, 2013). Experiment 1 comprised two conditions (gold and 

silver), each of which had three unique states (first stage: sA; second stage: sB and sC). 

The first stage in each condition had two available actions (aA and aB), while the second 

stages did not, but rather were probabilistically followed by reward (where probabilities 

drifted gradually over time). Note that the implementation of the computational model for 

Experiment 2 was exactly the same as for Experiment 1, except that only one state was in 

play, rather than two. The hybrid model employed consists of model-based and model-

free subcomponents, both of which estimate a state-action value function, QMF(sA, a) 

(model-free) and QMB(sA, a) (model-based), which maps each possible action to its 

expected future reward. On trial t, we denote the first-stage state (always s
A
) by s

1,t
, the 

second-stage states by s2,t, the chosen first-stage action by at, and the second-stage 

rewards as rt . 

 

Model-free component 

For the model-free algorithm, we used Q(λ), temporal difference (TD) learning (Peng & 

Williams, 1996), which updates the value for the visited state-action pair at s
1,t

 according 

to: 

�����	,�, �� = �����	,�, �� + ��	,� 

where	�	,� is the reward prediction error (RPE) at state 1, trial t: 

�	,� = ������,�	−	�����	,�, �� 

and α is a learning rate parameter, which is constant across conditions and states for a  

given individual. Thus, for the first-stage choice, the RPE is driven based on the second-

stage value, ������,�.	Second-stage values are themselves updated according to: 

������,� = ������,� + ���,� 

where the RPE is determined by whether or not the trial was rewarded, ��: 

��,� = ��	−	������,� 

We treat the gold and silver states as separate from one another; that is, Q-values for the 



gold and silver states were learned independently of one another, as was the structure of 

the task. The model uses an eligibility trace to propagate second-stage reward 

information to the first-stage values. Specifically, at the end of each trial, the first-stage 

values are updated according to:  

������,�, �� = ������,�, �� + ����,� 

where λ is an eligibility trace decay parameter (Sutton & Barto, 1998). We assume that 

eligibility traces are reset to 0 between episodes (i.e., that eligibility does not carry over 

from trial to trial). Additionally, at the end of each trial, we decayed the Q values for all 

of the non-selected actions by multiplying them by 1 − α (Ito & Doya, 2009; Lau & 

Glimcher, 2005). This decay makes the present model correspond more closely to the 

one-trial-back regression model described in the main text, in the limit as α→1.  

Model-based component 

In general, a model-based RL algorithm works by learning a transition function (mapping 

state-action pairs to a probability distribution over the subsequent state), and immediate 

reward values for each state, then computing cumulative state-action values by iterative 

expectation over these. Specialized to the structure of the current task, this amounts to, 

first deciding which first-stage action maps to which second-stage state (because subjects 

were instructed that this was the structure of the transition contingencies), and second, 

learning reward values for each of the second-stage states.  

We modeled transition learning by assuming subjects simply chose between the two 

possibilities: �(��|��, ��) = 0.7, �(��|��, ��) = 0.7 or vice versa �(��|��, ��) =
0.3, �(��|��, ��) = 0.3, with �(��|��, ��) = 1 − 	�(��|��, ��)	and �(��|��, ��) = 1 −
	�(��|��, ��), according to whether more transitions had thus far occurred to sB following 

aA plus sC following a
B
, or vice versa to s

C following a
A plus s

B following a
B
. 

At the second stage (where immediate rewards were offered), the problem of learning 

immediate rewards is equivalent to that for TD above, because ���(���) is just an 

estimate of the immediate reward r
t
; with no further stages to anticipate, and the SARSA 

learning rule reduces to a delta rule for predicting the immediate reward. Thus, the two 

approaches coincide at the second stage, and we define QMB = QMF at those states. 

Critically, the top level model-based values are defined from both the transition and 

reward estimates using the Bellman Equation (Bellman, 1957):  

��� "��, ��#$ = ����|��, �%	���(��) + ����|��, �%	���(��) 



where we have assumed these are recomputed on each trial from the current estimates of 

the transition probabilities and rewards. 

 

Choice rule 

Finally, to connect the values to choices, we use a softmax choice rule, which assigns a 

probability to each action according to the weighted combination of the two state-action 

value estimates �&'�(�, �) = (���(�, �) + (1 − ()���(�, �). QMB and QMF , weighted 

according to a free parameter w. Choice is then softmax in the net state-action values. 

The probability of each choice at the first stage is calculated, accordingly, as 

 

���� = 	�|�	,� =
exp	[- ∙ 	�&'���	,�, �/ ∙ �0/(�)]

Σ34 	exp	[- ∙ 	�&'���	,�, �′/ ∙ �0/(�′)]
 

 

where the inverse temperature parameter - governs the stochasticity of choices. The 

indicator function rep(�) is defined as 1 if � is the same one as was chosen on the 

previous trial, zero otherwise. Together with the “stickiness” parameter p, this captures 

first-order perseveration (p > 0) or switching (p < 0) in the first- stage choices (Lau & 

Glimcher, 2005).  

 

Group-Level Modeling 

 

Thus far we have described the modeling of a single subject’s data. This model was 

embedded within a multi-level random effects model of the population variation in its 

parameters to estimate it for all subjects simultaneously. All of the free parameters of the 

model (α, λ, β, w , p) were taken as random effects, instantiated separately for each 

subject s from a common group level distribution. For all parameters, the group level 

distributions were Gaussian with free group-level mean (6) and SD (7), plus an 

additional free slope (e.g. -8) allowing the parameter to scale, across subjects, with their 

(z-scored) devaluation score 9:. This was implemented identically in Experiments 1 and 

2, using their respective indices of devaluation sensitivity. For instance: 

-:	~	<=�>�?(6@	 + -8 ⋅ 9:, 7@) 

and analogously for p. However, for the parameters with support confined to [0,1] (α, λ, 

and w) the resulting variables were transformed according to a logistic sigmoid, e.g.: 

 

(:B	~	<=�>�?(6C + (8 ⋅ 9:, 7C) 



wE =
1

1 + exp(−(:B)
 

and similarly for the others.    

We estimated the parameters of the group level distributions 

(6F, 7F, /8 , 6@ , 7@ , -8, 6G, 7G, �8 , 6H, 7H, �8, 6C, 7C, (8) using uninformative priors: for 

the parameters with infinite support (-, /), the prior means and devaluation slopes were 

the broad Normal(0,10), the prior SDs, the heavy-tailed Cauchy(0,2.5). For the 

parameters with finite support (α, λ, and w), we selected narrower prior distributions so 

that the sigmoid-transformed parameters were roughly uniform in [0,1] a priori; prior 

means for these parameters were Normal(0,2.5); prior variances Cauchy(0,2) and prior 

devaluation slopes Cauchy(0,2.5). 

Estimation 

We estimated the joint distribution of the parameters of the model, conditional on all 

subjects’ observed choices and rewards. For this, we used Markov Chain Monte Carlo 

(MCMC) techniques (specifically the No-U-Turn variant of Hamiltonian Monte Carlo) as 

implemented in the Stan modeling language (v2.5, 2014). Given a probabilistic 

generative model (the above equations) and a subset of observed variables, MCMC 

techniques provide samples from the conditional joint distribution over the remaining 

random variables. We ran four chains of 4,000 samples each, discarding the first 2,000 

samples of each chain for burn-in. We examined the chains visually for convergence and 

also computed Gelman and Rubin’s (1992) potential scale reduction factors. For this, 

large values indicate convergence problems, whereas values near 1 are consistent with 

convergence. We ensured that these diagnostics were less than 1.2 for all variables. 

 

Supplementary Regression Analyses 

 

Given our relatively large sample size and the presence of some unique task features, we 

carried out additional exploratory analyses that may be of general interest (but were 

unrelated to our hypotheses). In each experiment, there was no significant relationship 

between age (Exp1: β=0.013, SE=.022, p=.554;  Exp2: β=0.007, SE=.026, p=.802) or 

gender (coded Female=1, Male=-1) (Exp1: β=-0.024, SE=.022, p=.266; Exp2: β=0.019, 

SE=.027, p=.475) and model-based learning. Nor was there a significant relationship 

between age (Exp1: β=0.034, SE=.026, p=.198; Exp2: β=0.102, SE=.07, p=.128) or 

gender (Exp1: β=-0.038 SE=.026, p=.148; Exp2: β=0.068, SE=.07, p=.316) and model-

free learning. In Experiment 1, unlike Experiment 2 and the original version (Daw et al., 

2011), there were two independent states, one gold and another silver. Therefore, on 

some trials the previous state experienced was different from the current state. We tested 



if this affected choice behavior by including state information as an additional predictor 

in our logistic regression analysis of the learning task behavior (same state:1, different 

state: -1, relative to the previous trial). This factor was included as a random effect (i.e., 

allowed to vary across subjects) and interacted with the other explanatory variables. We 

found that when the State on the current trial was the same as that on the previous one, 

participants were more likely to make the same choice (main effect of State β =0.13, 

SE=.033, p<.001), were more model-free (interaction of State by Reward, β=0.26, 

SE=.03, p<.001) and trended towards being more model-based (three-way interaction of 

State, Reward, and Transition, β =-.048, SE=.03, p=.068). Therefore, not unexpectedly, 

the three basic effects on the choices were more robustly observed when participants 

made choices in the same state as the immediately previous trial, whereas these effects 

were diminished when experience with the other state intervened.  

 

 

 

 

 

 

 

  



 

 
Figure S1. Result from the main logistic regression model collapsed across all 

subjects in Experiment 1 

As reported in the main text, we observed that subjects used a mixture of model-

based and model-free learning strategies, evidenced by the presence of both a main 

effect of reward (p<.0001; model-free) and a reward x transition interaction (p=.02; 

model-based).   

  



 

 

 

Figure S2. Result from the main logistic regression model collapsed across all 

subjects in Experiment 2 

As in Experiment 1, we observed that subjects used a mixture of model-based and 

model-free learning strategies, evidenced by the presence of both a main effect of 

reward (p<.0001; model-free) and a reward x transition interaction (p<.0001; 

model-based). 

 

 

 

 

 

 

 

 

 



Table S1. Experiment 1: Group-level estimates of the effect of each free parameter on 

devaluation performance in the computational model. 

 

Parameter effects on devaluation 

 

Upper 95% 

Median 

Lower 95% 

αDev pDev IJKL MJKL NJKL 

0.40 0.03 3.01 0.74 2.20 

0.11 -0.08 0.07 0.34 1.01 

-0.17 -0.19 -2.21 -0.06 0.07 

 

For each parameter, the median posterior estimate is given, together with the 95% 

confidence intervals. Only the slope of wDev is significantly different from zero. 

 

Table S2. Experiment 2: Group-level estimates of the effect of each free parameter on 

devaluation performance in the computational model. 

 

Parameter effects on devaluation 

 

Upper 95% 

Median 

Lower 95% 

αDev pDev IJKL MJKL NJKL 

0.3 0.37 1.46 0.87 4.97 

-0.12 0.21 -0.76 0.35 2.92 

-0.54 0.04 -3.29 -0.16 1.44 

 

For each parameter, the median posterior estimate is given, together with the 95% 

confidence intervals. The slope of wDev and pDev (i.e. perseveration) are 

significantly different from zero.



Task Instructions for Experiment 1  

 

SCREEN 1 

Welcome. Today you will be playing a game where you can earn some extra money. 

On every turn, you will make a choice between two boxes, which will bring you to 

another box, which may or may not contain a coin. 

At the end of the game, we will convert a proportion of what you have won into real 

money, which you can keep in addition to your hit payment. Simply put, the more coins 

you collect in the game, the more cash we will pay you when you are finished. 

Coins can be gold or silver, and are always worth 25c, regardless of color. The border of 

the screen on each turn will let you know whether gold or silver coins are available. 

You must read all of the instructions carefully. There will be a quiz before you begin the 

game and if you do not answer all of the questions correctly, you will be sent back to the 

beginning and will need to re-read them. 

 

SCREEN 2 

Before you start making choices, we will have a tutorial to show you how the game 

works. There are two things for you to learn in order to do well. We will practice these 

separately. 

The first is: 

You need to keep track of which boxes have the highest chance of having a coin inside. If 

a box contains a coin, it will appear below the box. If not, you will see a zero. 

Every time you find a box, the computer will decide whether or not to give you a coin 

based on a 'chance', which has been assigned to that box. Some boxes have a higher 

chance of having a coin inside than others. Importantly, the chances of each box 

containing a coin will change slowly, and independently, over time. It is your job to keep 

track of which boxes are currently better than others and to try and get to these boxes. 



There are no strange patterns to this game, such as a box containing coins on every other 

choice. The computer is not trying to play tricks on you; it strictly works on the chance 

assigned to each box, which will change slowly over time. 

 

SCREEN 3 

We will now let you practice this part of the game. You need to track which 'coin boxes' 

have a better chance of having coins than others. 

Two of the coin boxes that we will show you sometimes contain silver coins, but 

will never contain gold coins. Likewise, the other two boxes will sometimes contain gold 

coins, but will never contain silver coins. 

Unlike the real game, you won't be making any choices in this tutorial. Instead you 

simply need to pay attention to what happens on-screen so that you can work out which 

coin boxes are better than others. Learning how to do this will help you win money later 

on in the game. 

 

SCREEN 4 (following 20 practice trials passively learning which boxes are more 

likely to yield coins) 

Good. Hopefully, you saw that some boxes had a higher chance of having a coin inside 

than others. Also you probably noticed that even 'good' coin boxes didn't have a coin 

every single time. 

The second thing you need to learn is how to make choices that will bring you to coin 

boxes that are currently good. 

At the start of each turn, you will be able to choose between two boxes, which appear on 

the left and right. One of these boxes usually brings you to one of the coin boxes, and the 

other box usually brings you to the other coin box. For example, one box that you choose 

might bring you to one of the coin boxes on 7 out of 10 turns. But that means that on 3 

out of 10 turns, it will take you to another box, by mistake. These chances are fixed, so 

you just need to learn these rules once. This is unlike the goodness of the coin boxes, 

which will change slowly over time during the game. 

To sum-up: learning which boxes are more (or less) likely to bring you to each coin box 

is very important to playing the game well. If you can do this, you will be able to make 

good choices that will bring you to the coin boxes that are currently best. 



We will practice making the choices now. We won't show you the coins in this tutorial, 

so that you can concentrate on learning which choices bring you to which coin boxes. 

Press the: 

 

    E key to choose the LEFT BOX  

 

    I key to choose the RIGHT BOX  

 

You have a limited amount of time to make each choice. Try practicing a few times right 

now. 

 

SCREEN 5 (following 20 practice trials actively learning the transition structure 

through making choices and viewing their consequences) 

Good. Hopefully you learned which choices usually lead to which coin boxes. You also 

will have noticed that by 'usually', we mean 70% of the time. That means that 30% of the 

time, you ended up in the other coin box. 

It is important to know that the chance that a certain choice takes you to a certain coin 

box does not change over time. This means that if one box usually takes you to a certain 

coin box, that relationship will stay the same throughout the game. 

 

SCREEN 6 

Now that you understand the two parts you have practiced, we will remind you how they 

fit together in the game you are about to play. On each turn, you have a choice between 

two boxes, you will choose a box that will take you to a coin box and you will see if it 

contains a coin. After you find out whether or not your box contains coins, you will go 

back to the start and make another choice and try to earn another coin and so on. 

While some of the coin boxes may become very good at times (that is, they often contain 

a coin), these same coin boxes may become bad later in the game. You need to stay on 

top of which coin boxes are best. You must use this information to make good choices 

that are likely to bring you to the boxes that are currently good. 

Cognitive, Affective, and Behavioral Neuroscience



It costs you 1 cent to choose between the boxes and play the game on each turn. We will 

deduct this from your bonus at the end of the game. This is a good deal, because if you 

know that a box is good, you will often find a 25 cent coin inside. If you choose not to 

open one of the boxes, or are too slow to respond, there is no way that you can get a 25 

cent coin on that trial, but will save yourself 1 cent. Sometimes it might make sense to 

save yourself that 1 cent if you are really sure that there is nothing of value inside the 

coin boxes. 

 

SCREEN 7 

 

IMPORTANT: We will store your gold and silver coins in separate containers, one for 

gold coins and one for silver coins, so we can keep track of how much you have won. 

Please note that if either of these containers fills up completely during the game, you 

have maxed-out on storing that kind of coin! You won’t be able to keep any more coins 

of that color for the rest of the game. That means even if you continue to find that kind of 

coin inside boxes, we won’t store them for you, and you won’t get to keep them. We 

will alert you if at any point your containers get half-way full, and again if they get 

completely full. 

 

 

SCREEN 8 (Comprehension Test ) 

(correct answers are emboldened) 

Here is a short quiz to test if you understood the instructions correctly. 

If you missed any important things, we will bring you to go through the instructions 

again. 

 

Does it cost money to play the game on each trial?  

-I don’t know 

-Yes, it costs 1 cent 

-Yes, it costs 5 dollars 

-No, it is free to play 

 

Does the goodness of a coin box change over time? 

-I don’t know 

-No, some boxes are good and others are bad. This will not change 

-No, coins are delivered randomly and no boxes are ever good or bad 

-Yes! It changes slowly over time 



 

Does the chance that a certain choice leads to a certain coin box change over time? 

-I don’t know 

-No, the chances are about 70% and this will not change 

-No, the relationship between chances and coin boxes is completely unpredictable 

-Yes! It changes slowly over time 

 

If the silver container fills up, what will happen? 

-I don’t know 

-I can start keeping my extra silver coins in the gold container 

-I have collected all of the silver coins that I will be allowed to keep 

-I lose all of my silver coins 

 

If the gold container fills up, what will happen? 

-I don’t know 

-I can start keeping my extra gold coins in the silver container 

-I have collected all of the gold coins that I will be allowed to keep 

-I lose all of my gold coins 

 

Are silver and gold coins worth the same amount of money? 

-I don’t know 

-Silver coins are more valuable than gold coins 

-Gold coins are more valuable than silver coins 

-Yes! They are both worth 25c 

 

Can some boxes contain both silver and gold coins at different times? 

-I don’t know 

-No. Boxes contain either silver or gold coins, never both 

-Sometimes boxes will have both types of coins inside 

-Yes! Boxes often have both types of coins inside 

 

 

SCREEN 9  

Well done! You answered the questions correctly! 

Before you start the game, let's review. Your aim is to collect as much money as possible 

by finding coins. To do this, you will make choices between pairs of boxes which will 

bring you to another box that may contain a coin. Often one box will be better than 

another because it pays you more often. However, the goodness of the coin boxes will 



change slowly over time, so you need to stay on top of which coin boxes are currently 

good. 

Getting to the best coin boxes relies on your choice between the two boxes at the start of 

each turn. You have already learned how some choices are more likely to take you to 

certain coin boxes. This will not change over the game. 

You will need to put these parts together to do well at the game and win as much 

money as possible. You need to keep track of which are the best coin boxes as that 

changes slowly, and make good choices that you think are likely to bring you to 

them. 

Now we're going to play the real game where you can win money, which we will pay you 

as a bonus, in addition to your regular hit payment. 

Use the 'E' and 'I' keys to choose the left and right boxes. 

 

 

 

Miscellaneous Instructions 

 

Consumption test 

Free Coin Collection! 

For a brief time, you can collect coins by clicking on them using the mouse/trackpad. 

Once collected, coins will disappear from the screen and be placed in their containers, if 

they are not already full. 

You will have 4 seconds to collect as many coins as you like. Get ready! 

 

Withholding outcome information 



We will now no longer show you the results of your choices (i.e. whether or not you get a 

coin on each trial). Apart from that, nothing about the game has changed, and you should 

continue playing as before. 
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